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Abstract—A context-based communication system enables the
indirect addressing and routing of messages according to the
users’ contexts. This provides, for example, the means to send
a message to all students on campus who attend a certain
class, with information about an upcoming exam. However, for
a targeted forwarding of messages towards users, the routers
need information about the context of connected users. Global
knowledge, i.e., each router knowing about every user, is not
scalable, though, because of the necessary update messages to
keep this information up-to-date.

To address this challenge, a router can aggregate similar
contexts and only provide such an aggregated view to neighboring
routers. In this paper, we present an approach to aggregate
similar contexts, based on a similarity measure for user contexts.
The algorithm can be adjusted according to the observed mes-
sages and user contexts in the system by specifying a similarity
threshold to determine when contexts are aggregated.

The aggregation of user contexts improves the scalability
of our approach by significantly reducing the load of context
updates by up to 30%, depending on the usage of the system.
This improvement comes at the cost of a negligible increase in
false positive messages due to the loss of information used for
forwarding messages.

I. INTRODUCTION

Context-aware communication (contextcast) enables clients
to disseminate messages to receivers whose context matches a
given set of constraints or filters. Possible applications for such
a technique include the dissemination of concert information
for people interested in a certain musical style or invitations to
study groups for students attending the same university class
(ctf. [1]).

In order to distribute contextcast messages efficiently, overlay
networks and context-based routing algorithms are used. In
these networks, contextcast routers make forwarding decisions
by comparing the addressed context to the context of users
located in the access networks. In a distributed system of
context-aware routers, messages need to be either broadcast to
reach all matching receivers or the routers need to maintain
user contexts and their position in the network. However, it
is obviously not scalable to maintain complete knowledge of
all users on every router: that way, every change needs to
be replicated to every router in the network, resulting in a
broadcast of every update message. Instead, we propose that
routers maintain an aggregated view of reachable contexts for
each link. Such an aggregation can hide updates from parts
of the network. For example, if a router has the aggregated
information that it can reach users with an age between 15

and 23 over a certain link, it does not affect the aggregation
when a user with the age 19 disconnects from the system.
This effectively hides the disconnect update from neighboring
routers.

The aggregations also allow us to exploit a locality principle
in our design: Users at a location usually share certain
characteristics, e.g., many users on a university campus are of
type student and within a certain age range.

However, while an aggregation lowers the number of updates,
it also brings a loss of information: in the example above,
there might not be any contexts with an age between 20 and
22, even though the aggregation describes an age between
15 and 23. A message addressed to an age 21 would still
have to be forwarded in this direction until more detailed
knowledge is available, which a router can then use to prune
the dissemination tree. Such messages that the system forwards
without a matching receiver due to the information loss are
called “false positives”. Thus, the aggregation algorithm needs
to find a good balance between reducing the information, and
thus saving update messages, and eliminating false positives
early in the network. The approach we present is able to reduce
update messages by almost 30%, depending on the scenario,
at a negligible increase in false positives.

In Section II, we give a brief overview of our system
model, before presenting our aggregation approach to lower
the update load in Section III. This comprises an algorithm
to aggregate two or more contexts, a similarity measure to
select which contexts to aggregate, as well as algorithms to
achieve a continuous addition and removal of contexts from
our system. Section IV presents the results of our evaluation
of a prototype implementation of these concepts, before we
conclude in Section V with a summary and a brief outlook on
future work.

A. Related Work

The concept of context-based routing is similar to content-
based routing. As we have discussed in [1], the concepts
“cover” and “merge” in pub/sub systems such as Siena [2] or
REBECA [3] cannot simply be transferred to CONTEXTCAST.
“Cover” is intended for subscriptions containing predicates
on ranges, where one covers the others. The user contexts,
however, are points in a context space, defined by the attributes
and their values. Hence, two contexts are either identical or
differ in one or more attributes, without overlap in values. Thus,
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CONTEXTCAST requires a more general approach similar to
“merge”. However, it also needs to take the type of data, i.e.,
attribute type, into account. Especially a rype-attribute based on
a class hierarchy, which is important in our system, needs to be
handled differently than, for instance, a quantitative attribute
such as age.

Aggregating similar contexts is also closely related to the
clustering of data items (cf. [4] for an overview). Clustering
algorithms with a predefined number £ of clusters, such as
the k-Means algorithm [5] are not useful for CONTEXTCAST.
Since the optimum number k£ of clusters is not known a priori,
a reasonably good clustering dynamically depends on the
messages, or rather which contexts they address.

Furthermore, users can join and leave the CONTEXTCAST
system at any time. This eliminates clustering algorithms
that require random access to the data being clustered, e.g.,
the ISODATA algorithm [6]. Similarly, algorithms that use
a random sampling of the data such as CLARA [7] cannot
reliably determine a representative sampling of the data due
to continuous addition and removal of contexts. A continuous
addition of new elements is possible with algorithms such as
BIRCH [8] or more specialized stream clustering algorithms.
Neither can, however, remove old elements from the data.
CluStream [9] exploits a subtractive property of the data to
generate a clustering for an arbitrary time window. However,
such a subtractive property does not hold for the user contexts
in our system.

Also, clustering algorithms for objects in R™ cannot be used
for user contexts with their various different attributes, such
as a structured variable based on a type hierarchy. Gowda et
al. [10] have researched clustering of such “symbolic objects”,
which are very similar to the contexts in our system. We use
their results as a basis to derive a similarity measure for our
contexts in Section IIL.

II. SYSTEM MODEL AND MESSAGE MATCHING

CONTEXTCAST’s main function is the dissemination of
messages to users matching a given addressed context. To
achieve this, in [1] we presented a contextcast overlay network
for routing and defined the semantics of messages, user contexts,
and the matching between them. The next Sections give a brief
overview of this work.

A. System Model

CONTEXTCAST uses a distributed system of context-aware
routers, or ContextRouters, which form an overlay network,
as shown in Figure 1. The links in the overlay network are
set up to form an acyclic undirected graph; for an arbitrary
overlay, a routing algorithm can ensure the acyclic property.
The connections between the routers follow a locality principle,
i.e., connections between close routers are more likely than
between ones that are far apart. This design is used to exploit an
existing locality with regard to user contexts, e.g., a clustering
of students on a campus. In addition to routing functionality,
some routers serve also as access nodes for clients, covering
a certain service area. When the distinction of the added

access functionality is significant, we call the access nodes
ContextNodes.

The ContextNodes maintain information about connected
users and their contexts in their respective service area.
They propagate the information into the network where the
ContextRouters maintain tables of contexts that can be reached
via each of their links.

B. Message Matching

A user context c in the system consists of any number of
context attributes . A(c) denotes the set of all the attributes
that make up a context c. Each attribute « is a tuple (type,
name, value). The location attribute oy, is given as a geometric
location based on WGS84, with a type of “WGS84”. For the
other context attributes, CONTEXTCAST currently supports
the typical numerical types such as integer or float, as well
as more complex types such as an enumeration gender or a
class attribute based on a class hierarchy. The system can be
extended to support arbitrary attribute types with associated
matching predicates. Figure 2 shows an example of such a
context c.

A (context) message m addresses clients by specifying
constraints on their context attributes. These constraints need
to be fulfilled for a user (or rather their context) to actually
receive a message. A constraint (or attribute filter) ¢ is a tuple
(type, name, predicate, value), where type, is the attribute
type, name, is the attribute name, and predicate, can be any
predicate that is defined on the attribute type. The attribute
filters in a contextcast message serve purely to address users.
Thus, the messages have an additional payload, which is the
actual message content. Figure 3 shows such a message m.

For any given attribute filter, the system can thus evaluate
the constraint ‘value, predicate " valuey’, e.g., for the attribute
age: 29 > 15 — true. If a message contains an attribute
filter and the attribute is not defined in a user context, the
corresponding filter evaluates to false for that context. The
conjunction of all attribute filters in a message m determines

ContextNode ContextRouter

Contextcast Client Service Area

Figure 1: The CONTEXTCAST system

c: WGS84: location = 48.12N, 9.10E
hierarchy: class = "pedestrian"
enum: gender = "female"
int: age = 29

Figure 2: Example of a user context
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m: WGS84: location € 48.0N-48.4N, 9.0E-9.2E
enum: gender = "female"
int: age > 15
int: age < 35
payload = [questionnaire & voucher]

Figure 3: Example of a contextcast message

whether it matches a user’s context ¢ and thus needs to be
forwarded and eventually delivered to that user.

III. CONTINUOUS CONTEXT AGGREGATION

In the following Sections, we first present the idea of
aggregating user contexts, together with a formal aggregation
condition and an algorithm that fulfills this condition. After that,
we derive a similarity metric for the contexts in our system.
We then use this metric in a continuous algorithm to aggregate
new contexts in our system and remove invalidated ones.

A. Context Aggregation

Without knowledge of user contexts, the system must
broadcast messages (or geocast, with knowledge about access
networks’ service areas) to disseminate a message to all
potential receivers. Information about reachable contexts on
the routers allows for a more directed forwarding. However, as
discussed in Section I, maintaining complete knowledge of all
users on the routers impairs scalability due to the necessary
updates. Therefore, we propose an aggregation of user contexts,
i.e., propagating only a summary view of reachable contexts.

Definition 1 (Aggregation of user contexts). Let C be a set of
User Confexts c1,. . .,c,. An Aggregation C’ of these contexts
is a set of contexts c,...,c, (where typically k < n) for
which the following aggregation condition holds.

Definition 2 (Aggregation Condition). Let C' and C' be two
sets of contexts. C' is an aggregation of C' iff every message
m that matches at least one context in C' also matches at least
one context in C'.

Definition 1 abstracts from the actual aggregation method;
all that is required is that the above mentioned condition holds
for a given aggregation approach. The aggregation condition
ensures that every client receives at least all the messages they
would have received without the aggregation of client contexts.
That is, no client with a matching context falsely misses a
message because of the aggregation (“false negative”).

Based on the semantics we presented in Subsection II-A and
Definition 1 and 2, we propose an algorithm to aggregate two
contexts into one: It aggregates all attributes that occur only
in either c¢; or ¢y directly into cCageree. For all attributes that
occur in both contexts, it merges the values and then aggregates
the resulting new attribute into caggreg. This merge of attribute
values needs to be defined for the different attribute types in
our system. For example, for WGS84 coordinates, a merge of
two values is the bounding rectangle of both positions. Or for
ordered, numerical types, the merge of values can be either

Algorithm 1 Pairwise Context Aggregation

Require: Two user contexts c; and co (singleton contexts or
already aggregated ones).
Ensure: An aggregated context Caggreg.
Caggreg — @
for all o € A(cy) do
if 3o, € A(c2) : name(cy2) = name(c;) then
Qmerged < @1
value(umerged) < value(a,) U value(ay)
Caggreg — Caggreg U Qmerged
else
Caggreg < Caggreg U (i1
end if
end for
for all Qja € A(CQ) do
if Q2 ¢ Caggreg then
Caggreg ¥ Caggreg U 4j2
end if
end for

the set resulting from the union of all values or it can be
a closed interval from the smallest to the largest value. The
definition of such a merging of values must take care that it
works for both single values and values that resulted from a
previous aggregation. In addition, to ensure that the aggregation
condition holds, the predicates used in attribute filters must
be adapted to this definition. In detail, we have to check now
whether the addressed attribute values occur in the values of
aggregated attributes, which may now contain ranges or sets
instead of single values. This is also rather straight-forward,
for example for a numerical type aggregated to an interval the
equality predicate must check whether the interval contains
the specified value.

Any context resulting from the (repeated) application of
this algorithm fulfills Definition 2: Obviously, the aggregation
condition holds for an aggregation of two contexts, since the
aggregated context contains the union of all attributes and
supersets of the attribute values. Also, the algorithm can be
applied to both singleton contexts or already aggregated ones.
Thus, by repeated execution for pairs of user contexts, it can
aggregate any given set of contexts C' = {¢1,...,¢,} into a
single context ¢/, for which the aggregation condition holds.

O

B. Context Similarity Metrics

While the algorithm from the previous section aggregates
a given set of contexts into a single one, it obviously needs
to aggregate similar contexts: For example, if we aggregate
a context with an age of 8 with one with an age of 80, the
resulting information loss might be enormous (a context with
age = [8;80]). This would lead to many “false positives”, e.g.,
all messages addressed to an age between 8 and 80. Therefore,
the question remains “how to select a good set of similar
contexts for aggregation?” This requires a metric to measure
the similarity between user contexts.
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As one can see from the algorithm in the previous section,

an aggregation introduces two types of uncertainties into the
system: First, new attribute combinations from attributes that
only occurred in individual contexts: Attributes that previously
did not occur in one context together may end up together
in an aggregated context. However, all filters in a message
must match for a message to be delivered. Therefore, these
additional combinations can lead to aggregations matched by

messages that would not have matched the individual contexts.

Second, uncertain values resulting from the value aggregation
of attributes that occur in two or more contexts: This may
create new values for attributes, which were not present in any
of the individual contexts. Again, this can lead to more filters
matching an aggregated attribute value, which would otherwise
not have matched the individual, unaggregated attributes.

We therefore propose to measure the overall similarity of
user contexts by two components, a structural similarity for
the attribute sets of two contexts and a value similarity for the
attributes occurring in both contexts.

1) Structural Similarity: The structural similarity of two
contexts can be measured by the relative overlap in attribute
sets between them: With A(c) denoting the set of all attributes
making up c (without values), we can express the structural
similarity Sggycwral between ¢; and co formally as:

[A(e1) N Alea)|
[A(er) U A(ea)|

2) Value Similarity: The similarity of attribute values
depends on the respective type of an attribute. We have adapted
the similarity of quantitative and qualitative attributes by Gowda
et al. [10], [11]. However, we changed the formulae slightly
to normalize the similarity measure to [0; 1]. This change was
done to eliminate the influence of the number of overlapping
attributes on the overall similarity since that is already part of
the structural similarity.

Additionally, user contexts in our system are classified

(D

Sstructural (Cla 02) =

according to a fype attribute with an underlying class hierarchy.

While Gowda et al. mention structural attributes with such
an underlying hierarchy, they do not detail how to compute
the similarity of these attributes. We obtain the similarity of
such values by their proximity in the hierarchy over the total
size of the hierarchy. Formally, let n1,no be two nodes that
correspond to attribute % in contexts ¢; and co in a given tree
structure and h the height of this tree. Let {(n) denote the level
of a node n in this tree. Then, the similarity between n; and
ng — and thus between attributes D, and Ej — is computed
using the first common ancestor a for ny and no:

= Sp(n17n2)

(U() —

S(c1ks ca k)

l(a)) + (l{n2) — I(a))
2-h

l(n1) 4+ l(n2) — 2l(a)
51 2)
Generally, the system we present can support arbitrary types,
for which it is possible to define both a similarity metric and
an aggregation scheme for the attribute values.

=1-

=1-

3) Overall Similarity: For the overall similarity of two
contexts, we combine the structural and the value similarity as
follows: multiply the arithmetic mean of the attribute similarity
with the structural similarity of two contexts. Formally, with
attributes 1, ..., k shared between c¢; and co and n attributes in
an aggregated context, this leads to

k

1
S(cla 02) = Sstructural(Ch 02) : E Z Svalue(cl’i, C2,i)
=1
_ E Zf:l S(Cl,i; 62,1')
= -
1 k
=5 Z; S(c1,4,¢24) (3)

This multiplication of the two components matches the intuitive
notion that for contexts with identical attribute sets, thus
Sstructural (€1, ¢2) = 1, only the value similarity is important. For
contexts with disjoint attribute sets, and thus Sgyucrura (€1, C2) =
0, the overall similarity is 0, independent of the value similarity
(which is also 0, since there are no overlapping attributes for
which to compute the value similarity).

C. Continuous Aggregation Algorithms

Based on the previously defined similarity metric and the
pairwise aggregation we propose the following algorithms.
They provide a continuous aggregation of new, similar contexts
and a disaggregation of removed contexts.

Context Addition. Using the similarity measure from the
previous section, the system can compute the similarity between
pairs of contexts, either singleton ones or aggregations. We can
then aggregate a newly added context with an existing one as
follows: When a router receives a newly added context c,qq from
one of its neighbors, it computes the similarity between c,gq
and all other contexts associated with that link. If the highest
similarity between c,qg and an existing context c.x exceeds a
configurable threshold similarity, sy, the system aggregates this
new context with the existing one. This similarity threshold
serves as a parameter for the operation of Algorithm 2. It
determines how similar two contexts must be before they
are aggregated and thus whether the system has a very fine
or a rather coarse aggregation. By adjusting its value, either
manually by a human administrator or autonomously, one can
optimize the system for the observed contexts and messages.
We evaluate reasonable values for sy under different scenarios
in Section IV. If the resulting context cyey differs from cex,
Cnew Must be propagated as an update for ce. In this case, we
call cyqq a “defining context” for cpey (this is important for the
context removal). When a defining context is removed from an
aggregation, we need to recompute the aggregation from the
remaining parts. For this purpose, a router stores individual
contexts that it aggregates but only propagates the aggregations
to its neighbors. Algorithm 2 shows this sequence formally.

Context Removal. The removal algorithm for contexts (e.g.,
when a user disconnects from the system) is rather similar to the
addition algorithm. Basically, when a context cen, is supposed
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Algorithm 2 Context Addition

Require: A newly added context c,qq, received via a link [.
Ensure: c,qq is attached to the link /.
local context store U Caqq
Smax < 0
for all ¢; € {contexts already attached to [} do
5i < 5(Caad, Ci)
if s; > smax then
Smax < Si
max < 1%
end if
end for
if spmax > S then
Cnew < merge ¢; and c,qq
if ¢y differs from c; then
Mark cyqq as defining context for cpey.
Replace ¢; on [ with cpey.
Propagate c,ey as update/replacement for c; on all links
except [.
end if
else
Attach c,qq as singleton context to .
Propagate c,qq on all links except [.
end if

to be removed from a link, a node first checks whether cen
is a singleton context or part of an aggregation. A singleton
context can simply be removed and its removal propagated to
neighbors. If the context is part of an aggregation, it depends
if it is a defining context for this aggregation. If it is not, its
removal does not affect this context. If it is a defining context,
the algorithm needs to recalculate the aggregation from the
stored contexts it contains, and potentially propagate an update
for this context. See Algorithm 3 for a formal description.

Algorithm 3 Context Removal

Require: A context ¢, to remove from a link /.
Ensure: ¢, is removed from the link [.
if crem is a singleton context then
Remove ¢y from 1.
else {crem is part of an aggregation Cagoreg }
if crem 1s defining context for cygeree then
Recalculate cyggreg from local context store.
Propagate an update of cyegree On all links except /.
else
Do nothing.
end if
end if

D. Optimized Aggregation Candidate Selection

For a newly added context, a node must calculate its
similarity with all other contexts that are attached to the same
link. Especially when there are a large number of contexts

attached to a link, this calculation can cause a rather large
amount of load for the node. However, it is possible to simplify
this calculation by first selecting a suitable set of aggregation
candidates.

The similarity of two contexts consists of the product of the
structural and the value similarity. By employing the concept of
Bloom filters [12], it is possible to calculate an upper bound of
the structural similarity very efficiently: Let b; be a bit string,
which represents the structure of a context c; as follows: Every
attribute in ¢; is hashed to a position in b;, which is set to 1.

Also, let |b;| be Hamming weight of b;, i.e., the number of 1
bits in b;. Then, the structural similarity between cex and cyqq
can be expressed as

_ | A(cex) N A(Cada)| _ [
‘A(Cex) U A(Cadd)| |b \ bcadd'

Binary AND and OR can be computed very fast on conventional
computer systems; for counting the 1 bits, efficient algorithms
exist and some processors even offer a dedicated machine
instruction such as POPCNT. The hashing of attribute names
to bit positions can be done once and cached.

From this structural similarity, we can now derive a set of
candidate contexts as follows: for a given similarity threshold
S, we exclude a context from the candidate set (and thus skip
the calculation of the value similarity) if the structural similarity
is smaller than Sy,: From the condition S = Sgyuctural * Svalue >
S, we can derive that also Sgructual > St (for Syae = 1).
However, the hashing of attribute names can lead to collisions
and thus a higher structural similarity value. Thus, for two
contexts with a similarity above the threshold, the algorithm
needs to recalculate the structural similarity based on the actual
attribute sets instead of their bit string representations.

“4)

S, structural (Cex 5 Cadd )

Cex

IV. EVALUATION

We have implemented our method for aggregating contexts,
described in Algorithms 1, 2, and 3 in a prototype implemen-
tation for a network simulator to evaluate its performance.
Also, the simulations serve to find sensible values for the
parameter of the algorithm, the similarity threshold sgy. Since
our approach is designed to reduce update messages in the
overlay, we are mainly interested in message overhead in the
overlay and less interested in things such as underlay latency,
Therefore, we implemented the prototype in the Peersim [13]
network simulator.

For the simulation, the network topology consists of 400
ContextRouters, which are connected to form an undirected
acyclic graph. Links are constructed according to the Heuris-
tically Optimized Trade-off model (cf. [14]): the nodes are
sequentially added and uniformly distributed over an area of
size [0,1] x [0,1]. Each new node is connected to an existing
node such that a weighted distance metric of network and
Euclidian distance is minimized. The parameter o of this
weighted distance was selected as a = /n for a network
of n nodes. According to [14], this leads to an Internet-like
power-law distribution for the node degrees.
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A fraction of 60% of these nodes are then selected as access
nodes for receivers of contextcast messages and assigned a
rectangular service area. The edge lengths of these service areas
are uniformly distributed between 0.04 and 0.06. Each service
area is then placed such that the corresponding node is in its
center. Any service area that extends beyond the [0, 1] interval
in either direction is cut off to remain within the boundaries
of the simulation.

Not all routers with degree 1 are assigned an access network.
However, even though this means no user is ever connected
to such a node, they can still be used to send messages. For
example, a provider of commercial messages might operate
its own overlay node to send its messages but no client ever
connects to such a pure message source.

The clients we simulate are created in the following way:
we simulate an average of ten user contexts per access network,
corresponding to about 2400 in total. Each of these contexts
has an associated location, assigned such that it is identical its
access network’s service area. With probability 0.5, a context
has one of three different structural attributes; the hierarchy for
the structural attributes is generated randomly with a uniform
height distribution between two and five and between zero and
three children per node. Additionally, each contains between
two and three quantitative attributes, uniformly chosen out of a
set of seven different ones. The value for a structural attribute
is chosen by descending into the associated hierarchy, at each
node uniformly choosing one of the children; the probability
to further descend into the hierarchy is chosen such that it
favors deep nodes, or in the case of a type hierarchy, a detailed
type specification over a more general one. The values of the
quantitative attributes follow normal distributions with different
means and standard deviations.

The network load is determined by the rates of messages and
update during the simulation. For the simulation, we vary the
ratio of update and message per cycle such that the sum of both
remains constant, i.e., 5 : 1 (message-dominated scenario), 3 : 3
(balanced scenario), and 1 : 5 (update-dominated scenario).

These updates and messages are generated randomly, ac-
cording to the following instructions: for a fraction of 70%
of all updates, the update results from a change of a single
attribute. If the attribute that is being changed is the location,
a node uniformly selects one of its ten nearest neighboring
ContextNodes and connects to it, updating its location; for the
other attributes, the values are changed in the same manner
as they are created for new contexts. For the remaining 30%
of updates, a uniformly selected context is removed and a
different random context — created in the previously described
way — added. This models users changing there contexts as
well as leaving and new ones joining the system, respectively.

Context messages are also sent randomly and created similar
to context updates: they contain a target location, with p = 0.5
a structured attribute, and between zero and two quantitative
attributes.

For our evaluation, we run five simulations of this setup
with different random seeds; we then compute the arithmetic
mean of the simulation runs.

To quantify the performance of our approach, we measure
the message overhead, i.e., messages that are not directly
necessary for the correct transmission of messages to the
matching recipients. In particular, we measure context updates
and false positive messages.

Update Messages. A context aggregation conceals some of
the users’ updates from the router. Therefore, we measure
the number of updates that a router actually forwards to
its neighbors, both with and without an aggregation of user
contexts. We denote u be the number of updates a router
propagates in the unaggregated and u, be the number of updates
it must propagate with the aggregation.

False Positives. Besides the load of update messages, an
aggregation of contexts causes load in the overlay network by
transmitting messages without matching receivers, i.e., false
positives. False positive messages can always be filtered closer
to the receiver with more detailed knowledge, however, in the
worst case, this may only be possible at the access node or
on a client’s mobile device. We therefore measure the amount
of false positive messages, my,, caused by the loss of routing
information when aggregating contexts.

A. Effect of the Similarity Threshold

To evaluate the impact of an aggregation of user contexts, we
compare the amount of false positives caused by the aggregation
to the reduction in updates. We carry out simulations with
similarity thresholds sy of 0.5, 0.6, and 0.7 to adjust the
granularity of the aggregation (from coarse routing information
to detailed, respectively).

The simulations cover a time of 3000 cycles; however, for the
results, we limit the simulation time to 2500 cycles, leaving out
the first 500 cycles. The simulation contains a warm-up phase,
during which the contexts are first entered into the system;
this generates a significant amount of updates, however, no
messages are sent during that time. Limiting the evaluation to
the cycles 500 to 3000 eliminates the warm-up phase from the
measurements.

The results for the three different ratios of update to
message rate is shown in Figure 4. As one can see, for each
scenario, from the update-dominated on the left to the message-
dominated on the right, lowering the similarity threshold causes
an increase in false positives: going from sy, = 0.7 to 0.6
causes an increase in false positives between 220% and a little
over 330%, while lowering it from 0.6 to 0.5 causes only a
further increase between 36% and 70%. The smaller increase
when lowering sy from 0.6 to 0.5 can easily be explained:
there is an upper limit on the amount of false positives for any
given message, no matter how coarse the aggregation of the
contexts. The upper limit results from the target location of
every message. As soon as a message is delivered to all access
network that intersect a message’s target location, the delivery
is complete. Thus, the maximum number of false positives any
message causes is simply the amount of messages required to
deliver it to all access networks that overlap the target location.

Overall, the increase in false positives fits the intuition
that a coarser aggregation results in fuzzier knowledge about
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user contexts on the routers. Therefore, the dissemination
cannot be pruned as early as with complete, unaggregated
knowledge on each router. As such, messages get forwarded
to routers with better, less aggregated knowledge or even to
the access networks before it can be determined that they have
no matching receiver.

Looking at the decrease in updates, we can again see similar
results in all three scenarios. Aggregating contexts causes a
clear decrease in updates in the system. A similarity threshold
sm = 0.6 saves between 4.5 and almost 9.8 times the amount
of messages than aggregating with sy, = 0.7. However, when
we lower the threshold further to 0.5, we observe that this effect
reverses. That means, if the system aggregates contexts too
aggressively, the update load increases again, almost halving
the savings it achieved with sy = 0.6. The reason for this effect
is that a lower threshold causes rather different contexts to be
aggregated. Since we aggregate such dissimilar contexts, there
is a high probability that an update is actually a defining context
for the resulting aggregation. This changes the aggregation, and
therefore results in another update being propagated further
into the network.

When we compare the numbers for false positives and
updates, we can see that by aggregating similar contexts, the
amount of saved updates vastly outweighs the amount of false
positives it introduces. The amount of additional false positives
is less than 0.1% of the reduction of updates our approach
achieves. It would require a system with a much higher volume
of context messages or quasi-static user contexts to not benefit
from an aggregation.

Compared to the update messages in the system without
context aggregation, our approach lowers the amount between
18% and almost 25% on average for sy, = 0.6, with some
scenarios achieving a reduction up to almost 30%.

B. Aggregation Quality over Time

Due to the dynamic of the system, new contexts continuously
get added and old ones removed from aggregations. This might
lead to a degeneration of the aggregations over time and thus
a gradual increase in the number of false positives. (However,
since the aggregations are becoming more general, this effect
would also reduce update messages further.) To investigate this
behavior, we simulate the three scenarios from before with a
similarity threshold sy = 0.5. The low threshold results in the
most aggregations of context updates and thus also the most
changes to aggregations over time.

Figure 5 shows the false positives during the simulation run
time. The false positive are measured as the average number
during each simulation cycle, taken over time windows of 100
cycles. For all scenarios, the Figure shows a very low amount
of false positives in the beginning. However, this is due to the
warm-up phases (of different lengths) in the simulation, during
which no messages are sent and thus no false positives can
occur.

During the remaining simulation time, the average of false
positives stays relatively constant for all three scenarios. There
is no noticeable increase in false positives over time. Therefore,

even after 3000 cycles, i.e., between 3000 and 15000 updates
in total, there is no discernible negative effect on the quality
of the aggregations in our system. However, it is possible that
a larger change in user contexts or a rare sequence of contexts
still lead to a degeneration of the aggregation. For example,
this would happen if the contexts successively covered an ever
larger part of the attributes’ values, thus continually increasing
an aggregation in size until it matches practically every message.
This is subject to future work, though.

V. CONCLUSION & FUTURE WORK

Contextcast enables an interesting group communication
paradigm, which addresses users via a number of attributes
instead of explicit groups. For a directed forwarding of
messages, the routers require information about the users in the
system. Keeping this information up-to-date poses a serious
scalability challenge.

An aggregation in CONTEXTCAST can be used to lower
the update load on the system by as much as 30% and thus
improve the overall scalability. Such an aggregation of user
contexts results in a loss of information available for routing
messages. At the same time, it introduces a negligible amount
of additional false positive messages into the system, which
would not be necessary with unaggregated contexts.

We have shown an approach to aggregate an arbitrary number
of contexts into a single one, which was designed such that it
fulfills the aggregation condition and thus does not cause false
negatives. We have also presented two algorithms that allow us
to continuously aggregate user contexts in Contextcast, while
still being able to remove old contexts from the system. The
algorithm uses a similarity measure we developed for user
contexts to decide when a new context should be aggregated
with an existing one. Our similarity measure takes into account
both the structure of user contexts, i.e., which attributes are
present, as well as the values of these attributes, i.e., how close
are two attribute values in the context space.

A parameter similarity threshold sy allows us to tune the
aggregation algorithm to the contexts and messages that occur
in the system. It controls the trade-off between update messages
and false positives. The evaluation results suggest that a value
for the similarity threshold around 0.6 maximizes the update
reduction in our concrete scenarios. However, for less dynamic
contexts and even higher message rates, we can imagine a
higher value for sg; in such a scenario, the false positives may
dominate the trade-off, while the almost static contexts cause
very little load in the network.

In the future, we are planning to investigate a self-tuning
extension to the presented algorithm. This would allow the
routers in the system to autonomously and independently adapt
the similarity threshold, based on the observed contexts and
messages. It could be further improved by having a feedback
mechanism for the access networks to signal when they receive
too many false positives. This allows the routers to verify
their aggregations, potentially adjusting the threshold or certain
aggregations in the process.
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Figure 5: Degeneration of aggregations over time

Another extension we are planning is to incorporate network
distance into the aggregation. This would allow the system to
have coarser information the further a context is propagated
into the network. For example, if two or more contexts were
propagated a number of hops without being aggregated, a
router could dynamically lower the aggregation threshold, thus
preventing too detailed information from being propagated far
into the network.
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