Event processing for large-scale distributed games

Gerald G. Koch

Muhammad Adnan Tariq

Boris Koldehofe Kurt Rothermel

Universitat Stuttgart
Institut fiir Parallele und Verteilte Systeme
Universitatsstr. 38
D-70569 Stuttgart, Germany
{firstname.lasthame}@ipvs.uni-stuttgart.de

ABSTRACT

Novel peer-to-peer-based multiplayer online games are in-
stantiated in an ad-hoc manner without the support of
dedicated infrastructure and maintain their state in a dis-
tributed manner. Although their employed communication
paradigms provide efficient access to sections of distributed
state, such communication fails if the participants need to
access large subsets of the application state in order to de-
tect high-level situations. We propose a demonstration that
shows how multiplayer online games can benefit from using
publish/subscribe communication and complex event pro-
cessing alongside their traditional communication paradigm.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organisation]: Distributed
Systems

General Terms

Multi-player online game, content-based publish/subscribe,
distributed complex event processing

1. INTRODUCTION AND MOTIVATION

A novel kind of large-scale applications that users instan-
tiate in an ad-hoc manner requires new ways of maintaining
and accessing application state. For instance, peer-to-peer-
based multiplayer online games avoid a dedicated infrastruc-
ture of game servers and keep the game state in a distributed
manner, which introduces new challenges. For example, cor-
rect game behaviour requires that interacting participants
have a consistent view on the game’s state. Therefore, ef-
ficient communication paradigms are essential—e.g., group
communication with clustering schemes [3]—for the update
and access to distributed application state.

However, in realistic scenarios, such communication
schemes are not sufficient. First, while the accessible game
state contains only low-level representation like the position
of an object, players are rather interested in more abstract

© ACM, 2010.

This is the author's version of the work. It is
posted here by permission of ACM for your
personal use. Not for redistribution. The

definitive version was published in Proceedings
of the Fourth ACM International Conference on

Distributed Event-Based Systems (DEBS'10),
Cambridge, UK, July 2010.
http://doi.acm.org/10.1145/1827418.1827440

situations. For example, the gathering of a certain amount
of players or the development of a specific setting are not
represented as a value in the games’ state. They require
the detection of temporal, spatial or other patterns in the
behaviour of objects. Furthermore, letting all players access
the global state and detect situations on their own creates an
unnecessary load for communication and computation. Tra-
ditional communication paradigms cannot handle this prob-
lem as they typically have no event processing capabilities.
Second, players are usually interested in situations that
occur within a defined area called the area of interest (AOI).
However, communication paradigms like group communica-
tion have typically no access to the semantics of the game
and therefore run clustering schemes that ignore the player’s
AOI and thus lose efficiency. Additionally, group communi-
cation schemes need to keep groups small and distinct which
leads to multicast group explosion if players are interested
in a large number of diverse sections from the distributed
application state. As a result, realistic scenarios in multi-
player online games that are currently supported by tradi-
tional communication paradigms require additional support
for the the observation of individual high-level situations.

2. APPROACH

The demonstration shows that peer-to-peer-based mul-
tiplayer online games benefit from additional support by
content-based publish/subscribe and distributed complex
event processing. With this approach, instances of the game
application publish selected parts of the game state to the
content-based publish/subscribe system EONSON [2], in
addition to the group communication system. EONSON
provides efficient state dissemination as it incorporates the
game semantics of “virtual space” directly in its tree struc-
ture and dissemination process. For instance, if the game
instance publishes virtual location information, this infor-
mation is employed by the content-based publish/subscribe
system in order to coordinate the subscribers on a peer-to-
peer basis. The result is a publish/subscribe overlay topol-
ogy that reflects the containment relationship between the
AOTI of game instances which publish location information or
subscribe to it. The topology ensures that only peers that
are interested in the same areas participate in forwarding
and filtering messages, providing an efficient event distribu-
tion throughout the whole distributed game application.

In addition to content-based event communication, the
distributed event correlation detection system Cordies [1] is
employed. Its instances are located independently from each
other within the distributed application. In particular, their

kochgd
Textfeld
© ACM, 2010.
This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems (DEBS'10), Cambridge, UK, July 2010.
http://doi.acm.org/10.1145/1827418.1827440

location does not depend on the message flow of the pub-
lish/subscribe system. The Cordies instances subscribe to
event messages and detect several application-defined event
patterns on them. Detected patterns lead to the publication
of corresponding complex event messages. The EONSON
publish /subscribe system forwards complex event messages
to other Cordies instances or to game instances subscribing
to those situations. The application defines event patterns
separately from subscriptions, which allows a fine-tuning in
the levels of abstraction. For instance, one event pattern
detects meetings of any pair of players in a defined area of
the virtual game space. Players, however, subscribe to a
more restricted situation—the meeting of two players where
they represent one party. The situation detection is executed
once, but all players receive different user-defined informa-
tion thanks to message filtering in EONSON.
Supplementing the communication paradigm employed by
a peer-to-peer based multiplayer online game with EONSON
and Cordies yields the following benefits. First, content-
based communication uses message contents for information
forwarding and is therefore capable of considering applica-
tion semantics when restructuring which leads to more effi-
cient communication. Still, the instances of the game that
publish game state or subscribe to it, stay decoupled. Sec-
ond, employing distributed complex event processing which
blends seamlessly into the publish/subscribe system pro-
vides useful high-level situation detection which is accessed
by game instances using the common publish/subscribe in-
terface. This relieves the game instances from detecting situ-
ations themselves—possibly repeatedly at several instances.
Furthermore, the Cordies can regulate the placement of its
instances autonomously and provides in-network complex
event processing, thus reducing bandwith consumption.

3. DEMONSTRATION

The demonstration uses the multiplayer first person shooter
game PlanetPIj [3] to show the benefit of in-network event
processing. The game has a peer-to-peer architecture and
manages its state information in a distributed manner. Each
player controls a plane in the virtual game space and can
shoot other planes if they are within the shooting range.

Planes within shooting range may not always be in the fo-
cus of the player (such as behind the player’s plane). There-
fore, a player should receive a notification whenever another
plane is in its AOI. Detecting this situation locally would
require a lot of state information at each player, which does
not scale in terms of communication, storage and compu-
tational overhead. However, with in-network detection of
the situation (Figure 1), positionUpdate messages of planes
are forwarded to Cordies nodes rather than disseminated
to the network boundary. These messages are interpreted
by Cordies nodes in three different ways. First, two posi-
tion messages of the same plane describe a movement. The
node publishes an onMovement message accordingly, which
is not yet of interest to the game application. Second, a po-
sitionUpdate message of one plane and a onMovement mes-
sage of another can describe the meeting or the departure
of two planes. Players can subscribe to onMeeting and on-
Depart messages and react accordingly.

Maintaining a single Coordies instance for testing meetings
and departures may still not scale with the number of play-
ers. Here, the application semantics of the area of interest
(AOI) is handy. Communication and computation overhead

Plane 1

positionUpdate

positionUpdate

e
i

positionUpdate

With in
Planel Shooting

Plane2 Plane3

Out of
Shooting
range

Areal | |
Area 2

Figure 1: Demonstration Scenario

can be reduced if the game divides its virtual space into
static AQOIs, so that state information is provided completely
and fast to all the planes within an AOI. For scalability rea-
sons, a separate Cordies instance detects event patterns for
each AOI. Each instance subscribes to positionUpdate mes-
sages from the assigned AOL

The table below compares the demonstrated event service
and a clustering multicast service with respect to the esti-
mated number of delivered messages and performed corre-
lation tests per time unit. It assumes that the event service
has ¢ static AOIs and that multicast has ¢ clusters, with
an equal number of nodes in each AOI or cluster, and that
each of the total n nodes sends a positionUpdate per time
unit. The min/max values stand for the minimal/maximal
number of possible occurring situations. The demonstrated
solution has less message overhead in most cases and less
correlation test overhead if approximately ¢ < 3.

multicast demonstrator
Nr. of messages n (% — 1) min: n
max: n (2 +1)
. 3 2 . 2
Nr. of tests min: %y — 22" +n min: %~
¢ -
n3 9.2
max: %5 —n max: 737;

c

4. REFERENCES

[1] G. G. Koch, B. Koldehofe, and K. Rothermel. Cordies:
Expressive event correlation in distributed systems. In
Proc. 4th Intl. Conf. on Distributed FEvent-Based
Systems (DEBS’10), 2010.

[2] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and
K. Rothermel. Dynamic publish/subscribe to meet
subscriber-defined delay and bandwidth constraints. In
Proc. 16th Intl. Conf. on Parallel Computing
(Euro-Par), 2010.

[3] T. Triebel, B. Guthier, T. Plotkowiak, and
W. Effelsberg. Peer-to-peer voice communication for
massively multiplayer online games. In Proc. 6th IEEE
Consumer Communications and Networking Conf.
(CCNC), 2009.

