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ABSTRACT

We present a novel approach towards the creation of vision based recognition tasks. A lot of domain specific
recognition systems have been presented in the past which make use of the large amounts of available video
data. The creation of ground truth data sets for the training of theses systems remains difficult and tiresome.
We present a system which automatically creates clusters of 2D trajectories. The results of this clustering can
then be used to perform the actual labeling of the data, or rather the selection of events or features of interest
by the user. The selected clusters can be used as positive training data for a user defined recognition task —
without the need to adapt the system. The proposed technique reduces the necessary user interaction and allows
the creation of application independent ground truth data sets with minimal effort. In order to achieve the
automatic clustering we have developed a distance metric based on the Hidden Markov Model representations of
three sequences — movement, speed and orientation — derived from the initial trajectory. The proposed system
yields promising results and could prove to be an important steps towards mining very large data sets.
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1. INTRODUCTION

Due to emerging video and surveillance cameras, the importance of image recognition systems steadily increases.
Image recognition plays an important role in surveillance applications and for context aware systems. As of
today, image recognition remains specialized on the recognition task. In general, an image recognition system is
developed for a special application and the features used for the recognition task are selected according to their
suitability for the task. The identification of suitable features requires a high level of knowledge from the devel-
oper of the recognition system, therefore these systems cannot yet be applied on a large scale for a multitude of
tasks. Additionally, the act of training image recognition systems with a sufficient amount of data is a laborious
and expensive task. Identifying positive and negative data samples in the training data set demands numerous
user interactions. We believe that the simplification of the training process is a crucial step towards the supply
of image recognition systems on a larger scale. Therefore, this work focuses on the creation of ground truth data
sets. A method for automated clustering of time-series data is presented which provides a major step towards
reducing necessary user interaction and facilitating the creation of ground truth data sets for video data.

Currently, the creation of ground truth data sets presents one of the major problems in creating image recognition
systems. In order to achieve sufficient classification results, very large image data sets need to be acquired and
labeled. According to the kind of image data or events to be detected, it might be necessary to label individual
images or sequences of images, e.g. within a video. Although this presents a major problem, research on image
recognition has largely neglected this topic. Existing clustering techniques for time-series data tend to focus on
the detection of unusual events or on the spatial distance between the trajectories. However, in order to cluster
time-series data for application independent labeling tasks, the clustering technique must not make assumptions
about the nature of used data trajectories. The clustering technique cannot use the number of occurrences as a
criteria, since common data trajectories may be of interest, which occur more often than others. The proposed
clustering technique, which applies the Hidden-Markov-Model (HMM) based distance metric,® presents a suit-
able method for an application independent clustering of time-series data. The goal of the proposed clustering
technique is the definition of a generic distance metric which does not rely on prior assumptions about the nature
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of the data. In our test case, the proposed clustering technique successfully combined trajectories belonging to
the same path.

Due to our motivation being the simplification of the creation of ground truth data sets, the clustering technique
is expected to provide a larger number of clusters than necessary. In respect to the interactive labeling task,
the error of two paths being identified as one path is worse than a few data trajectories not being assigned to
their correct clusters. In the case of two paths being assigned to one cluster, the user has to identify every
single trajectory and assign its true category. In the second case the user would only have to identify the few
non-clustered trajectories.

The following section gives an overview on related work, section 3 discusses the basics of HMM-based represen-
tations, section 4 describes the experimental setup and the results obtained with the application of the proposed
technique. Section 5 concludes this work with an overview on future work.

2. RELATED WORK

Liao? presented a survey on clustering techniques of time-series data. The clustering techniques are divided into
three categories, raw-data based, feature based and model based techniques. Although feature based techniques
provide a way to reduce the high-dimensional raw data to a set of relatively low dimensional features, these
approaches are generally application dependent, with a certain set of features being appropriate for a certain
application. Since our goal is to provide an application independent clustering technique for the simplification
of labeling tasks, these approaches are unsuitable. The raw-data based approaches are better suitable for ap-
plication independent tasks, but usually require the data to be uniformly sampled, i.e. the trajectories being of
the same length. Application independent time-series data cannot be subject to this condition without loss of
information. However, sub-sampling or interpolating time-series data in order to create data sets of equal length
are common techniques to overcome this problem.?®

Distance metrics based on spatial distances have been applied to time-series clustering tasks.?> However, the
necessity to handle the high-dimensional raw data may prove to be a drawback, depending on the dimensionality
in the specific application. Additionally, the spatial distance may not be appropriate for certain tasks, which has
to be investigated if the goal is an application-independent technique. A simple example is shown in Figure 1,
where the spatial distances do not fit the intuitive path associations. Additionally, Hervieu discussed the need
for distance metrics for time-series data to take temporal causality into account by comparing their approach to
the Bhattacharyya distance between histograms.® Anjum et al.” present a fuzzy clustering approach which aims
at clustering trajectories without the need for prior assumptions. Their approach uses Mean-shift over several
feature spaces to obtain a fuzzy clustering. However, issues related with labeling tasks were not considered in
this work.

Different distance metrics have been compared by Zhang et al.® according to their applicability to outdoor surveil-
lance scenarios. Although Zhang et al. found that a Hidden Markov Model (HMM) based distance metric is less
successful than common distance metrics (Euclidean, Hausdorff) in outdoor scenarios, the HMM-based approach
was shown to be successful in other research studies.!*® The HMM-based approach represents each trajectory by
the Hidden Markov Model which creates this trajectory. The distance metric calculates the similarity between
two trajectories using the cross-likelihood ratio.'® A major advantage of the HMM-based distance metric is the
ability to handle time-series data of varying length, due to the nature of HMMs. Another advantage is the ability
of this approach to identify similar trajectories according to their shape. The example given in Figure 1 can be
correctly solved using this approach.

Bashir et al.!! used an HMM representation of features extracted using Curvature Scale Space (CSS) and Cen-
troid Distance Function (CDF) for activity recognition. Jiang et al.” used the HMM-based approach together
with the Bayesian Information Criterion (BIC) to identify unusual events in a dynamic hierarchical clustering
process. Although this approach is aimed at clustering time-series data independently from the application, the
authors assume that the overall goal of the pattern recognition task is the detection of unusual events. Similarly,
Xiang et al.'? and Zhong et al.!® are interested in the detection of unusual events only. This assumption is valid
for most surveillance scenarios, however, it is not for the task of preparing the time-series data for the manual
labeling. With the growing amount of available memory and the propagation of context-aware systems, common
events and information increasingly become of interest. The more pattern and image recognition enhances its



abilities, the more likely it is that image-based sensors will replace physical sensors in the future and monitor
everyday events.

Trajectory 1

‘‘‘‘‘‘‘ Trajectory 2
— — — Trajestory 3

Figure 1. Three uniformly sampled trajectories, with trajectory 1 and trajectory 2 belonging to the same path and
trajectory 3 describing a different path. The mean euclidean distance is calculated as distap = ij:l [|[A(n) — B(n)]|.
The distance between trajectories 1 and 2 is disti2 = 0.15, the distance between trajectories 1 and 3 is distiz3 = 0.0902.
The example shows that spatial proximity is not necessarily suitable for the identification of similar paths.

3. HMM-BASED REPRESENTATION

This section discusses the background of the HMM-based distance metric. A trajectory is denoted as T;
and the HMM which models this trajectory as 6%.. The trajectory is given as a sequence of positions T; =
{(z1,91), (x2,Y2), ..., (N, yNn)}, With N being the length of the trajectory. The distance, i.e. the dissimilarity,
between the HMMs 6 and 67 is denoted as distpr(6%,67). Equation (1) gives the dissimilarity of two HMMs 6%
and 9% using the cross-likelihood ratio.!® The dissimilarity of two trajectories T; and T} based on their HMM

representations is given as distr(7,j) in Equation (2).

distar(0',0) = logLj+logL} —logL] — logL] (1)
distp(i,j) = disty (05,65 ()

with ‘ ‘
L] = P(T, 67), (3)

being the probability that trajectory T; is generated by HMM 9%. Equivalently, L? denotes the probability that
trajectory T; is being generated by its corresponding HMM 6i.. The idea behind Equation (1) is that if 7; and
T} are almost identical trajectories, the probability of T; being generated by 9‘; is high and vice versa. Therefore
a small value of distr(i, j) indicates a large similarity between the trajectories.

As described by Porikli,! the extraction of features, like speed and orientation features, from the trajectory
may be appropriate for shape-based recognition tasks. For application independent clustering tasks, speed and
orientation features provide information which can be used to identify trajectories belonging to the same path.
The calculation of the speed sequence T'A;, i.e. the speed sequence of trajectory T;, is given in Equation (4).

1
TA; = [(zn— xn71)2 + (Yn — ynfl)z] 2,n=2.N (4)
dists(i.j) = disty(Opa,074) (5)
Similarly, Porikli proposed the use of an orientation sequence to identify similar shapes as in translations or

changes in direction. The orientation sequence T'¢; in Equation (6).

Toi = tanﬂ%ﬁ"*i’n:z”]\]. (6)

disto(ij) = dista (g, 0,) (7)



The distance metrics dists(i,7) and disto(i, j), using the speed and orientation sequences, are defined equiva-
lently to distr(i,j) (see Equations (5) and (7)).

The quality of the trajectories to be clustered has a great influence on the results of the clustering. Trajectories
may be raw data trajectories or they may have been processed and smoothed. However, an additional smoothing
step might lead to a loss of information. Instead of using the original pixel level data, trajectories are segmented
according to image blocks of predefined sizes. In detail, the original image is segmented into blocks of size w.
The original positions in the trajectory sequences are then mapped onto these blocks according to

T, = {#J +1,n=1.N, (8)

with NV being the length of trajectory T;. The size of block size w which is appropriate for the clustering task
cannot be determined beforehand. It greatly depends on the smoothness of the initial trajectories and on the
individual task, where a smaller or larger block size may by chance be appropriate. Since a single metric will
never be able to fulfill all requirements and deliver a perfect clustering without making assumptions about the
kind of trajectories or the recognition task, the solution is to choose a set of varying block sizes and calculate
the clustering for all of them. Afterwards the results are summarized and shown to the user who has to select
the result which meets his or her expectations best. This approach was chosen because persons are able to
decide whether a clustering result is good or bad at practically one glance, due to his or her knowledge about the
expected results. This decision does not even require the user to take a closer look at the individual clusters and
possible errors, since the overall impression should usually be enough to chose a suitable block size. However,
user studies about the presentation of the preliminary results and the number of results to be displayed are nec-
essary and will be a topic of future research as discussed in Section 5. In the remainder of this work, segmented
trajectories will be used only. T; and 7; will be used interchangeably and distr, dists and disto will therefore
also refer to segmented trajectories.

3.1 Distance metric

In order to combine the advantages of all distance metrics mentioned in section 3, we propose two combined
metrics distgyar and distoom. distgaa (i, ) uses HMM-based metrics only. Although each term of dist sy
uses trajectories which are based on the initial absolute position data, trajectories which are similarly shaped may
be identified as belonging to the same cluster, even though their spatial displacement indicates their affiliation to
different clusters. We therefore investigate distcom (4, j) which combines the distance of motion trajectories with
a spatial distance factor given as the euclidean distance of the trajectories starting and end points. The distance
of starting and end points has the purpose to keep similar trajectories apart which run in opposite directions.
For example, similar trajectories of a person walking in and out of a room. HMM-based representations tend to
recognize these trajectories as belonging to one path. Although this may be in the users interest and represents
one of the advantages of HMM-based representations, the assumption does not hold for all applications. For
example, only persons entering a place or building may be of interest in some recognition tasks. The metrics are
defined in the following way:
dist . a*disty(i,j) + b dists(i,j) + ¢ x disto(i, j) 9

istavm(i,)) = Tihic (9)

axdistr(i,j) +bxdists(i,j) + cx disto(i,7) + d = (|[(Si = S;)|| + |(E: — E;)|)
a+b+c+d

distcom(t, ) (10)
with S; = (21, y1) being the starting position and F; = (zn,yn) being the last position of trajectory T;. Since
there is no common normalization for HMM-based distances, each distance (distp|g0) is normalized separately
to allow for weighting and comparison in the combined metrics. Factors a, b, ¢ and d were determined according
to the behavior of their corresponding distance metrics. Speed and orientation of a trajectory are shape features
appropriate for identifying similar shapes. Their influence for clustering paths is important, for example in situ-
ations like the one described in Figure 1. However, the influence of the original distance metric distr (i, 7) for the
description and classification of trajectories is very important. Therefore, factors of a = 6, b = 2 and ¢ = 2 were



chosen and empirically proved to be suitable. Since the euclidean distance of start and end points is applied only
to retain a certain amount of spatial correlation, it is weighted with factor d = 2. Choosing a larger value for d
soon leads to the clustering of trajectories according to their starting points, neglecting the pathways in-between.

3.2 Hierarchical clustering

A hierarchical complete linkage clustering is performed, merging the elements or clusters with the minimum
distance in every step. The main obstacle in performing this clustering for the creation of ground truth data sets
is the importance of a conservative clustering. If the result contains a larger number of clusters than necessary,
this is less problematic than a result which shows trajectories belonging to different paths in one cluster. In the
first case the user would have to add a few more labels for the additional clusters, however in the second case,
he or she would have to manually identify and label every single trajectory in this cluster. Since the goal of this
work is the simplification of the labeling task this is a very important factor.

The definition of a generic end criteria for the hierarchical clustering presents a major problem. A single specific
criteria which provides a suitable set of clusters for any application does not exist. However, the merging of
candidate clusters ¢, and ¢, is subject to the following conditions:

1. The mean intra-cluster distance of merged cluster cy,,} does not exceed the mean intra-cluster distance
of all clusters before the merge operation is performed by more than a factor f. The factor is defined as
a threshold function with scaling factor « which decreases as the number of iterations of the clustering

increases.
«

(0.01 - #iteration + 1)

At the beginning of the clustering process, a larger difference in intra-cluster distance is more likely to
be correct than after a series of iterations, therefore this condition aims to create clusters with a uniform
perception of similarity. The exact shape of this threshold function is not to be determined beforehand.
We propose to calculate the clustering for several values of o and let the user decide which one is suited
best, similar to the block size w.

f=

(11)

2. The merge operation must not increase intra-cluster distance too much. The merge operation is allowed if
the increase in intra-cluster distance of cluster cy,,) is smaller than the mean increase caused by the last
ten merging operations, weighted with factor f as given in Equation (11). Similar to the first condition,
this one incorporates the number of iterations and steadily decreases the allowed difference. The purpose of
this condition is to restrict the growth of clusters as the time passes. If only Condition 1 is used, the growth
of clusters will not actually be stopped, as long as all clusters exhibit a balanced intra-cluster distance.

Additional criteria, especially concerning the relation of inter-cluster distances were tested but found to be
unsuitable in a generic approach. As discussed in the previous sections, the proposed technique incorporates two
parameters, block size w for segmentation of trajectories and percentage « for creating uniform clusters, which
are not set to a specific value. However, the set of possible values for these parameters is not very large, since
very large values are not reasonable for both parameters. Clusters are calculated for varying values of these
parameters (e.g. x = 5,10, 20,35 and w = 5, 10, 20,40, 100).

4. EVALUATION

In order to evaluate the proposed technique, a set of trajectories was extracted. The original video data was
captured in a surveillance scenario at 15 frames per second. The detection and tracking of moving persons
and objects was performed using an adapted background subtraction. The tracking was kept very simple, since
the camera is static and the environment not subject to lighting changes. In our scenario, each time step of
a trajectory T;(x,y) identifies the center of a moving object. Although the investigation of varying block sizes
for the segmentation of trajectories is not part of this work, the evaluation revealed a block size of w = 20 to
be suitable for this scenario. Parameter o was found to best suit our purposes with a value of 10. In order to
provide a basis for comparison, the same values were used for all distance metrics.



Table 1 gives the results of the clustering capability in the surveillance scenario. A total of 241 trajectories
was extracted. Manual labeling of the data identifies 17 paths, i.e. a perfect clustering returns these clusters.
As already mentioned, our clustering approach is realized to prevent false positives rather than preventing false
negatives, since the clustering results will be used for labeling training data. False positives belonging to a cluster
must be identified manually by the user which is laborious. If not identified, these false positives weaken the
classification results, since the classifier will be trained with wrong data labels.

In our experiments we compare four distance metrics, two simple metrics, disteyciiq and disty, and the two
combined metrics, distgyry and distoom. We chose to compare the combined metrics with the euclidean
distance and the HMM-based trajectory distance. Speed and orientation distances are not compared, because
these metrics alone are not capable of fulfilling this task. The comparison of different test cases by Porikli' is
the basis for this assumption. The two chosen simple metrics are subject to the several disadvantages, however,
the comparison enables us to see the benefit of the combined metrics.

Table 1 gives an overview on the clustering results using the four different metrics. The euclidean distance
was calculated on trajectories which were interpolated to provide trajectories of the same length. Although the
metric is suitable for the creation of clusters with uniform direction, it fails if the paths are of varying length.
Figure 2 shows an exemplary set of clusters. The paths shown in Figure 2 a) and f) differ significantly in their
spatial distances of starting and end points. Figure 2 ¢), d) and e) display the major drawback of this distance
metric. Two paths were identified as belonging to one cluster. Figure 3 displays an exemplary set of clusters
created using metric disty. A major problem of this metric is the creation of clusters with non-uniform directions
as indicated by the white circles which identify the starting points of trajectories. Figure 4 shows a subset of
the clustering results obtained by the combined metric distmgasar. Although the clusters still incorporate non-
uniform directions, the separation of different paths works extremely well. The relatively high false positive rate
is almost exclusively caused by non-uniform directions. Figure 5 shows an exemplary set of clusters created with
the combined metric distcom. Due to the additional factor containing the spatial distance between starting and
end points, the clusters are uniform in regard to direction. In general the separation of different paths works
well, however, Figure 5 f) shows two paths identified as one. Nevertheless, the false positive rate of this metric
is significantly lower than the rate of the other compared metrics.

Considering our starting set of 241 trajectories, the number of 41 to 58 resulting clusters does not seem ideal.
However, the data set contains approximately 20 trajectories which are deformed by tracking errors. These
trajectories can be identified as belonging to a certain path by a human user but the clustering fails in all cases
due to a large difference in position and shape.

Table 1. Experimental results of four discussed distance metrics. The simple metrics disteycria and distr exhibit major
drawbacks. The combined metrics, however, provide a good separation of paths.

disteycria | distT | distgymn | distcom
# Clusters 48 41 55 58
False positives | 27 18 25 4

5. CONCLUSION

This work discussed the problem of creating ground truth data sets for video data. HMM-based distance metrics
were proposed and evaluated on a surveillance scenario. The HMM-based metrics proved to be suitable for
identifying similar paths. An evaluation found a combined metric of trajectory, orientation, speed and euclidean
distance to best suit our general purpose. Using the proposed clustering technique greatly facilitates labeling of
trajectories. However, to further facilitate the labeling task it will be necessary to add key frame visualizations
to each cluster in order to provide the user with additional information. Although HMM-based representations
are very well suited for the representation of trajectories, especially of varying length, they require comparatively
large amounts of data, i.e. very short trajectories cannot be represented well. However, modern surveillance
cameras provide frame rates which allow extraction of trajectories long enough for this technique. Since the
application of trajectory clustering for creating ground truth data sets lies mainly in the surveillance recognition



tasks, this restriction does no longer present a severe obstacle.

Future work will focus on the extension of this technique in regard to adaptive parameters and user studies
concerning the interaction aspect. A presentation of all clusters to the user will not be possible. Therefore, the
development of graphical user interfaces which display clustering results for different parameter combinations
requires the extraction of a discriminative subset of clusters first. It will also be necessary to identify the maximum
number of parameter combinations that users are able to process. Additionally, user interaction techniques in
regard to the identification of clustering mistakes will have to be investigated. The topic of video labeling has
not yet been a major topic of research and further developments will be necessary to facilitate the creation of
ground truth data sets for other applications than the identification of trajectories.
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Figure 2. Exemplary set of clusters created using the euclidean distance disteyciia- a) and b) show perfect clusters with
trajectories of uniform direction in each cluster. c), d) and e) show clusters where two different paths were clustered by
mistake. f) shows a cluster of trajectories, where the separation of trajectories according to direction fails, due to the
relatively short distance between start and end point of the trajectories. The white circles indicate the starting point of
each trajectory.

d)
Figure 3. Exemplary set of clusters created using distr. a), b) and ¢) show clusters of trajectories which were perfectly
separated according to their shape. d) and f), however, show clusters of non-uniform direction. e) shows a cluster where
the separation of trajectories according to the shape fails. This single metric alone is not suitable for distinguishing paths
according to shape.



d) e) f)
Figure 4. Exemplary set of clusters created using the combined metric distgya. a), ¢) and e) show clusters with
trajectories belonging to the same path but with non-uniform directions, indicated by the starting points depicted as
white circles. b), d) and f) show perfect clusters which clearly extract different shapes.

d)
Figure 5. Exemplary set of clusters created using the combined metric distcom. a), b), ¢), d) and e) show perfect clusters
with uniform shape and directions. f), however, shows trajectories of different shapes which were clustered by mistake.




