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ABSTRACT

Context prediction has been recognized as an enabler for
proactive pervasive services that anticipate future situations
already ahead of time. Traditional context predictors are
limited by their agnostic view on the targeted application
domain when analysing context histories of past user be-
haviour. Awareness about the processes in which an entity
is involved can provide rich information to foresee future
context changes more accurately. We present an approach
for context prediction in pervasive environments that are
characterized by context-aware workflows. In order to ben-
efit from the explicit knowledge about human behaviour in
these environments, we devise a context predictor that learns
the relationship of context changes with the flow of activi-
ties performed by humans. This relationship is encoded as
a probabilistic state transition system that can be explored
to determine the most likely paths of future context occur-
rences. Our evaluation shows that our enhanced predictor is
able to extract patterns from context histories that are inac-
cessible to history-only predictors and significantly improves
the prediction accuracy.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence|: Learning; G.3 [Probability
and Statistics]: Stochastic Processes, Probabilistic algo-
rithm

Keywords

Context prediction, Markov model, workflows, context aware-
ness, probabilistic user behaviour

1. INTRODUCTION

Even though the initial vision of pervasive computing al-
ready dates back over a decade ago, the demand for sophis-
ticated user-centric technology is still a major challenge in
the focus of current research. Key for the development of
pervasive technology which operates unnoticed from, but on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPS2010 July 13-15, 2010, Berlin, Germany

Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

behalf of the user, is seen in the principle of context aware-
ness. While advances in recognition and processing of con-
text have spawned a variety of new context-aware systems,
these systems are often characterized by reactive behaviour
and respond to changes in the current context after their ac-
tual occurrence in the real world. As a consequence, the level
of intelligence found in these environments is restricted to
what the user already can observe in his current situation. In
order to render these environments more intelligent, applica-
tions should anticipate the future needs of users even before
they physically appear [13]. As the human needs in per-
vasive scenarios are tightly coupled to their future context,
sophisticated methods for context prediction are required to
extend the temporal horizon of context awareness into the
future. This enables the provision of proactive pervasive
services that improve the experience of a user when inter-
acting with his surroundings, applicable in relevant fields of
pervasive computing such as for instance home automation,
information recommendation, or human guidance in working
places.

The most common approach for context prediction is to
rely on context histories to deduce probable future context
from past sequences of context data [11]. The idea is that
from the analysis of context histories characteristics patterns
in human behaviour can be discovered as a basis for predic-
tion. For example, the next location to be visited by a user
is typically extrapolated from the trajectory of his last lo-
cations. However, without any insight into the processes in
which a human is embedded, context predictions are decou-
pled from the semantics of human behaviour and are sus-
ceptible to prediction errors. Many application domains of
pervasive systems such as pervasive healthcare are charac-
terized by human models of structured behaviour. These
models exhibit the activities carried out by humans under
varying conditions. In these scenarios, the context changes
are predominantly motivated by the activities carried out by
users, e.g., as user activities are associated with dedicated
locations. Exploiting the knowledge about the processes in
these environments provides the possibility to link context
histories more accurately with user activities and enable pre-
dictions relevant to the current user situation.

Based on this motivation, we propose a new prediction
scheme leveraging the concept of Adaptable Pervasive Flows
(APFs) [9] that is in the focus of the European research
project ALLOW?'. APFs are context-aware workflows that
model the activities of human entities. In contrast to tradi-
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tional workflows, they are situated in the real world, as they
are logically attached to moving humans, and context-aware,
as they sense and synchronize with the changes in their con-
text. In this paper, we show how to exploit flows as source
of information to provide history-based predictors with do-
main knowledge for accurate context predictions. For this
purpose, we introduce a novel flow-based predictor that re-
lates context changes to states in human behaviour. Our
predictor is based on a probabilistic state transition system
that is learnt from the execution of flows and defines the
search space for future context occurrences. For a predic-
tion, we determine the most likely sequence of future context
states reachable from the current user situation. As these
search paths depend on the activities performed by humans,
we are able to derive accurate context predictions that re-
main hidden for history-only approaches.

The paper is structured as follows. In Section 2 we de-
scribe the related work in context prediction. We then dis-
cuss context prediction based on Markov models in Section
3 and present a generic model of history-based predictors.
In Section 4 we introduce Adaptable Pervasive Flows as a
model of context-aware human behaviour. We then present
our flow-based context predictor in Section 5. Section 6
shows the evaluation results in comparing history-based pre-
dictors with their flow-enhanced counterparts. Conclusion
and future work are discussed in Section 7.

2. RELATED WORK

The most comprehensive approach to context prediction
has been presented by Mayrhofer [12], who proposes a multi-
layer system architecture for domain-independent context
recognition and prediction. This work targets the predic-
tion of high-level user context (context classes such as ”in a
meeting”) which is derived from low-level context data (e.g.
location, noise, etc.) in a preceding classification step. In
order to improve the achieved prediction results, the author
concludes that the inclusion of domain-specific knowledge
would represent a promising approach, as addressed by our
work. Sigg [16] directly predicts low-level context before
deriving future high-level context in order to avoid informa-
tion loss resulting from the aggregation of low-level context.
However, this approach does not consider possible correla-
tions among low-level context and deduces future context
based on matched sequences from the past without taking
advantage of domain-specific knowledge about human be-
haviour.

Furthermore, different algorithms have been proposed to
allow for the prediction of specific categories of context.
Most of the work in this area focuses on the prediction of
user mobility from location histories [2], [17] [10], [1]. Be-
yond a history of location sequences, these approaches do
not consider any further information for prediction. How-
ever, location predictors for wireless cellular networks can
exploit the structure of geographic areas and direction in-
formation to anticipate future location changes more accu-
rately [4]. In contrast to these approaches, we argue that
the behaviour of humans is the most valuable information
for prediction.

Moreover, the prediction of low-level user activities such
as key pressings to improve the interaction with user in-
terfaces has been studied [8], [6], [7]. Similar to location
prediction, future user activities are derived from histories
of past sequences. In our approach, activities are the con-

stituent parts of context-aware workflows that synchronize
with the behaviour of humans in the real world. The differ-
ence is that we use the knowledge provided by the workflows
to predict additional context that evolves with the activities
performed by users.

The idea to take advantage of domain knowledge in order
to improve the recognition of hidden patterns from data is
inherent to the field of syntactic pattern recognition [15].
Based on a statistical model that describes the generation
of the data, patterns such as handwriting symbols or actions
[3] can be discovered more accurately. Following this line of
argumentation, we argue that also context prediction can
benefit from a structural model of human behaviour that
can be found in relevant fields of pervasive computing such
as pervasive healthcare.

3. HISTORY-BASED PREDICTION

In the following section, we focus on history-based meth-
ods for context prediction. First, we will present the com-
mon procedure of history-based predictors. Then, we will
analyse their shortcomings for prediction in flow-oriented
environments.

3.1 Context Prediction

The rationale of context prediction is to extract character-
istic patterns in human behaviour from histories of observed
context data. As human behaviour cannot be captured ex-
actly, the most common approach is to apply stochastic prin-
ciples to describe the expected changes in user context. For
this purpose, the occurrence of context (e.g. location) is re-
garded as a random variable X, which can be assigned values
from a discrete set of context elements C' = {id1, ids, .., idn }.
We assume that each context ¢ € C can be associated with
a unique symbolic identifier. For example, in terms of geo-
graphic positioning, symbolic location names such as "office”
or “kitchen” provide a meaningful attribute of the user’s lo-
cation. Let the context history H = ¢, ca, ..., ¢, be defined
as a sequence of context elements ¢; € C ordered accord-
ing to their time of occurrence. Sequential changes in con-
text can thus be considered as a stochastic process x that
describes the evolution in user behaviour with distribution
P(Xl == Cl,Xz = C2, ...,Xn = Cn).

The most widely employed history-based predictors from
related work [2, 7, 17] are based on discrete Markov pro-
cesses. The Markov assumption is inherent to two different
classes of predictors - the fixed order 0(k) Markov predictors
and the predictors based on varying order Markov models.
0(k) Markov predictors consider a fixed window of past con-
text observations for prediction. The order k£ of the Markov
predictor determines the length of the window that influ-
ences the predicted context. Consequently, the part of the
history relevant for prediction is given by the k last observa-
tions H(k) = ¢n—k+1, ..., Cn. Assuming a stationary stochas-
tic process, the conditional probability distribution can be
estimated from the occurrence of context changes in the his-
tory. The prediction is then determined by the context ¢, +1
which has most frequently followed the sub-sequence H (k)
in the entire history H. The restriction of a fixed order is
relaxed by so-called Markov Models of varying orders. The
most popular varying order Markov predictors are based on
the data compression algorithm of Ziv and Lempel [19].

In order to incorporate domain knowledge, our prediction
scheme is based on a generic model of history-based predic-



tors. We extend this generic model in Section 5 to combine
it with knowledge about user activities. A very important
consequence of this technique is that it allows us to apply
our approach to several variants of state-of-the-art context
predictors. In our generic model, we define a history-based
predictor as a probabilistic state transitions system. The
definition captures the common nature of Markov predic-
tors: A state is a sequence of one or more past context ele-
ments upon which predictions are derived from the analysis
of context histories.

Definition 1 (History-based context predictor): A history-

based context predictor Pis specified by a probabilistic state
transition system (.5, C, §, p), where

e (U is the set of discrete context elements
e S denotes the set of history states

e 0 : S xC — S denotes the transition function that
describes possible context changes

p: SxC — [0,1] indicates the probability for a specific
context change

Each s € S corresponds to a history state. When observing
a context ¢ € C during state s, the history state changes
to s' = &(s,c). Thus, the history state evolves with new
context observations. However, the transition function is
partial as not necessarily each context can be observed dur-
ing a history state. The predictor encodes the probability of
future context occurrences in transition probabilities. The
probability P(c|s) to expect a context ¢ € C' depends on the
history state s and is indicated by p(s,c). The sum of all
probabilities over all outgoing transition has to be one, i.e.,
Vs € 513 yeecus(s,eyz0 P(S;¢) = 1. Initial states, as known
from classical automaton theory, are defined by the current
history state at time of prediction.

3.2 Analysis of History Restrictions

The limiting factor of history-based predictors is implied
by their nature — their dependency on past observations as
the only indicator to what can follow next. Due to the
Markov assumption, the sequence of past context occur-
rences must carry enough information to make accurate pre-
dictions. However, historical information may not be suffi-
cient for enabling accurate predictions in every case. This
observation is especially relevant in cases where the situa-
tion of a user is defined in terms of higher-level behaviour
that more precisely implies the next context to occur. The
accuracy of predictions is low if the next context has a se-
mantic association with the user’s behaviour that cannot be
learnt from the history. If we imagine for example a worker
leaving his office, then there are many equally likely options
for his future location according to the information from the
location history. If we could access the knowledge that the
worker decided to visit a customer, we could use the domain
insight to forecast his next location more accurately. Here,
the capabilities of a history predictor are very limited, be-
cause the knowledge from the history is not able to capture
this form of hidden information.

Taking the user behaviour into account, we are able to
provide history predictors with the necessary knowledge to
reduce ambiguities. As a consequence, we require a model
of human behaviour that allows us to interpret situations,
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Figure 1: Representation of a Pervasive Flow at-
tached to a Nurse

based on a human’s past and future activities and the con-
text under which the activities are taking place. For this
purpose, we will leverage on Adaptable Pervasive Flows as
a context-aware model of human behaviour as described in
the next section.

4. ADAPTABLE PERVASIVE FLOWS

Workflows are often inherent to human behaviour in the
real world — either explicitly or implicitly. Explicitly, work-
flows can be found in domains such as hospitals or logistics,
where humans follow common procedures in daily routines.
In these domains, regular procedures are carried out as best
practices or obligations by the personnel. Frequently, the
worfklows are defined by underlying business processes and
are readily available as business process models. Moreover,
even in less obvious daily situations, workflows are present
and or can be discovered with suitable mining techniques
[5, 18]. For example at home during cooking, at sports or
when interacting with electronic appliances humans people
behave in a structured way.

Based on this motivation, Adaptable Pervasive Flows (also
simply called flows hereafter) [9] have been proposed as a
model for human-oriented pervasive applications. Flows are
context-aware workflows that are situated in the real world.
They describe the activities of a human and adapt to changes
in the context of the human’s environment. Whereas [9]
presents the opportunities of flows for adapting pervasive
applications, we exploit flows as providers of domain-specific
knowledge for context prediction in this work. The knowl-
edge stems from the fact that a) a flow provides insight in the
current state of its associated entity b) a flow models paths
of future activities. For this purpose, we extend the work of
[9] with a generic flow-based context prediction scheme.

4.1 Flow Model

For the purpose of context prediction, we do not rely
on a specific technology and focus on the generic model of
flows. A flow model describes the activities of a human un-
der changing contextual conditions. As an example consider
the flow attached to a nurse in a hospital shown in Figure 1.
During her work day, a nurse carries out regular activities




such as "give medication” or ”serve lunch”. After the start
of her shift she progresses in her workflow and executes ac-
tivities that are associated with contextual conditions. For
example, the concrete activities of a nurse depend on the
health conditions of the patient she is caring for.

Definition 2 (Flow Model): A Flow Model f is specified
by a directed graph (A, E, P(C),t), where

e A denotes the set of activities
e £ C A x A defines a control flow

e P(C) is the set of predicates over the entity context C

t: E — P(C) associates each control link with a tran-
sition condition

The flow model defines a control flow over the set of flow
activities based on a directed graph. Each flow contains a
start activity from which there is a path to any other activity
in the flow. The control flow constraints the possible paths
of activity executions. An activity path a1 — a2, ...,an—1 —
an in the flow consists of pairs of connected activities, i.e.,
(asyai+1) € E. An activity can only be executed, if one of its
predecessor has been completed. The completion of activi-
ties is triggered by conditions that are checked at run-time.
These conditions are related to the context of a human (also
more generally called entity) in its current situation. For
this purpose, context recognition techniques such activity
sensing or other sources of information (e.g. patient data)
are used. Through the integration of context information,
the flow is synchronized with the real-world behaviour of
humans.

4.2 Flow Instance

The run-time representation of a flow is referred to as
flow instance. Flow instances are created in a context-aware
manner based on contextual triggers. For example, as soon
as a nurse starts her shift, a flow instance is created and
attached to her. A flow instance exposes the state of a flow,
which dynamically evolves during its lifetime.

Definition 3 (Flow State): The state of a flow f is speci-
fied by its currently running activity, which is given by the
function state : f+ a € A.

The state of a flow instance is controlled by a flow engine. A
flow engine runs flows and accesses the context information
that influences their states. The state of a flow is always
well defined, i.e., there is no state in between two activities.
If a successor activity starts, the preceding activity is ter-
minated. Thus, a flow state is active for a certain period of
time.

5. FLOW-BASED CONTEXT PREDICTION

In this section, we introduce a new Flow Predictor that
combines both sources of knowledge — context histories and
flows — to leverage the additional information present in
flows. The relationship of flows and context is encoded as
a probabilistic state transition system that includes activity
information. To express this relationship, we need to extend
the history-based model for context prediction.
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Figure 2: History- vs. Flow-based Transition Sys-
tems

Definition 4 (Flow Predictor): A flow predictor P; is as-
sociated with a flow f and is based on a history predictor

P. Py is formally defined as probabilistic state transition
system (S, C, 7,p, f), where

e the states S = (Sx A) are the Cartesian product of the

states of the history-based predictor P and activities
of flow f

e (' is the set of discrete context elements
e 7 C S x C xS denotes the transition relation

e p: 7 — [0,1] indicates the transition probability with
VseS: ZVcec,s’ES:(s,c,S')ETp(s’C’ 8’) =1

States are now defined as tuples of flow activities and his-
tory states. Thus, we establish a relation among both. The
flow activities in the flow predictor introduce a new differ-
entiating criterion for history states. We can now find the
same history state in different states of the flow predictor.
Each of these history states may be associated with distinct
transition probabilities. This enables accurate predictions
tailored to the current user activity. In contrast, a history-
based predictor represents each history state only once.

Figure 2 illustrates this difference for the prediction of
the nurse’s location. The history-based predictor (left side)
contains three possibilities for changing from ” Room?2.42”
to other locations. All of these locations are almost equally
probable. In contrast to this, the flow predictor (right side)
links locations to activities. Note that the state relating
to 7 Room2.42” has been split in two states, each being as-
sociated with a different activity (”GiveMedication”) and
("WakeUpPatient”). Using this activity information, the
flow predictor can make a much more reliable prediction:
When the nurse is executing the activity ” Give M edication”
in ” Room2.42” | only two out of the three locations are likely
to be visited, and the highest probability associated with an
outgoing transition has increased over the history-based pre-
dictor. Moreover, if the nurse is executing ” WakeUpPatient”
in the same location "Room2.42”, then only one possibility
remains for the next location ("Room2.45”). Thus, a combi-
nation with activity information extracted from flows splits
a single history state into multiple states such that for each
of the following states the probability may increase.



5.1 Online Learning from Flow-Enhanced Con-

text Histories

The flow predictor provides the formal framework for in-
corporating user activity information into context predic-
tions. However, the transition system underlying the flow
predictor has to be learnt from the execution history of flows.
The goal of learning is to obtain the state transitions and
associated probabilities that accurately describe the evolu-
tion of the entity’s context in the target domain.

Algorithm 1 Online Learning

Require: Flow f
17+ {},buffer < {}
2: h <+ €,a, < state(f)
while true do
e < nextElementFromHistory(Hy)
if e € A then
buf fer «+ buf fer U{a,}
a, < e
if h # € then
10: end if
11:  end if
12: if e € C then
13: h' < 8(h,e)
14: if h # € then

©

15: S=SU{(h,an)}

16: T TU{((h,an),e, (W, an))

17: increment count((h,a,),e, (b, a,))
18: for all a,qs: € buf fer do

19: T 7 U{((h, apast), €, (W', an))}
20: increment count((h, apgst) e, (h', an))
21: end for

22: end if

23: h < h'

24: buf fer «+ {}

25:  end if

26: end while

The information used for learning is a sequence of changes
in either the flow state or the context. This information
is stored in the so-called flow-enhanced history, denoted by
Hy. The changes in flow activities and context appearing
in the real world (and thus also in Hy) can be arbitrarily
interleaved. Thus, the flow-enhanced history is defined as
Hy = co,a1,c¢1,a2,....,cn with ¢; € C U {e},a; € AU {e}
where e denotes the empty symbol. H; is a sequential
stream of events to which each new observation is appended
at run-time. This is necessary, since our predictor is run
in an on-line manner, i.e., the training phase is executed
simultaneously to the execution of the flow-based system
at runtime. The probability for future context occurrences
are estimated from the observed frequencies in Hy. For
this purpose, we associate a counter with each transition
t = ((h,a),c,(h',a’)) € T, denoted as count(t), which stores
the frequency of past transitions.

Algorithm 1 shows the procedure executed for online learn-
ing: Each new element of H; can be either a new activity
or a new context. We insert new transitions in the predictor
only if a context change happens. If the last added state is
(h,an) and a new context ¢ is observed, we insert a transi-

tion ((h,an),c,(h',a,)) (line 16). The representation of h
and h’ depends on the underlying Markov model. For exam-
ple, in case of a 0(1) Markov model, the new history state
is defined only by the observed context c, i.e., b’ = c¢. In
contrast, for higher order or varying order Markov models
further past context observations contribute to the new his-
tory state h'. Since an arbitrary series of activity changes
may happen in Hy before the next context change to ¢ oc-
curs, we buffer these activities (line 6). Once, the new con-
text ¢ occurs, we also add a transition ((h, apast), c, (R, an))
for each of these buffered past activities (lines 18-21) since
for each state (h,apast) the next context is c. Suppose, for
example, that the current predictor state is s1 = (history =
” Room2.42”  activity = ”GiveMedication”) and the next
elements in Hy are ” StoreBloodSample” (activity change)
and " Room2.43” (context change). Then s; and the state

s2 = (history =7 Room?2.42” , activity = ” Store BloodSample”)

should be related to the next context and we insert a tran-
sition to state s3 = (history = ” Room2.43”, activity =
” StoreBloodSample”) from both s1 and s». After this step,
the buffer is emptied and we wait for next observed event.

The probability of a transition ¢t = ((h,a),c, (h',a’)) € T
can be derived as a relative frequency measure from the
transition counters:

count((h,a),c,(h’,a’))

p((h, a)7 c, (h/7 a/)) = ZC/EC Za”EA count((h,a),c’,(6(h,c’),a’))

For the calculation of p((h,a),c, (h',a")), we take all out-
going transitions from the state (h,a) into account. The
probability is derived from the transition counters whenever
a prediction has to be made. Due to the representation
of activity information, there is an increased cost in stor-
age associated with the flow predictor. The state space is
now of size O(|S| - |A]), since activities are combined with
the context from histories. Consequently, also the encod-
ing of transitions requires more space and has complexity
O(]S] - |C| - |AJ?). In the scenarios addressed by this work,
the cost will be affordable, as we assume a limited set of
activities to be of interest and the real cost to be signifi-
cantly below the worst case estimation, as activities are not
observable at each context.

5.2 Calculation of Predictions

For predicting future context we distinguish between two
classes of prediction - short-term and long-term prediction.
In both cases we are interested in future context occurrences,
that follow the current context history H. Let ¢,, denote the
last context observed from H. For short-term prediction the
goal is to determine the context ¢,+1 that will most probably
occur next. Long-term prediction extends the time horizon
to more distant points in the future. For this purpose, we
define the number of future occurrences as prediction hori-
zon. Formally, for a prediction horizon of h, the goal is to
identify the most probable sequence of future context ele-
ments Cpn+1,Cn+2, .., Cnth. In the following, we describe the
algorithmic approach to calculate these predictions based on
the flow predictor.

5.2.1 Short-term prediction

The starting point for short-term prediction is given by
the current predictor state (h,a), from which the transition
system is traversed. Algorithm 2 shows the steps involved
in the calculation of the most probable next context.



Algorithm 2 Short-Term Context Prediction

Algorithm 3 Long-Term Context Prediction

Require: current history state h
Require: current flow state a = state(f)
Ensure: ¢, 11 = argmax.cc P(X,+1 = ¢|(h,a))
1: for all c € C do

2 PTOb(C) < Z(h’,a’)és' p((h7 CL), c, (h’/7 G/)}
3: end for

4: return arg max.cc Prob(c)

For short-time prediction, we have to take into account
that the same context ¢ may be reached via different tran-
sitions from (h,a). Therefore, we have to sum the proba-
bilities associated with each transition that is labelled with
context ¢ (line 2). Finally, the context returned as the pre-
diction is the one with maximum probability, i.e., ch+1 =
argmaxcec P(Xnt1 = c|(h,a)) (line 4). The worst case
time complexity is O(]A]| - |C|) since the next context may
potentially occur in each of the flow activities. However,
we stress that, in practice, the search space is much more
restricted by the flow structure. This structure only allows
for a small subset of all activity-context combinations.

5.2.2  Long-term prediction

The calculation of most likely paths is known from Hidden
Markov Models (HMMs) [14] where the Viterbi algorithm is
used to discover paths of so-called hidden states for given
observations. However, HMMs are based on predefined sets
of states and constant transition probabilities. In our case,
transition probabilities vary for each prediction horizon, and
future paths depend on the initial state at the time of pre-
diction and need to be explored. We address these issues in
Algorithm 3.

The algorithm is based on an iterative approach that cal-
culates the most likely path (sequence of context occur-
rences) of length h (prediction horizon). It starts with path
length 1 and determines the most likely path of length ¢
(I < i < h) based on paths of length ¢ — 1 (line 2-9). For
this purpose, we compute Prob;(c), which denotes the prob-
ability of the most likely path of length i that ends in the oc-
currence of context element c. Initially, we set Probg(c) =1
and, for all i > 0, Prob;(c) is calculated by adding the transi-
tion probabilities that reach ¢ from paths of length i —1 (line
4). Based on Prob;(c), the sequence of context elements that
define the most likely path is built incrementally. For this
purpose, we associate with path;(c) the most likely sequence
of context occurrences that ends in ¢ for a path of length 1.
We then append to path;(c) the context that maximizes the
path probability in each iteration (line 6), starting from a
path length of i = 1.

For these calculations, we first define reachablei(h,a) as
being the set of all predictor states reachable from state
(h,a) through an arbitrary path of length k. That is, we
initially have reachableg(h,a) = {h,a} and for all k > 1,
reachabley (h,a) can be explored by following the outgoing
transitions. Based on this, we define Rjy(c) as being the
set of predictor states reachable through context ¢ from any
state in reachabley—1(h,a). More formally, we write

'.a’) € S|A(h",a") € reachabley,_1(h,a) :
((",a"),c,(h',a")) € T}

Require: current history state h
Require: current flow state a = state(f)
Require: prediction horizon h
Ensure: ¢,41,Cnt2, ..., Cpyrn most likely path
1: i+ 1

2: while ¢« <= h do

3: for all ce C do

4: Prob;(c) = Max e GC{Probl 1(¢")
2 (hayeRo (). .anes PI(Rs ), ¢, (W, a')}

5: if (i > 1) then

6: path;(c) < append arg max, ec{ProbZ 1(c)-

(
Z(ma)eRi,l(c N, (ha’ )esp(<h a),c, (h',a’)}
T end if
8: end for
9 1<+ i+1
10: end while
11: ¢* = argmax.cc Proby(c)
12: pathp(c*) < append c*
13: return pathy(c*)

with (h,a) being the current state at which the prediction
starts. Ri(c) is used in the algorithm (line 4 and 6) to iden-
tify the context occurrences that lie on the most likely paths
to ¢ for each step of the iteration.

After the termination of the iteration, the most likely path
for horizon h is the path that maximizes the path probability
for a context ¢* € C. Consequently, we can return the stored
path associated with the context ¢* = max.cc Proby(c)
(line 9). As the path ends with ¢*, we have to append this
context to the complete path up to horizon h. The itera-
tive approach guarantees that the time complexity is bound
by O(h* (JA| - |C|)?) in the worst case. However, the search
space will in reality be often restricted by the fact that not all
context and activities are reachable from the current state.

6. EVALUATION

We have implemented a simulation environment in or-
der to evaluate the suitability of Adaptable Pervasive Flows
for context prediction. We compare history-only predictors
with their flow-enhanced counterparts based on synthetic
context histories. This allows us to analyse the accuracies of
the predictors for a spectrum of possible scenarios. We have
implemented the 0(k) family of Markov predictors as well as
the flow enhanced-version of these. Although our approach
is applicable to any form of discrete context, we study the
accuracy of location prediction based on an activity-based
mobility model that associates activities with locations as
explained in the following.

First, we randomly generate flow models of different struc-
ture and size. Flow models are created from two different
workflow patterns, i.e., sequences and branches, and form
directed acyclic graphs. Second, we probabilistically as-
sociate each flow activity with locations from the domain
L = {l1,ls,...,ln}. For each activity, we independently de-
rive location visit probabilities based on a Zipf distribution,
so that the probability to visit the i-th location during an

activity is given by P(X = 1) = Z‘Lfié The exponent
n=1 n=s

s allows us to vary the density of the visit probabilities.
Based on the activity-based model of user mobility, we gen-



Markov 0(1) —+—
0.9 Markov 0(2) -
Markov 0(3) ---=---
0.8 Flow Enhanced Markov 0(1) -~
3 Flow Enhanced Markov 0(2) —&
g 07—
g 06 |
s 0.5 N N Koz, e e
S 04 2 —
3 ~——
& 03 e
R . .
0.2
0.1
0
3 4 5 6 7 8 9 10
Size of Location Domain
a)
1
e e B p E—
0.8
3
e
3 R
3 s
<
f=
il
o
o
<
o Markov 0(1) —+—
Markov 0(2) ~x
. Markov 0(3) ---=---
0.1 Flow Enhanced Markov 0(1) -
0 Flow Enhanced Markov 0(2) —&
1 2 3 4 5 6
Zipf Exponent
b)

Figure 3: Short-Term Prediction Accuracies for
Activity-Based Mobility Model with Parameter Set-
tings a) Zipf exponent s=2 b) Location Domain
L] =7

erate n flow-enhanced context histories Hy,, Hy,, ..., Hy, as
sequential input for the predictors. We compare the different
predictors based on an accuracy metrics, that is defined as
the ratio of number of correct predictions to all predictions
made. If a prediction is not possible due to the fact that the
current context has not been learnt before, we count it as
incorrect prediction. Predictions are determined simultane-
ously to the learning phase, i.e., after each predictor update
we compute a prediction and validate it. A simulation run
consists of a generated flow for which we create 100 context
histories that describe possible executions of the flow. The
results discussed in the following represent the average of
500 simulation runs for each measurement.

Figure 3 a) shows the short-term prediction accuracies for
an increasing size of the location domain and Zipf expo-
nent s = 2. Due to the higher uncertainty associated with a
larger location domain, the prediction accuracy is negatively
affected for all predictors. However, the flow-enhanced pre-
dictors outperform the history-based predictors for all of the
evaluated sizes of L. Particularly, the relative improvement
rises from 19% to 56% compared to the best history-based
predictor for an increasing size of L. This illustrates the ca-
pability to resolve ambiguities from the history due to the
available flow knowledge. Since we associate a single loca-
tion visit with an activity in the simulation, higher-order
Markov models do not improve the accuracy of the flow-
enhanced predictors. As more states have to be learnt in
this case, additional prediction misses are caused.

In Figure 3 b) we compare the predictors for a location do-
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Figure 4: a) Long-Term Prediction Accuracies b)
Prediction Accuracy for History-Generated Mobil-
ity Patterns

main of |L| = 7 and varying Zipf exponents. For increasing
exponents the locations visit probabilities exhibit a highly
skewed distribution, so that the predictors are able to de-
duce a higher fraction of correct predictions. However, the
flow-enhanced predictors are able to capture patterns that
remain hidden for the history-based predictors. The flow-
enhanced predictors achieve a relative improvement of 25%
in prediction accuracy compared to the best history-based
predictor. Moreover, the results show that history-based
Markov models can benefit from a larger memory for pre-
diction if activities are more restricted to specific locations.
In this case, longer sequences of past locations more accu-
rately imply the next location. Nevertheless, still a substan-
tial fraction of patterns can only be distinguished with flow
knowledge.

Figure 4 a) depicts the results of long-term prediction for
parameters of |L| = 7 and Zipf exponent 2. The absolute
prediction accuracies for all predictors naturally decrease for
higher prediction horizons. Particularly, for horizon 5 the
absolute accuracy has reached a degree, where no sensible
predictions can be made any more. However, the relative
improvement in accuracy of flow-based prediction compared
to the best history predictor monotonically increases from
57 % for horizon 1 to considerable 331 % for horizon 5. Con-
sequently, especially long-term predictions can benefit from
our enhanced context prediction. In the next step, we ex-
tend the simulation model with the possibility to include
history-generated patterns in the context histories. The his-
tory patterns are generated based on a 0(2) Markov source
that is trained from the location traces of the activity-based



model. This model naturally favours history-based predic-
tors due to the underlying Markov assumption. We intro-
duce the parameter o that allows to vary between both
models, i.e., a indicates the portion of the context history
which is generated by the Markov source and the portion
(1 — ) which adheres to the activity-based model. Figure
4 b) shows a monotonic decrease of the prediction accu-
racies of the flow-based predictors for increasing values for
«, while the history-based predictors remain constant. For
a > 0.8 the best flow-based predictor even performs worse
than the 0(1) Markov predictor. The reason is that, due to
the correlation with flow activities, history-based patterns
are scattered over many states of the flow predictor. The
consequence is that the patterns cannot be learnt as fast as
in the case of a classical history predictor, and more train-
ing data is necessary to achieve the same accuracy. We will
address this issue in future work by the design of a hybrid
prediction scheme, that involves components of both pre-
dictors and only utilizes flow knowledge for patterns that
cannot be discovered by history-based predictors.

7. CONCLUSION

We have presented a new context prediction scheme that
is able to provide history predictors with domain-specific
knowledge inherent to flow-oriented pervasive environments.
The domain-specific knowledge arises from a model of per-
vasive applications that describes the activities of pervasive
users as context-aware workflows. Our enhanced context
predictor learns the relationship of flow activities with con-
text changes observed in the real world. We represent this
relationship as a probabilistic state transition system which
is incrementally refined from the execution of flows at run-
time. For context prediction we traverse the state space of
possible context changes to determine the most likely paths
of future context occurrences. In our evaluation, we have
shown that the inclusion of knowledge about user activities
in the prediction model significantly improves the prediction
accuracy, as classical predictors are limited by their agnostic
view on the application domain.

In future work, we will validate the benefits of flow-based
context prediction in real world evaluation studies. For this
purpose, we will record the workflows of medical personnel
in a hospital and evaluate the accuracy of our prediction
algorithm for real context data. Moreover, we will extend
our predictor to deal with time-varying patterns in human
behaviour. Therefore, we will relax our current assump-
tion of context changes characterized by strong stationary
properties and discard past knowledge that is negatively in-
fluencing the prediction.
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