
Index Recommendation Tool for Optimized
Information Discovery over Distributed Hash Tables

Faraz Memon, Frank Dürr, Kurt Rothermel
IPVS – Distributed Systems Department, Universität Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

Email: {faraz.memon, frank.duerr, kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract—Peer-to-peer (P2P) networks allow for efficient in-
formation discovery in large-scale distributed systems. Although
point queries are well supported by current P2P systems – in
particular systems based on distributed hash tables (DHTs) –,
providing efficient support for more complex queries remains a
challenge. Our research focuses on the efficient support for multi-
attribute range (MAR) queries over DHT-based information
discovery systems. Traditionally, the support for MAR queries
over DHTs has been provided either by creating an individual
index for each data attribute or by creating a single index
using the combination of all data attributes. In contrast to these
approaches, we propose to create a set of indices over selected
attribute combinations. In order to limit the overhead induced
by index maintenance, the total number of created indices has
to be limited. Thus, the resulting problem is to create a limited
number of indices such that the overall system performance is
optimal for MAR queries. In this paper, we propose an index
recommendation tool that implements heuristic solutions to this
NP-hard problem. Our evaluations show that these heuristics
lead to a close-to-optimal system performance for MAR queries.

Index Terms—Distributed networks, Indexing methods, Dis-
tributed data structures, Hash-table representations

I. INTRODUCTION

DHT-based information discovery systems started out with

the support for only point queries. However, the need for MAR

queries in the P2P application areas such as resource discovery

in grid computing [1], P2P video streaming [2], and spatial

information discovery [3], led to their extension. The support

for MAR queries has been provided by realizing a layer of

indexing mechanisms over DHTs.

Primarily, two indexing approaches have been used to

leverage DHTs for enabling MAR queries. The first approach

indexes the value range of each data attribute individually

[4], [5], [6], [7]. MAR queries are resolved by performing

multiple single-attribute range queries and then the results

are filtered at the query initiator. This approach induces a

large network load and therefore does not scale. The second

approach indexes the combination of all data attributes [8],

[9], [10]. This approach performs well if the queries include

ranges over all data attributes (which is generally not the case

for P2P information discovery systems). Data attributes that

do not appear in queries are considered to be wildcards, and

the performance of this approach deteriorates with increasing

number of wildcards in queries [9], [11], [10].

Recently, we presented the Optimized Information Dis-

covery (OID) system [11], which introduces a third type of

indexing approach for extending DHTs to provide the support

for MAR queries. The OID system creates a layer of multiple

multi-attribute indices over a DHT. A MAR query is resolved

by estimating the performance of the query over each index,

and then selecting the one with the best estimate. Although

our approach outperforms the previously proposed approaches

for extending DHTs [11] in terms of query overhead, the

criterion for defining the initial set of indices is based on

a simple heuristic. The OID system installs a user-defined

number of indices for the most popular queries in the system.

This criterion achieves system-wide optimal performance for

applications where few popular queries make up for the largest

portion of the total queries. However, for P2P applications with

few popular queries and a large number of unpopular queries,

this criterion would produce a set of sub-optimal indices.

Finding an optimal set of indices, irrespective of a particular

type of query popularity distribution, is an NP-hard [12] prob-

lem, as the number of index possibilities grows exponentially

with the number of data attributes. Therefore, a heuristic-based

solution that produces a close-to-optimal set of indices, is

highly desirable. In this paper, we present a tool that provides

index recommendations for DHT-based information discovery

systems. Given a limit for the maximum number of indices and

a set of MAR queries that have been previously monitored in

the system (workload), our tool recommends a set of indices

that produces close-to-optimal performance for the workload

within the given limit.

The index recommendation tool presented in this paper

consists of several index recommendation algorithms. Each

algorithm works by creating a set of candidate indices using

the unique attribute combinations in the workload queries.

The set of candidate indices is usually larger than the user-

defined limit for the maximum number of indices. Therefore,

the size of this set is successively reduced either by merging

some elements or by selecting some while discarding others.

Our evaluations show that in the best case, a set of indices

recommended by our tool is only 1.5% worse than the optimal

set of indices in terms of the overhead.

The rest of the paper is organized as follows: in Section II

we give an overview of the related work. System architecture

along with the role of the index recommendation tool is

discussed in Section III. In Section IV we describe the cost

estimation technique for MAR queries. The index recommen-

dation tool is introduced in Section V along with several

To appear in proceedings of 35th Intl. Conf. on Local Computer Networks (LCN'10), pages 1-8, Denver, CO,

USA, October 2010.

© IEEE 2010

index recommendation algorithms. In Section VI we present

the evaluation results. Finally, in Section VII we conclude the

paper with an overview of our future research direction.

II. RELATED WORK

To the best of our knowledge, there is no index recommen-

dation tool available for DHT-based information discovery sys-

tems. Nonetheless, index tuning/recommendation techniques

have been widely studied in the area of database management

systems (DBMS).

There is a fundamental difference between the index recom-

mendation tools for databases and the tool presented in this

paper. The index recommendation tools for databases rely on

the SQL Query Optimizer for evaluating the cost of a query

over an index [13], [14], [15], [16], [17]. The estimated cost of

a query given by the SQL Query Optimizer is highly accurate,

because the query optimizer uses a central repository known

as the Data Dictionary, containing statistical information

about the data. Gathering such statistical information in a

large, distributed and dynamic P2P network would result in

a high overhead. Therefore, our approach only uses the local

structural information of the indices to estimate the query cost.

The index recommendation tools designed by Bruno et al.

[13], Chaudhuri et al. [14], [15], and Valentin et al. [16] carry

out the recommendation process in two steps. In the first step,

the execution of the workload queries is simulated. During

the simulation process, the indices that appear in the Query
Execution Plans of the query optimizer are collected. This

collection represents the initial set of useful indices. The index

recommendation tool discussed in this paper also provides the

recommendations in two steps. However, our tool obtains the

initial set of indices using the unique attribute combinations

that appear in the workload queries (c.f. Sec. V-B).

During the second step of the index recommendation pro-

cess, the recommendation tools for databases refine the initial

set of indices using certain heuristics. The goal in general is

to obtain a set of indices that produces the least cost for the

queries in the workload.

Given a user-defined limit o for the maximum number of

indices, the heuristic presented in [14] generates all possible

m-sized (m < o) subsets of the initial set of indices. The

subset with the least cost for the workload is then chosen as

a seed for further processing. Next, an index from the initial

set is continuously added to the seed until the size of seed is

equal to o. It is unclear, how the value for m is chosen, since

the algorithm has prohibitively high execution time if m is

large, and sub-optimal recommendations if m is small.

In [15], the heuristic introduced by Chaudhuri et al. reduces

the size of the initial set of indices by merging pairs of indices

as long as a cost constraint is not violated. Unlike the cost-

based merge algorithm (c.f. Sec. V-B1) presented in this paper

that tries to minimize the workload cost given a limit o for the

maximum number of indices, the algorithm in [15] minimizes

the storage, given a cost constraint. Therefore, it is possible

that the final set of recommendations is larger than o.

Distributed Applications

Query Optimizer

DHT (Chord)

Query Engine
Data Placement

Controller

Multi-attribute
Range Query Query Results

lookup(key) Node IPnotify()

SFC1 …SFC2 SFC3 SFCn

Data Index Space

Workload

Index
Recommendation

Tool

Application
Designer

Fig. 1. OID System Architecture

The algorithm introduced by Bruno et al. in [13] produces

a set of recommendations by applying different transforma-

tions (merging, prefixing, deletion) on pairs of indices in

the initial set. The algorithm continues as long as a certain

time constraint is not violated. It is not clear, how long the

algorithm should be executed so that it produces an o-sized

set of recommendations.

Valentine et al. introduced a heuristic in [16] based on

a variation of the solution to the Knapsack problem. Their

algorithm assigns a cost-to-benefit ratio to each index in the

initial set of indices and then selects the indices with the

highest ratio as long as a storage constraint is not violated.

The algorithm then randomly swaps some indices from the

set of selected indices with some indices in the initial set to

try another variation of the solution. The swap and selection

process continues as long as a time constraint is not violated.

Although, the swap and selection technique could lead to a

better solution than the initial one, it could also lead to a

worse solution.

III. SYSTEM ARCHITECTURE

The index recommendation tool presented in this paper pro-

vides recommendations for DHT-based information discovery

systems with a 3-layer architecture. The top layer consists of

distributed applications that require support for MAR queries.

The middle layer consists of several multi-attribute indices

used for indexing the data and for resolving the queries. The

bottom layer is the DHT layer that is used as a distributed

lookup service. Fig. 1 shows the architecture of the OID

system [11], implementing this 3-layer architecture.

The data index space in the OID architecture is composed of

several space-filling curve (SFC)-based multi-attribute indices

defined by the designer of the distributed application. The data

placement controller uses these indices to assign identifiers to

data objects. Each data object is then routed to the peer that

is responsible for it. The OID query engine processes a query

by estimating the cost of the query on each SFC-based index.

The index with the least estimated cost is then used for actual

resolution. Additional details of the OID system architecture

can be found in our previous work [11].

The index recommendation tool discussed below provides

assistance to the designer of the distributed application in order

CPU Speed

M
em

 S
iz

e

1.0 1.5 2.0 2.5 3.0
512

1024

1536

2048

2560

(b)

0 1

23

4

5 6

7 8

9 10

11

1213

14 15
0

1 2

3

(a)

Fig. 2. 1st and 2nd order Hilbert SFCs

to define useful multi-attribute indices for indexing the data.

The tool takes a limit for the maximum number of indices and

a workload of MAR queries as input. It then recommends a

set of indices (SFC-based indices in case of the OID system)

that provides close-to-optimal performance for the workload

within the given limit. This limit represents a trade-off between

increased performance and index maintenance overhead.

We assume that an application-specific workload is available

to the designer of the distributed application. Such a workload

could be obtained either by analyzing the querying trends of

the application domain, or by monitoring queries in an already

existing information discovery system. A discussion regarding

the approaches for collecting the query workload is beyond

the scope of this paper.

IV. QUERY COST ESTIMATION

One of the main objectives of the index recommendation

tool is to minimize the cost of the workload queries in a DHT

network. In particular, we want to minimize the number of

peers that are evaluated in order to resolve a query using

an index. Given the distributed nature of P2P systems, it is

extremely difficult to anticipate the exact number of peers

responsible for the resolution of a query. However, a cost

function can be defined that allows the index recommendation

tool to compare different indices in order to determine the

one that, with a high probability, results in the least number

of peers being evaluated. In this section, we present such a

cost function for the OID system based on the properties of

the Hilbert SFC [18].

The OID system uses Hilbert SFCs for indexing the data

objects. In the context of the OID system, Hilbert SFC is

defined as a continuous function h : (a1, a2, . . . , ad) �→ x ∈ N,

where (a1, a2, . . . , ad) is a point in a d-dimensional euclidean

space and N is the set of natural numbers. The process of

Hilbert SFC construction divides a d-dimensional euclidean

space into 2k·d sub-cubes, called zones. A line then passes

through each of the zones imposing an order on them. The

result is a kth order SFC, where k, known as the approxima-

tion level, determines the granularity of the space sub-division

(c.f. Fig. 2).

If a data object is viewed as a point in a multi-dimensional

attribute space, then it can be indexed using a Hilbert SFC. For

example, a data object defined as (CPU Speed = 2.7 GHz ,

Mem Size = 1792 MB) receives an identifier of 12 on the

SFC shown in Fig. 2 (b). Similarly, a MAR query defined

as “(CPU Speed >= 1.3) ∧ (CPU Speed <= 2.3) ∧
(Mem Size >= 640) ∧ (Mem Size <= 2304)” maps to

two clusters on the same SFC. A cluster is defined as a list

of continuous queried zones. Zones (0− 9) and (13− 14) are

the two clusters in this example (c.f. Fig. 2(b)).

The OID system uniformly distributes the identifier space

of a SFC, [0, 2k·d), over the DHT [11]. Therefore, with a

high probability, the number of peers responsible for query

resolution increases with the number of queried zones and

clusters. Hence, the index recommendation tool can determine

an index that results in the least number of peers being

evaluated by calculating the number of zones and clusters for

a given query over each SFC-based index. We propose the

following cost function for the cost evaluation of each index:

cost(q) =
z

2k·d
· c (1)

where z is the total number of queried zones, d is the number

of index dimensions, k is the index approximation level and

c is the total number of queried clusters. The fraction, z/2k·d

(zone fraction), denotes the queried proportion of the SFC.

Calculating the total number of clusters requires calculation

of each zone identifier for each SFC-based index. Performing

such a calculation could take a significant amount of time.

Therefore, the actual number of clusters in Equ. (1) is replaced

by the estimated number of clusters, given by d/dqm:

cost(q) =
z

2k·d
· d

dqm
(2)

where d is the number of dimensions of the index and dqm
is number of matching dimensions of the query with the

dimensions of the index.

The total number of queried clusters is estimated based on

the observation that the number of queried clusters increases

with increasing index dimensions and decreases with each

matching dimension of the query with the index. Although

the exact quantitative increase or decrease in the number of

clusters is not known, our simulations show that a propor-

tional relationship is sufficient for a qualitative comparison of

different indices (c.f. Sec. VI-B).

V. INDEX RECOMMENDATION TOOL

In this section, we discuss the index recommendation algo-

rithms implemented by the index recommendation tool. Given

a workload W and a user-defined limit o for the maximum

number of indices, each index recommendation algorithm

searches for the o most efficient indices for the workload.

The index recommendation algorithms discussed below are

independent of a particular type of cost function or indexing

technique. Any type of DHT-based indexing scheme and a cost

function that estimates the cost of a query, could be used in

these algorithms. However, we utilize the SFC-based indices

and the cost function discussed in Sec. IV for evaluating these

algorithms. The following table defines the symbols used in

the discussion below.

Symbols Definition
A = {a1, a2, a3, . . . , an} Set of attributes used in queries

o User-defined limit for maximum
number of recommended indices

W = {q1, q2, q3, . . . , qm} Set of representative queries. Also
known as the workload

minCost(q, I) Returns the minimum cost of a
query q on a set of indices I

attributeCombination(q) Returns the combination of
attributes used in a query q

createSFCIndex(x) Returns an SFC-based index created
using the attribute combination x

A. Naı̈ve Index Recommendation

The most naı̈ve way of determining the optimal set of

indices for a workload W is to enumerate all o-sized com-

binations of the power-set of A (c.f. Algo. 1: line 2), and then

choose the combination with the least total cost for the queries

in W (c.f. Algo. 1: line 4-9). We call this algorithm the naı̈ve

index recommendation algorithm.

Algorithm 1 Naı̈ve Index Recommendation Algorithm

1: P = Pow(A)− {};
2: C = {c1, c2, c3, . . . , cl} : ci ⊆ P , |ci| = o, ci �= cj ∀i �= j;
3: minTotalCost = +∞; totalCost = 0; R = I = ∅;
4: for all ci in C do
5: I =

⋃

p∈ci

createSFCIndex(p);

6: totalCost =

|W |∑

k=1

minCost(qk, I);

7: if totalCost < minTotalCost then
8: minTotalCost = totalCost;
9: R = I;

10: end if
11: end for
12: return R;

If na is the size of the attribute set A, then the size of

the power-set of A is 2na . Since C is the set of all o-sized

combinations of the power-set of A, the complexity of line 2 of

the naı̈ve algorithm is O
((

2na

o

))
, i.e., O

(
2na !

o!(2na−o)!

)
. More-

over, the complexity of line 6 of the algorithm is calculated as

O
((

2na

o

) · |W | · o
)

, because the loop statement (Algo. 1: line

4) executes
(
2na

o

)
times and calculates the cost of all queries

in W over a set of o indices in the worst case.

The overall worst-case complexity of the naı̈ve index rec-

ommendation algorithm is O
((

2na

o

))
+ O

((
2na

o

) · |W | · o
)

.

Since the algorithm has an exponential growth in complexity,

it does not scale for large attribute sets. However, it serves as

a reference for the scalable index recommendation algorithms

discussed in the next section.

B. Scalable Index Recommendation

In this section, we present three scalable index recommenda-

tion algorithms that deal with the complexity of the problem in

two steps. The first step of each algorithm considers a limited

set of attribute combinations as the initial search space. We call

this set as the candidate set. The second step of each algorithm

uses a certain heuristic to reduce the size of the candidate set

to the user-defined limit o.

Given a workload W , the candidate set C is defined as:

C =

|W |⋃
i=1

attributeCombination(qi)−
|A|⋃
i=1

{ai}

Unlike the naı̈ve recommendation algorithm, the size of the

initial search space is now limited by the size of the workload.

The set containing the combination of all attributes is removed

from C because the final solution of each scalable index

recommendation algorithm always includes an index created

from the combination of all attributes in A. This index acts as

a fall-back index for queries that could not be optimized.

The assumption behind the creation of the candidate set is

that the workload does not contain queries using all possible

combinations of the attributes in A. This assumption is real-

istic for typical P2P applications, where queries with certain

attribute combinations are frequently issued while queries with

other attribute combinations are almost never used.

Since C includes all the unique attribute combinations

in W , it also represents the optimal set of indices for the

queries in W . However, typically the size of C is greater

than o. Any reduction in the size of C would worsen the

performance of W over the set of indices created using

the attribute combinations in C. Therefore, the aim of the

following index recommendation algorithms is to keep the

performance deterioration of W minimal, while reducing the

size of C to o.

1) Cost-based Merge Algorithm: The cost-based merge

algorithm recommends a set of indices by merging pairs of

attribute combinations in C until the size of C is reduced to

o− 1. Since merging any pair of elements in C increases the

total cost of the workload, the idea is to merge the pairs that

result in the least cost increase (c.f. Algo. 2.1 and Algo. 2.2).

Algorithm 2.1 Cost-based Merge Algorithm

1: R = ∅; Ć = C;
2: while |C| > o− 1 do
3: minTotalCost = +∞; totalCost = 0;
4: x = y = −1; I = ∅;
5: for all ci, cj ∈ C : i �= j do
6: tempC = C;
7: tempC = tempC − {ci} − {cj} ∪ {ci ∪ cj};
8: I =

⋃

ck∈tempC

createSFCIndex(ck);

9: totalCost =

|W |∑

l=1

minCost(ql, I);

10: if totalCost < minTotalCost then
11: minTotalCost = totalCost;
12: x = i; y = j;
13: end if
14: end for
15: C = C − {cx} − {cy} ∪ {cx ∪ cy};
16: end while
17: R =

⋃

ci∈C

createSFCIndex(ci);

18: R = R ∪ createSFCIndex(A);
19: if |R| == o− 1 then
20: R = addMissingIndex(R,C, Ć);
21: end if
22: return R;

The first few steps of the algorithm select a pair of elements

in C, remove the selected pair from a copy of C (tempC),

and add the union of the pair to it (Algo. 2.1: line 5-7). Next,

a set of SFC-based indices is created using the modified copy

of C and the cost of the workload is calculated over it (Algo.

2.1: line 8-9). These steps are repeated until a pair of elements

in C that results in the least workload cost is located (Algo.

2.1: line 10-13). The pair is then removed from C and the

union of the pair is added to it, making the changes to C
permanent (Algo. 2.1: line 15). The merging process repeats

itself as long as the size of C is greater than o− 1. Once the

size of C is less than or equal to o− 1, the algorithm creates

a set of indices R from C and adds an index created from the

combination of all attributes to R (Algo. 2.1: line 17-18).

Typically, R at this point in the algorithm, represents the

final set of recommended indices, but it is possible that the

size of C had been reduced to o − 2 by the previous steps

of the algorithm, and therefore the size of R is o − 1. This

can happen in the case where merging a pair of elements in

an o-sized C reduces C by two elements because the element

produced by merging already existed in C. For example, if

C = {{a1 ∧ a2}, {a2 ∧ a3}, {a1 ∧ a2 ∧ a3}}, and the first 2
elements are merged, the size of C will be reduced by 2.

After merging pairs of elements in C, if the size of R is

o−1 (Algo. 2.1: line 19), the algorithm invokes the procedure

shown in Algo. 2.2. This procedure adds an index created

using an element from the original candidate set to R.

Algorithm 2.2 addMissingIndex(R,C, Ć)
1: minTotalCost = +∞; totalCost = 0;
2: A = B = ∅;
3: for all ci ∈ (Ć − C) do
4: A = createSFCIndex(ci);
5: R = R ∪A

6: totalCost =

|W |∑

j=1

minCost(qj , R);

7: if totalCost < minTotalCost then
8: minTotalCost = totalCost;
9: B = A;

10: end if
11: R = R−A;
12: end for
13: R = R ∪B;
14: return R;

If nc is the size of the candidate set C, then the first

loop of the cost-based merge algorithm performs nc − o
executions at most (Algo. 2.1: line 2). The second loop of

the algorithm (Algo. 2.1: line 5) is realized as a nested

loop. Therefore, it executes
(nc

2−nc)
2 times, in the worst case.

The third loop of the algorithm is executed while calculating

the total cost of the workload over nc indices in the worst

case (Algo. 2.1: line 8). Hence, the complexity of line 8 of

Algo. 2.1 is calculated as O
(
(nc − o)((nc

2−nc)
2)(|W | · nc)

)

i.e. O
(
nc

4
)
. Moreover, the complexity of line 6 of Algo. 2.2

is calculated as O (nc · |W | · o). Therefore, the overall worst-

case complexity of the cost-based merge algorithm is O
(
nc

4
)

+ O (nc · |W | · o).

2) Similarity-based Merge Algorithm: The similarity-based

merge algorithm also uses merging of elements in C to recom-

mend a set of indices. Pairs of elements that are most similar

to each other, in terms of attributes, are merged until the size

of C is reduced to o− 1 (c.f. Algo. 3). Consider an example

where C = {{a1 ∧ a2}, {a1 ∧ a2 ∧ a3}, {a1 ∧ a4}, {a2 ∧ a4}}
and o = 3. The similarity-based merge algorithm would merge

the 1st and the 2nd elements of C because the difference in

their attributes is minimal.

Compared to the cost-based merge algorithm, the similarity-

based merge algorithm is less complex because the elements

in C are merged without checking them against the workload.

The similarity-based merge algorithm is based on the obser-

vation that typically merging two almost identical indices will

not decrease the performance of the workload significantly.

Algorithm 3 Similarity-based Merge Algorithm

1: R = ∅; Ć = C;
2: while |C| > o− 1 do
3: minMergeDiff = +∞; mergeDiff = 0;
4: x = y = −1;
5: for all ci, cj ∈ C : i �= j do
6: mergeDiff = |(ci ∪ cj)− (ci ∩ cj)|;
7: if mergeDiff < minMergeDiff then
8: minMergeDiff = mergeDiff ;
9: x = i; y = j;

10: end if
11: end for
12: C = C − {cx} − {cy} ∪ {cx ∪ cy};
13: end while
14: R =

⋃

ci∈C

createSFCIndex(ci);

15: R = R ∪ createSFCIndex(A);
16: if |R| == o− 1 then
17: R = addMissingIndex(R,C, Ć);
18: end if
19: return R;

The similarity-based merge algorithm starts by selecting

a pair of attribute combinations in C and calculating the

difference in the attributes of the pair (Algo. 3: line 5-6). These

steps of the algorithm are repeated for all pairs in C and the

pair with the least difference in attributes is marked (Algo.

3: line 7-10). The marked pair is then removed from C and

the union of the pair is added to it (Algo. 3: line 12). The

algorithm keeps repeating as long as the size of C is greater

than o−1. Once the size of C is less than or equal to o−1, the

algorithm creates a set of indices R from the modified C and

adds an index created from the combination of all attributes to

R (Algo. 3: line 14-15). Analogous to the cost-based merge

algorithm, the size of the set of indices R produced by the

similarity-based merge algorithm could be o− 1. The missing

index is added to R in the similar manner, as in the cost-based

merge algorithm, i.e., using Algo. 2.2 (Algo. 3: line 16-17).

If nc is the size of the candidate set C, then the first loop

of the algorithm performs nc − o executions and the second

loop performs
(nc

2−nc)
2 executions in the worst case (Algo.

3: line 2 & 5). Therefore, the worst-case complexity of line 6

of the algorithm is O
(
nc

3
)
. Moreover, as established earlier,

the complexity of Algo. 2.2 is O (nc · |W | · o). Therefore, the

overall worst-case complexity of the similarity-based merge

algorithm is O
(
nc

3
)
+ O (nc · |W | · o).

3) Selection Algorithm: The selection algorithm for index

recommendation calculates the cost of the workload for each

element of the candidate set C and chooses o − 1 elements

with the least cost. The idea behind the algorithm is that if

the selected elements have the least cost for the workload

individually, then the probability that they have the least cost

for the workload altogether is also high (c.f. Algo. 4).

Algorithm 4 Selection Algorithm

1: R = ∅; indexList[] = {}; totalCost = 0;
2: for all ci ∈ C do
3: I = createSFCIndex(ci);

4: totalCost =

|W |∑

k=1

minCost(qk, I);

5: indexList[i] = (I, totalCost);
6: end for
7: sortAscending(indexList)

8: R =

o−1⋃

j=0

IndexList[i].getIndex();

9: return R ∪ createSFCIndex(A);

The selection algorithm begins by creating a SFC-based

index for each attribute combination in C and calculating the

cost of the workload over the created indices (Algo. 4: line

2-4). The indices along with their costs are stored in a list

(Algo. 4: line 5). The list is later sorted in an ascending order

of the workload cost and the top o − 1 indices are selected

into R (Algo. 4: line 7-8). Finally, an index created from the

combination of all attributes is added to R, and R is returned

as the set of recommended indices (Algo. 4: line 9).

The core loop of the selection algorithm performs nc

executions, where nc is the size of the candidate set C (Algo.

4: line 2). Therefore, the complexity of the first complex

statement of the algorithm (Algo. 4: line 4) is calculated as

O (nc · |W |). The second complex statement of the algorithm

is the call to the sortAscending() method (Algo. 4: line 7).

A good sorting algorithm, e.g., mergesort or heapsort, has a

runtime complexity of O (nc log nc) [19]. Hence, the overall

worst-case complexity of the selection algorithm is given as

O (nc · |W |) +O (nc log nc).

VI. EXPERIMENTAL EVALUATIONS

We implemented the prototype of the index recommendation

tool, including the index recommendation algorithms, in Java.

Furthermore, we used an AMD Opteron machine with 4 GB

of RAM to perform the evaluations discussed below.

Since the index recommendation tool presented in this paper

is the first recommendation tool for P2P information discovery

systems, it requires an evaluation using a variety of workload

scenarios. Hence, a fine grained control over parameters such

as total number of queries, query popularity distribution etc., is

needed. Therefore, we use synthetic workloads for evaluating

our tool. Moreover, unlike DBMS where benchmark work-

loads are made available by the TPC [20], no such workload

of MAR queries is universally available for P2P systems.

Workloads from P2P file sharing mostly contain multi-attribute

point queries and are therefore not applicable here.

Using resource discovery in grid computing as a use-case, n
number of attributes from the list shown in Table I are provided

as an input to the workload generator. The workload generator

creates a randomly ordered list of all attribute combinations

from the provided attribute set. The list is then reduced by

keeping only r% of the items and discarding the rest of them.

Attribute Value Domain Definition
CPU Speed 1.0 - 4.0 CPU clock speed in GHz

Busy CPU 0 - 100 Percentage of CPU(s) in use

Mem Size 1.0 - 8.0 Total Memory size in GB

Mem Used 0 - 100 Percentage of Memory in use

HDD Size 100.0 - 3000.0 Total HDD size in GB

TABLE I
ATTRIBUTE LIST

Next, each combination in the reduced list is assigned a pop-

ularity p using the Zipfian distribution with the parameter α. α
is a decimal value between 0 and 1, where 0 represents uniform

distribution (all combinations have the same popularity) and

1 represents highly skewed distribution (20% combinations

make up 80% of all queries). The popularity of a combination

indicates the number of times a combination is repeated in the

workload queries. The sum of all popularities is equal to m,

where m is the total number of queries in the workload.

A MAR query is created by selecting an attribute combina-

tion from the list and randomly assigning a value range to each

attribute of the selected combination. The assigned range for

each attribute is chosen from the domain of the attribute shown

in Table I. Finally, a workload of queries is created by selecting

each attribute combination p times for value range assignment,

where p is the popularity of the attribute combination.

We use an attribute set of only 5 attributes (c.f. Table I) to

enable the comparison of the naı̈ve recommendation algorithm

with other algorithms, because the execution time of the naı̈ve

algorithm becomes prohibitively high for a larger attribute set.

A. Performance Evaluation

In this section, we present results from the performance

evaluation of all index recommendation algorithms. For the

sake of comparison, the performance of a system where an

index recommendation tool is not used, i.e., a system with only

a single index created from the combination of all attributes, is

also evaluated. For each of the evaluation scenarios discussed

below, the following two performance metrics are measured:

Total Workload Cost – Cost of all queries in the workload.

The cost here refers to the estimated query cost discussed

in Sec. IV, i.e., we do not consider the real cost of the

workload in a DHT, e.g. the actual number of queried peers.

An evaluation with a simulated DHT network follows later.

Execution Time – Execution time of an algorithm in seconds.

For each point on the graphs displayed in this section, the

corresponding experiment is repeated 10 times with different

workloads, and an average value is plotted.

1) Influence of Varying Attribute Combinations: In this

section, we study the effect of varying the number of attribute

combinations in the workload. The following values are used

for the evaluation parameters described above: m = 10000,

n = 5, r = (20, 30, . . . , 60), α = 0.8, and o = 3. The first

four parameters are used by the workload generator to produce

5 different query workloads. Each new workload has a larger

variety of attribute combinations then the previous one. The

last parameter used by the index recommendation algorithms,

is the user-defined limit for the maximum number of indices.

With respect to the total workload cost, the naı̈ve algorithm

performs best in all cases because the algorithm recommends

a set of optimal indices for the workload (c.f. Fig. 3(a)). The

scalable algorithm that comes closest to the optimal solution

is the cost-based merge algorithm. The similarity-based merge

algorithm performs slightly worse than the selection algorithm

for the cases where Algo. 2.2 is mostly not executed (for,

r = 20 & 30). In other cases, the selection algorithm shows

worse performance than the similarity-based merge algorithm.

Note that the total workload cost of all index recommendation

algorithms is lower than the case where only a single index

with the combination of all attributes is used.

Although the execution time of the naı̈ve algorithm is high-

est compared to the execution times of the other algorithms

(c.f. Fig. 3(b)), it remains almost constant because the search

space of the naı̈ve algorithm always includes all possible

attribute combinations (c.f. Sec. V-A). Since the initial search

space of the scalable algorithms only includes the attribute

combinations from the workload (c.f. Sec. V-B), the execution

time of the scalable algorithms grows with increasing number

of unique attribute combinations in the workload.

Fig. 3(b) also shows the limitations of the cost-based

merge algorithm. If the number of attribute combinations is

higher than 60%, the execution time of the cost-based merge

algorithm exceeds the execution time of the naı̈ve algorithm.

2) Influence of Varying Number of Indices: In this section,

we demonstrate the effect of a varying user-defined limit for

the maximum number of indices on each index recommenda-

tion algorithm. The parameter values for the evaluation are:

m = 10000, n = 5, r = 50, α = 0.8, and o = (2, 3, . . . , 6).
Generally, the total workload cost for each index recom-

mendation algorithm decreases as the user-defined limit for

the maximum number of indices increases (c.f. Fig. 3(c)).

This happens because with increasing number of indices more

queries are able to find less expensive indices for resolution.

The similarity-based merge algorithm produces higher

workload cost than the selection algorithm for cases where

Algo. 2.2 is mostly not executed (Fig. 3(c), for o = 4, 5 & 6).

This indicates that the quality of indices produced by the

similarity-based merge algorithm is better in cases where Algo.

2.2 is executed, because Algo. 2.2 selects the final index from

the candidate set based on the total workload cost.

The total execution time of the naı̈ve algorithm increases

with increasing number of indices (c.f. Fig. 3(d)), because the

complexity of the algorithm grows with increasing number of

indices (c.f. Sec. V-A). However, the total execution time of

Fig. 3. Experimental Evaluations

the cost-based merge algorithm and the selection algorithm

remains almost constant, because for these algorithms, the

execution time is mostly dependent on the size of the candidate

set which remains constant throughout the evaluation.

The total execution time of the similarity-based merge

algorithm suddenly decreases between values 3 and 5 for the

maximum number of indices (c.f. Fig. 3(d)). This happens

because in these case Algo. 2.2 is mostly not executed.
3) Influence of Varying Popularity Distribution: In this

section, we illustrate the effect of varying query popularity

distribution on each index recommendation algorithm. The

parameter values for the evaluation are: m = 10000, n = 5,

r = 50, α = (0.0, 0.1, . . . , 1.0), and o = 3.

We vary the query popularity distribution of the workload

from uniform distribution (α = 0) to highly skewed distribu-

tion (α = 1). Fig. 3(e) shows the performance of each index

recommendation algorithm with respect to the total workload

cost. The execution time of the algorithms is not shown

because it remains almost constant throughout the evaluation,

showing the same order as in the previous evaluation.

As expected, the naı̈ve algorithm yields the least workload

cost in all cases. The scalable algorithm that comes closest to

the naı̈ve approach is the cost-based merge algorithms. The

selection algorithm produces the highest workload cost which

slightly decreases as the popularity distribution varies from

uniform to skewed distribution. As with the previous evalu-

ation, the total workload cost of all index recommendation

algorithms is lower than the case where only a single index

with the combination of all attributes is used.

Since all index recommendation algorithms generally try to

include the most popular indices in the final set of recom-

mendations, the total workload cost produced by each index

recommendation algorithm decreases as the query popularity

distribution varies from uniform to skewed distribution.

B. Network Simulation

In this section, we show that the SFC-based cost estima-

tion formula presented in Sec. IV is accurate enough for a

qualitative comparison between different index recommenda-

tion algorithms discussed in Sec. V. In order to do so, we

first evaluate each index recommendation algorithm using the

following parameter values: m = 50, n = 4, r = 50, α = 0.6,

and o = 3. Each evaluation experiment is repeated 5 times

with a different workload. The estimated total workload cost

(c.f. Sec. IV), averaged over 5 runs, calculated by each index

recommendation algorithm, is shown in the following tables:

Algorithm Total Workload Cost
Naı̈ve 1.739
S-Merge 2.038
C-Merge 1.776

Algorithm Total Workload Cost
Selection 2.084
Single 2.852

The OID System [11] is then set up in a P2P network

simulation environment. Multiple SFC-based indices, corre-

sponding to the recommendation given by an index recom-

mendation algorithm, are defined in the OID Index Space (c.f.

Sec. III). Each query from the same workload used above

is then issued from a random peer in the network. This

experiment is repeated 5 times for each index recommendation

algorithm using the 5 corresponding workloads utilized during

the evaluation above. The following metric is then measured

and averaged over 5 runs for each recommendation algorithm:

Number of Queried Peers – Total number of peers queried

in order to resolve all the queries in the workload.

Fig. 3(f) shows the number of queried peers for each

scalable algorithm (in percentage) relative to the number of

queried peers for the naı̈ve algorithm. The relative number of

queried peers are also shown for a single index created using

the combination of all attributes. Fig. 3(f) asserts the same

order of the algorithms as in the tables above, but now with

respect to the actual number of queried peers. This shows that

the cost estimation formula presented in Sec. IV is accurate

enough for a qualitative comparison between different index

recommendation algorithms. Moreover, Fig. 3(f) also shows

that in the best case, the cost-based merge algorithm queries

only 1.5% more peers compared to the naı̈ve algorithm.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented an index recommendation tool for

DHT-based information discovery systems. Given a limit for

the maximum number of indices and a workload of queries,

our tool recommends a set of indices that produces close-

to-optimal performance for the workload queries within the

given limit. The index recommendation tool consists of three

scalable index recommendation algorithms: cost-based merge,

similarity-based merge and selection algorithm.

Our evaluations show that there is a trade-off between the

performance and the execution time of the scalable index

recommendation algorithms. With respect to the performance,

the cost-based merge algorithm is the best (only 1.5% worse

than the naı̈ve algorithm), generally followed by the similarity-

based merge and the selection algorithms. With respect to the

execution time of the algorithms, the order is reversed.

Our future work focuses on automating the process of index

recommendation and installation in DHT-based information

discovery systems. For that, we need to consider the overhead

of installing an index compared to the benefit of installing

it. Moreover, we will develop a distributed query monitoring

service for gathering the workload of queries in DHTs.

REFERENCES

[1] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen, “A Survey on
Resource Discovery Mechanisms, Peer-to-Peer and Service Discovery
Frameworks,” Comput. Netw., 2008.

[2] J. Noh and S. Deshpande, “Pseudo-DHT: Distributed Search Algorithm
for P2P Video Streaming,” Intl. Symposium on Multimedia, 2008.

[3] F. Memon, D. Tiebler, F. Dürr, K. Rothermel, M. Tomsu, and P. Dom-
schitz, “Scalable Spatial Information Discovery over DHTs,” in Intl.
Conf. on Communication System Software and Middleware, 2009.

[4] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for Grid
Information Services,” in Intl. Conf. on P2P Computing, 2002.

[5] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A Multi-Attribute
Addressable Network for Grid Information Services,” in Intl. Workshop
on Grid Computing, 2003.

[6] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou, “Supporting Multi-
dimensional Range Queries in Peer-to-Peer Systems,” in Intl. Conf. on
P2P Computing, 2005.

[7] P. Triantafillou and T. Pitoura, “Towards a Unifying Framework for
Complex Query Processing over Structured Peer-to-Peer Data Net-
works,” in Intl. Workshop on Databases, Information Systems and P2P
Computing, 2003.

[8] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,
and J. Hellerstein, “A Case Study in Building Layered DHT Appli-
cations,” in Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communications, 2005.

[9] P. Ganesan, B. Yang, and H. Garcia-Molina, “One Torus to Rule Them
All: Multi-dimensional Queries in P2P Systems,” in Intl. Workshop on
the Web and Databases, 2004.

[10] C. Schmidt and M. Parashar, “Flexible Information Discovery in Decen-
tralized Distributed Systems,” in Intl. Symposium on High Performance
Distributed Computing, 2003.

[11] F. Memon, D. Tiebler, F. Dürr, K. Rothermel, M. Tomsu, and P. Dom-
schitz, “OID: Optimized Information Discovery using Space Filling
Curves in P2P Overlay Networks,” in Intl. Conf. on Parallel and
Distributed Systems, 2008.

[12] S. Chaudhuri, M. Datar, and V. Narasayya, “Index Selection for
Databases: A Hardness Study and a Principled Heuristic Solution,” IEEE
Trans. on Knowl. and Data Eng., 2004.

[13] N. Bruno and S. Chaudhuri, “Automatic Physical Database Tuning: A
Relaxation-based Approach,” in Conf. on Management of Data, 2005.

[14] S. Chaudhuri and V. R. Narasayya, “An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server,” in Intl. Conf. on Very Large
Data Bases, 1997.

[15] ——, “Index Merging,” in Intl. Conf. on Data Engineering, 1999.
[16] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley, “DB2

Advisor: An Optimizer Smart Enough to Recommend its own Indexes,”
Intl. Conf. on Data Engineering, 2000.

[17] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-
Arellano, and S. Fadden, “DB2 Design Advisor: Integrated Automatic
Physical Database Design,” in Conf. on Very Large Data Bases, 2004.

[18] D. Hilbert, “Über die stetige Abbildung einer Linie auf ein
Flächenstück,” in Mathematische Annalen, 1891.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2003.

[20] Transaction Processing Performance Council, http://www.tpc.org/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

