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Abstract—Peer-to-peer (P2P) networks allow for efficient in-
formation discovery in large-scale distributed systems. Although
point queries are well supported by current P2P systems — in
particular systems based on distributed hash tables (DHTSs) —,
providing efficient support for more complex queries remains a
challenge. Our research focuses on the efficient support for multi-
attribute range (MAR) queries over DHT-based information
discovery systems. Traditionally, the support for MAR queries
over DHTs has been provided either by creating an individual
index for each data attribute or by creating a single index
using the combination of all data attributes. In contrast to these
approaches, we propose to create a set of indices over selected
attribute combinations. In order to limit the overhead induced
by index maintenance, the total number of created indices has
to be limited. Thus, the resulting problem is to create a limited
number of indices such that the overall system performance is
optimal for MAR queries. In this paper, we propose an index
recommendation tool that implements heuristic solutions to this
NP-hard problem. Our evaluations show that these heuristics
lead to a close-to-optimal system performance for MAR queries.

Index Terms—Distributed networks, Indexing methods, Dis-
tributed data structures, Hash-table representations

I. INTRODUCTION

DHT-based information discovery systems started out with
the support for only point queries. However, the need for MAR
queries in the P2P application areas such as resource discovery
in grid computing [1], P2P video streaming [2], and spatial
information discovery [3], led to their extension. The support
for MAR queries has been provided by realizing a layer of
indexing mechanisms over DHTs.

Primarily, two indexing approaches have been used to
leverage DHTs for enabling MAR queries. The first approach
indexes the value range of each data attribute individually
[4], [5], [6], [7]. MAR queries are resolved by performing
multiple single-attribute range queries and then the results
are filtered at the query initiator. This approach induces a
large network load and therefore does not scale. The second
approach indexes the combination of all data attributes [8],
[9], [10]. This approach performs well if the queries include
ranges over all data attributes (which is generally not the case
for P2P information discovery systems). Data attributes that
do not appear in queries are considered to be wildcards, and
the performance of this approach deteriorates with increasing
number of wildcards in queries [9], [11], [10].

Recently, we presented the Optimized Information Dis-
covery (OID) system [11], which introduces a third type of

indexing approach for extending DHTs to provide the support
for MAR queries. The OID system creates a layer of multiple
multi-attribute indices over a DHT. A MAR query is resolved
by estimating the performance of the query over each index,
and then selecting the one with the best estimate. Although
our approach outperforms the previously proposed approaches
for extending DHTs [11] in terms of query overhead, the
criterion for defining the initial set of indices is based on
a simple heuristic. The OID system installs a user-defined
number of indices for the most popular queries in the system.
This criterion achieves system-wide optimal performance for
applications where few popular queries make up for the largest
portion of the total queries. However, for P2P applications with
few popular queries and a large number of unpopular queries,
this criterion would produce a set of sub-optimal indices.

Finding an optimal set of indices, irrespective of a particular
type of query popularity distribution, is an NP-hard [12] prob-
lem, as the number of index possibilities grows exponentially
with the number of data attributes. Therefore, a heuristic-based
solution that produces a close-to-optimal set of indices, is
highly desirable. In this paper, we present a tool that provides
index recommendations for DHT-based information discovery
systems. Given a limit for the maximum number of indices and
a set of MAR queries that have been previously monitored in
the system (workload), our tool recommends a set of indices
that produces close-to-optimal performance for the workload
within the given limit.

The index recommendation tool presented in this paper
consists of several index recommendation algorithms. Each
algorithm works by creating a set of candidate indices using
the unique attribute combinations in the workload queries.
The set of candidate indices is usually larger than the user-
defined limit for the maximum number of indices. Therefore,
the size of this set is successively reduced either by merging
some elements or by selecting some while discarding others.
Our evaluations show that in the best case, a set of indices
recommended by our tool is only 1.5% worse than the optimal
set of indices in terms of the overhead.

The rest of the paper is organized as follows: in Section II
we give an overview of the related work. System architecture
along with the role of the index recommendation tool is
discussed in Section III. In Section IV we describe the cost
estimation technique for MAR queries. The index recommen-
dation tool is introduced in Section V along with several
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index recommendation algorithms. In Section VI we present
the evaluation results. Finally, in Section VII we conclude the
paper with an overview of our future research direction.

II. RELATED WORK

To the best of our knowledge, there is no index recommen-
dation tool available for DHT-based information discovery sys-
tems. Nonetheless, index tuning/recommendation techniques
have been widely studied in the area of database management
systems (DBMS).

There is a fundamental difference between the index recom-
mendation tools for databases and the tool presented in this
paper. The index recommendation tools for databases rely on
the SOL Query Optimizer for evaluating the cost of a query
over an index [13], [14], [15], [16], [17]. The estimated cost of
a query given by the SOL Query Optimizer is highly accurate,
because the query optimizer uses a central repository known
as the Data Dictionary, containing statistical information
about the data. Gathering such statistical information in a
large, distributed and dynamic P2P network would result in
a high overhead. Therefore, our approach only uses the local
structural information of the indices to estimate the query cost.

The index recommendation tools designed by Bruno et al.
[13], Chaudhuri et al. [14], [15], and Valentin et al. [16] carry
out the recommendation process in two steps. In the first step,
the execution of the workload queries is simulated. During
the simulation process, the indices that appear in the Query
Execution Plans of the query optimizer are collected. This
collection represents the initial set of useful indices. The index
recommendation tool discussed in this paper also provides the
recommendations in two steps. However, our tool obtains the
initial set of indices using the unique attribute combinations
that appear in the workload queries (c.f. Sec. V-B).

During the second step of the index recommendation pro-
cess, the recommendation tools for databases refine the initial
set of indices using certain heuristics. The goal in general is
to obtain a set of indices that produces the least cost for the
queries in the workload.

Given a user-defined limit o for the maximum number of
indices, the heuristic presented in [14] generates all possible
m-sized (m < o) subsets of the initial set of indices. The
subset with the least cost for the workload is then chosen as
a seed for further processing. Next, an index from the initial
set is continuously added to the seed until the size of seed is
equal to o. It is unclear, how the value for m is chosen, since
the algorithm has prohibitively high execution time if m is
large, and sub-optimal recommendations if m is small.

In [15], the heuristic introduced by Chaudhuri et al. reduces
the size of the initial set of indices by merging pairs of indices
as long as a cost constraint is not violated. Unlike the cost-
based merge algorithm (c.f. Sec. V-B1) presented in this paper
that tries to minimize the workload cost given a limit o for the
maximum number of indices, the algorithm in [15] minimizes
the storage, given a cost constraint. Therefore, it is possible
that the final set of recommendations is larger than o.
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Fig. 1. OID System Architecture

The algorithm introduced by Bruno et al. in [13] produces
a set of recommendations by applying different transforma-
tions (merging, prefixing, deletion) on pairs of indices in
the initial set. The algorithm continues as long as a certain
time constraint is not violated. It is not clear, how long the
algorithm should be executed so that it produces an o-sized
set of recommendations.

Valentine et al. introduced a heuristic in [16] based on
a variation of the solution to the Knapsack problem. Their
algorithm assigns a cost-to-benefit ratio to each index in the
initial set of indices and then selects the indices with the
highest ratio as long as a storage constraint is not violated.
The algorithm then randomly swaps some indices from the
set of selected indices with some indices in the initial set to
try another variation of the solution. The swap and selection
process continues as long as a time constraint is not violated.
Although, the swap and selection technique could lead to a
better solution than the initial one, it could also lead to a
worse solution.

III. SYSTEM ARCHITECTURE

The index recommendation tool presented in this paper pro-
vides recommendations for DHT-based information discovery
systems with a 3-layer architecture. The top layer consists of
distributed applications that require support for MAR queries.
The middle layer consists of several multi-attribute indices
used for indexing the data and for resolving the queries. The
bottom layer is the DHT layer that is used as a distributed
lookup service. Fig. 1 shows the architecture of the OID
system [11], implementing this 3-layer architecture.

The data index space in the OID architecture is composed of
several space-filling curve (SFC)-based multi-attribute indices
defined by the designer of the distributed application. The data
placement controller uses these indices to assign identifiers to
data objects. Each data object is then routed to the peer that
is responsible for it. The OID query engine processes a query
by estimating the cost of the query on each SFC-based index.
The index with the least estimated cost is then used for actual
resolution. Additional details of the OID system architecture
can be found in our previous work [11].

The index recommendation tool discussed below provides
assistance to the designer of the distributed application in order
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to define useful multi-attribute indices for indexing the data.
The tool takes a limit for the maximum number of indices and
a workload of MAR queries as input. It then recommends a
set of indices (SFC-based indices in case of the OID system)
that provides close-to-optimal performance for the workload
within the given limit. This limit represents a trade-off between
increased performance and index maintenance overhead.

We assume that an application-specific workload is available
to the designer of the distributed application. Such a workload
could be obtained either by analyzing the querying trends of
the application domain, or by monitoring queries in an already
existing information discovery system. A discussion regarding
the approaches for collecting the query workload is beyond
the scope of this paper.

IV. QUERY COST ESTIMATION

One of the main objectives of the index recommendation
tool is to minimize the cost of the workload queries in a DHT
network. In particular, we want to minimize the number of
peers that are evaluated in order to resolve a query using
an index. Given the distributed nature of P2P systems, it is
extremely difficult to anticipate the exact number of peers
responsible for the resolution of a query. However, a cost
function can be defined that allows the index recommendation
tool to compare different indices in order to determine the
one that, with a high probability, results in the least number
of peers being evaluated. In this section, we present such a
cost function for the OID system based on the properties of
the Hilbert SFC [18].

The OID system uses Hilbert SFCs for indexing the data
objects. In the context of the OID system, Hilbert SFC is
defined as a continuous function & : (a1, as,...,aq) — x € N,
where (a1, as,...,aq) is a point in a d-dimensional euclidean
space and N is the set of natural numbers. The process of
Hilbert SFC construction divides a d-dimensional euclidean
space into 2%'¢ sub-cubes, called zones. A line then passes
through each of the zones imposing an order on them. The
result is a k' order SFC, where k, known as the approxima-
tion level, determines the granularity of the space sub-division
(c.f. Fig. 2).

If a data object is viewed as a point in a multi-dimensional
attribute space, then it can be indexed using a Hilbert SFC. For
example, a data object defined as (CPU Speed =2.7T GHz ,
Mem Size = 1792 M B) receives an identifier of 12 on the
SFC shown in Fig. 2 (b). Similarly, a MAR query defined

as “(CPU Speed >= 1.3) A (CPU Speed <= 2.3) A
(Mem Size >= 640) A (Mem Size <= 2304)” maps to
two clusters on the same SFC. A cluster is defined as a list
of continuous queried zones. Zones (0 —9) and (13 — 14) are
the two clusters in this example (c.f. Fig. 2(b)).

The OID system uniformly distributes the identifier space
of a SFC, [0,2%4), over the DHT [11]. Therefore, with a
high probability, the number of peers responsible for query
resolution increases with the number of queried zones and
clusters. Hence, the index recommendation tool can determine
an index that results in the least number of peers being
evaluated by calculating the number of zones and clusters for
a given query over each SFC-based index. We propose the
following cost function for the cost evaluation of each index:

z
cost(q) = ok © (1)
where z is the total number of queried zones, d is the number
of index dimensions, k is the index approximation level and
c is the total number of queried clusters. The fraction, z/2%¢
(zone fraction), denotes the queried proportion of the SFC.

Calculating the total number of clusters requires calculation
of each zone identifier for each SFC-based index. Performing
such a calculation could take a significant amount of time.
Therefore, the actual number of clusters in Equ. (1) is replaced
by the estimated number of clusters, given by d/dgm:

cost(q) = i d 2)

= okd dgm
where d is the number of dimensions of the index and dg,
is number of matching dimensions of the query with the
dimensions of the index.

The total number of queried clusters is estimated based on
the observation that the number of queried clusters increases
with increasing index dimensions and decreases with each
matching dimension of the query with the index. Although
the exact quantitative increase or decrease in the number of
clusters is not known, our simulations show that a propor-
tional relationship is sufficient for a qualitative comparison of
different indices (c.f. Sec. VI-B).

V. INDEX RECOMMENDATION TOOL

In this section, we discuss the index recommendation algo-
rithms implemented by the index recommendation tool. Given
a workload W and a user-defined limit o for the maximum
number of indices, each index recommendation algorithm
searches for the o most efficient indices for the workload.

The index recommendation algorithms discussed below are
independent of a particular type of cost function or indexing
technique. Any type of DHT-based indexing scheme and a cost
function that estimates the cost of a query, could be used in
these algorithms. However, we utilize the SFC-based indices
and the cost function discussed in Sec. IV for evaluating these
algorithms. The following table defines the symbols used in
the discussion below.



Symbols Definition

A={ai,a2,as,...,a,} Set of attributes used in queries

o User-defined limit for maximum
number of recommended indices

W ={q1,92,93,---,qm} Set of representative queries. Also

known as the workload

Returns the minimum cost of a
query q on a set of indices I
Returns the combination of
attributes used in a query q

Returns an SFC-based index created
using the attribute combination x

minCost(q, I)

attributeCombination(q)

createSFClIndex(x)

A. Naive Index Recommendation

The most naive way of determining the optimal set of
indices for a workload W is to enumerate all o-sized com-
binations of the power-set of A (c.f. Algo. 1: line 2), and then
choose the combination with the least total cost for the queries
in W (c.f. Algo. 1: line 4-9). We call this algorithm the naive
index recommendation algorithm.

Algorithm 1 Naive Index Recommendation Algorithm
1: P = Pow(A) —{};
2: C={ec1,c2,03,...,0} :¢; C P, lci| =0, ¢; # ¢j Vi # j;
3: minTotalCost = +oo; totalCost = 0; R = 1 = ();
4: for all ¢; in C' do
50 I= U createSFCIndex(p);
pEC;

W
6:  totalCost = Z minCost(qy, I);

7: if totalCost 2 r%L'inTotalCost then
8: minTotalCost = totalCost;

9: R=1;

10: end if

11: end for

12: return R;

If n, is the size of the attribute set A, then the size of
the power-set of A is 2"«. Since C' is the set of all o-sized
combinations of the power-set of A, the complexity of line 2 of
the naive algorithm is O (QZQ )), ie., O 01(22+lo)'> More-
over, the complexity of line 6 of the algorithm is calculated as

@) ((220) W - 0), because the loop statement (Algo. 1: line

4) executes (27:) times and calculates the cost of all queries
in W over a set of o indices in the worst case.

The overall worst-case complexity of the naive index rec-
ommendation algorithm is O <(20a)) +0 ((22“) W .0>.
Since the algorithm has an exponential growth in complexity,
it does not scale for large attribute sets. However, it serves as
a reference for the scalable index recommendation algorithms
discussed in the next section.

B. Scalable Index Recommendation

In this section, we present three scalable index recommenda-
tion algorithms that deal with the complexity of the problem in
two steps. The first step of each algorithm considers a limited
set of attribute combinations as the initial search space. We call
this set as the candidate set. The second step of each algorithm
uses a certain heuristic to reduce the size of the candidate set
to the user-defined limit o.

Given a workload W, the candidate set C' is defined as:

Wi [A|
C= U attributeCombination(q;) — U{ai}
i=1 i=1

Unlike the naive recommendation algorithm, the size of the
initial search space is now limited by the size of the workload.
The set containing the combination of all attributes is removed
from C because the final solution of each scalable index
recommendation algorithm always includes an index created
from the combination of all attributes in A. This index acts as
a fall-back index for queries that could not be optimized.

The assumption behind the creation of the candidate set is
that the workload does not contain queries using all possible
combinations of the attributes in A. This assumption is real-
istic for typical P2P applications, where queries with certain
attribute combinations are frequently issued while queries with
other attribute combinations are almost never used.

Since C' includes all the unique attribute combinations
in W, it also represents the optimal set of indices for the
queries in W. However, typically the size of C' is greater
than o. Any reduction in the size of C' would worsen the
performance of W over the set of indices created using
the attribute combinations in C. Therefore, the aim of the
following index recommendation algorithms is to keep the
performance deterioration of W minimal, while reducing the
size of C' to o.

1) Cost-based Merge Algorithm: The cost-based merge
algorithm recommends a set of indices by merging pairs of
attribute combinations in C' until the size of C' is reduced to
o — 1. Since merging any pair of elements in C' increases the
total cost of the workload, the idea is to merge the pairs that
result in the least cost increase (c.f. Algo. 2.1 and Algo. 2.2).

Algorithm 2.1 Cost-based Merge Algorithm

I: R=0;C=C;
2: while [C| > 0—1 do
3: minT otalCost = 4oc0; totalCost = 0;
4 z=y=-1;1=0
50 forallc;,c; € C:i#jdo
6: tempC = C;
7: tempC = tempC — {c;} — {cj} U{ci Uc;};
8: I= createSFCIndex(cy);
cp EtempC
W]
9: totalCost = Z minCost(qp, I);
10: if totalCost l< ;m'nTotalC’ost then
11: minTotalCost = totalCost,;
12: =1 y=17;
13: end if
14: end for

150 C=C—{ca} —{eytU{cz Ucy};

16: end while

17: R= U createSFCIndex(c;);
c,eC

18: R = RUcreateSFCIndex(A);

19: if |R| == o0 — 1 then

20: R = addMissingIndex(R, C, C)7

21: end if

22: return R;




The first few steps of the algorithm select a pair of elements
in C, remove the selected pair from a copy of C' (tempC),
and add the union of the pair to it (Algo. 2.1: line 5-7). Next,
a set of SFC-based indices is created using the modified copy
of C' and the cost of the workload is calculated over it (Algo.
2.1: line 8-9). These steps are repeated until a pair of elements
in C that results in the least workload cost is located (Algo.
2.1: line 10-13). The pair is then removed from C' and the
union of the pair is added to it, making the changes to C'
permanent (Algo. 2.1: line 15). The merging process repeats
itself as long as the size of C' is greater than o — 1. Once the
size of C' is less than or equal to o — 1, the algorithm creates
a set of indices R from C' and adds an index created from the
combination of all attributes to R (Algo. 2.1: line 17-18).

Typically, R at this point in the algorithm, represents the
final set of recommended indices, but it is possible that the
size of C' had been reduced to o — 2 by the previous steps
of the algorithm, and therefore the size of R is o — 1. This
can happen in the case where merging a pair of elements in
an o-sized C reduces C' by two elements because the element
produced by merging already existed in C. For example, if
C = {{a1 Naz}, {az ANas},{a1 A az A ag}}, and the first 2
elements are merged, the size of C' will be reduced by 2.

After merging pairs of elements in C, if the size of R is
o—1 (Algo. 2.1: line 19), the algorithm invokes the procedure
shown in Algo. 2.2. This procedure adds an index created
using an element from the original candidate set to R.

Algorithm 2.2 addMissingIndex(R, C, C’)
+o00; totalCost = 0;

: minTotalCost =
A=B=0;
: for all ¢; € (C —C) do

A = createSFCIndex(c;);
R=RUA

DR

W]

totalCost = Z minCost(q;, R);
=1

7 if totalCost < minTotalCost then

8: minTotalCost = totalCost;

9: B = A;

10: end if

11: R=R-—A;

12: end for

13: R=RUB;

14: return R;

a

If n. is the size of the candidate set C', then the first
loop of the cost-based merge algorithm performs n. — o
executions at most (Algo. 2.1: line 2). The second loop of
the algorithm (Algo. 2.1: line 5) is realized as a nested
loop. Therefore, it executes ("‘2%7“) times, in the worst case.
The third loop of the algorithm is executed while calculating
the total cost of the workload over n. indices in the worst
case (Algo. 2.1: line 8). Hence, the complex1ty of line 8 of
Algo. 2.1 is calculated as O ((nC - 0)(M)(|W\ nc)>

i.e. O (n.*). Moreover, the complexity of line 6 of Algo. 2.2
is calculated as O (n. - |W] - 0). Therefore, the overall worst-

case complexity of the cost-based merge algorithm is O (nc4)
+ O (ne-|W|-o).

2) Similarity-based Merge Algorithm: The similarity-based
merge algorithm also uses merging of elements in C' to recom-
mend a set of indices. Pairs of elements that are most similar
to each other, in terms of attributes, are merged until the size
of C' is reduced to o — 1 (c.f. Algo. 3). Consider an example
where C = {{a1 A (12}7 {a1 Nag N\ CL3}, {(11 AN (14}, {a2 A a4}}
and o = 3. The similarity-based merge algorithm would merge
the 15 and the 2" elements of C' because the difference in
their attributes is minimal.

Compared to the cost-based merge algorithm, the similarity-
based merge algorithm is less complex because the elements
in C are merged without checking them against the workload.
The similarity-based merge algorithm is based on the obser-
vation that typically merging two almost identical indices will
not decrease the performance of the workload significantly.

Algorithm 3 Similarity-based Merge Algorithm

I: R=0;C=C;

2: while |C| >0 —1 do

3: minMergeDif f = +oo; mergeDiff = 0;
4: r=y=—1;

50 forallc;,c; € C:i#jdo

6: mergeDiff = |(c;Ucj) — (¢; Nej)l;
7: if mergeDiff < minMergeDiff then
8: minMergeDif f = mergeDif f;

9: T =1 y=7;

10: end if

11: end for

122 C=C—{ca} —{ey}U{ca Uy}

13: end while

14: R = U createSFClIndex(c;);
c;eC

15: R = RUcreateSFCIndex(A);

16: if |R| == o — 1 then

17: R = addMissingIndex(R, C, C)7

18: end if

19: return R;

The similarity-based merge algorithm starts by selecting
a pair of attribute combinations in C' and calculating the
difference in the attributes of the pair (Algo. 3: line 5-6). These
steps of the algorithm are repeated for all pairs in C' and the
pair with the least difference in attributes is marked (Algo.
3: line 7-10). The marked pair is then removed from C' and
the union of the pair is added to it (Algo. 3: line 12). The
algorithm keeps repeating as long as the size of C is greater
than o— 1. Once the size of C' is less than or equal to o—1, the
algorithm creates a set of indices R from the modified C' and
adds an index created from the combination of all attributes to
R (Algo. 3: line 14-15). Analogous to the cost-based merge
algorithm, the size of the set of indices R produced by the
similarity-based merge algorithm could be o0 — 1. The missing
index is added to R in the similar manner, as in the cost-based
merge algorithm, i.e., using Algo. 2.2 (Algo. 3: line 16-17).

If n. is the size of the candidate set C, then the first loop
of the algorithm performs n. — o executions and the second
loop performs ("“2%"”) executions in the worst case (Algo.
3: line 2 & 5). Therefore, the worst-case complexity of line 6
of the algorithm is O (nc ) Moreover, as established earlier,
the complexity of Algo. 2.2 is O (n.. - |W]| - 0). Therefore, the



overall worst-case complexity of the similarity-based merge
algorithm is O (n.*) + O (n. - [W|- o).

3) Selection Algorithm: The selection algorithm for index
recommendation calculates the cost of the workload for each
element of the candidate set C' and chooses o — 1 elements
with the least cost. The idea behind the algorithm is that if
the selected elements have the least cost for the workload
individually, then the probability that they have the least cost
for the workload altogether is also high (c.f. Algo. 4).

Algorithm 4 Selection Algorithm

1: R = 0; indexList]] = {}; totalCost = 0;
2: for all ¢; € C do
3: I = createSFCIndex(c;);
(W]
4:  totalCost = Z minCost(qr, I);
k=1
index List[i] = (I, totalCost);
end for
sortAscending(index List)
o—1

8 R= U IndexList[i].getIndex();

N

=0
9: return R U createSFCIndex(A);

The selection algorithm begins by creating a SFC-based
index for each attribute combination in C' and calculating the
cost of the workload over the created indices (Algo. 4: line
2-4). The indices along with their costs are stored in a list
(Algo. 4: line 5). The list is later sorted in an ascending order
of the workload cost and the top o — 1 indices are selected
into R (Algo. 4: line 7-8). Finally, an index created from the
combination of all attributes is added to R, and R is returned
as the set of recommended indices (Algo. 4: line 9).

The core loop of the selection algorithm performs n.
executions, where n.. is the size of the candidate set C' (Algo.
4: line 2). Therefore, the complexity of the first complex
statement of the algorithm (Algo. 4: line 4) is calculated as
O (n. - |W|). The second complex statement of the algorithm
is the call to the sortAscending() method (Algo. 4: line 7).
A good sorting algorithm, e.g., mergesort or heapsort, has a
runtime complexity of O (n. log n.) [19]. Hence, the overall
worst-case complexity of the selection algorithm is given as
O (ne - [W|) + O (n. log ne).

VI. EXPERIMENTAL EVALUATIONS

We implemented the prototype of the index recommendation
tool, including the index recommendation algorithms, in Java.
Furthermore, we used an AMD Opteron machine with 4 GB
of RAM to perform the evaluations discussed below.

Since the index recommendation tool presented in this paper
is the first recommendation tool for P2P information discovery
systems, it requires an evaluation using a variety of workload
scenarios. Hence, a fine grained control over parameters such
as total number of queries, query popularity distribution etc., is
needed. Therefore, we use synthetic workloads for evaluating
our tool. Moreover, unlike DBMS where benchmark work-
loads are made available by the TPC [20], no such workload
of MAR queries is universally available for P2P systems.

Workloads from P2P file sharing mostly contain multi-attribute
point queries and are therefore not applicable here.

Using resource discovery in grid computing as a use-case, n
number of attributes from the list shown in Table I are provided
as an input to the workload generator. The workload generator
creates a randomly ordered list of all attribute combinations
from the provided attribute set. The list is then reduced by
keeping only 7% of the items and discarding the rest of them.

Attribute Value Domain Definition

CPU Speed 1.0 - 4.0 CPU clock speed in GHz

Busy CPU 0 - 100 Percentage of CPU(s) in use

Mem Size 1.0 - 8.0 Total Memory size in GB

Mem Used 0 - 100 Percentage of Memory in use

HDD Size 100.0 - 3000.0 Total HDD size in GB
TABLE I

ATTRIBUTE LIST

Next, each combination in the reduced list is assigned a pop-
ularity p using the Zipfian distribution with the parameter a. o
is a decimal value between 0 and 1, where 0 represents uniform
distribution (all combinations have the same popularity) and
1 represents highly skewed distribution (20% combinations
make up 80% of all queries). The popularity of a combination
indicates the number of times a combination is repeated in the
workload queries. The sum of all popularities is equal to m,
where m is the total number of queries in the workload.

A MAR query is created by selecting an attribute combina-
tion from the list and randomly assigning a value range to each
attribute of the selected combination. The assigned range for
each attribute is chosen from the domain of the attribute shown
in Table I. Finally, a workload of queries is created by selecting
each attribute combination p times for value range assignment,
where p is the popularity of the attribute combination.

We use an attribute set of only 5 attributes (c.f. Table I) to
enable the comparison of the naive recommendation algorithm
with other algorithms, because the execution time of the naive
algorithm becomes prohibitively high for a larger attribute set.

A. Performance Evaluation

In this section, we present results from the performance
evaluation of all index recommendation algorithms. For the
sake of comparison, the performance of a system where an
index recommendation tool is not used, i.e., a system with only
a single index created from the combination of all attributes, is
also evaluated. For each of the evaluation scenarios discussed
below, the following two performance metrics are measured:

Total Workload Cost — Cost of all queries in the workload.
The cost here refers to the estimated query cost discussed
in Sec. IV, i.e., we do not consider the real cost of the
workload in a DHT, e.g. the actual number of queried peers.
An evaluation with a simulated DHT network follows later.

Execution Time — Execution time of an algorithm in seconds.
For each point on the graphs displayed in this section, the

corresponding experiment is repeated 10 times with different
workloads, and an average value is plotted.



1) Influence of Varying Attribute Combinations: In this
section, we study the effect of varying the number of attribute
combinations in the workload. The following values are used
for the evaluation parameters described above: m = 10000,
n =75, = (20,30,...,60), « = 0.8, and 0 = 3. The first
four parameters are used by the workload generator to produce
5 different query workloads. Each new workload has a larger
variety of attribute combinations then the previous one. The
last parameter used by the index recommendation algorithms,
is the user-defined limit for the maximum number of indices.

With respect to the total workload cost, the naive algorithm
performs best in all cases because the algorithm recommends
a set of optimal indices for the workload (c.f. Fig. 3(a)). The
scalable algorithm that comes closest to the optimal solution
is the cost-based merge algorithm. The similarity-based merge
algorithm performs slightly worse than the selection algorithm
for the cases where Algo. 2.2 is mostly not executed (for,
r = 20 & 30). In other cases, the selection algorithm shows
worse performance than the similarity-based merge algorithm.
Note that the total workload cost of all index recommendation
algorithms is lower than the case where only a single index
with the combination of all attributes is used.

Although the execution time of the naive algorithm is high-
est compared to the execution times of the other algorithms
(c.f. Fig. 3(b)), it remains almost constant because the search
space of the naive algorithm always includes all possible
attribute combinations (c.f. Sec. V-A). Since the initial search
space of the scalable algorithms only includes the attribute
combinations from the workload (c.f. Sec. V-B), the execution
time of the scalable algorithms grows with increasing number
of unique attribute combinations in the workload.

Fig. 3(b) also shows the limitations of the cost-based
merge algorithm. If the number of attribute combinations is
higher than 60%, the execution time of the cost-based merge
algorithm exceeds the execution time of the naive algorithm.

2) Influence of Varying Number of Indices: In this section,
we demonstrate the effect of a varying user-defined limit for
the maximum number of indices on each index recommenda-
tion algorithm. The parameter values for the evaluation are:
m = 10000, n =5, r =50, « = 0.8, and 0 = (2,3,...,6).

Generally, the total workload cost for each index recom-
mendation algorithm decreases as the user-defined limit for
the maximum number of indices increases (c.f. Fig. 3(c)).
This happens because with increasing number of indices more
queries are able to find less expensive indices for resolution.

The similarity-based merge algorithm produces higher
workload cost than the selection algorithm for cases where
Algo. 2.2 is mostly not executed (Fig. 3(c), for o = 4,5 & 6).
This indicates that the quality of indices produced by the
similarity-based merge algorithm is better in cases where Algo.
2.2 is executed, because Algo. 2.2 selects the final index from
the candidate set based on the total workload cost.

The total execution time of the naive algorithm increases
with increasing number of indices (c.f. Fig. 3(d)), because the
complexity of the algorithm grows with increasing number of
indices (c.f. Sec. V-A). However, the total execution time of
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Fig. 3. Experimental Evaluations

the cost-based merge algorithm and the selection algorithm
remains almost constant, because for these algorithms, the
execution time is mostly dependent on the size of the candidate
set which remains constant throughout the evaluation.

The total execution time of the similarity-based merge
algorithm suddenly decreases between values 3 and 5 for the
maximum number of indices (c.f. Fig. 3(d)). This happens
because in these case Algo. 2.2 is mostly not executed.

3) Influence of Varying Popularity Distribution: In this
section, we illustrate the effect of varying query popularity
distribution on each index recommendation algorithm. The
parameter values for the evaluation are: m = 10000, n = 5,
r =50, a = (0.0,0.1,...,1.0), and o = 3.

We vary the query popularity distribution of the workload
from uniform distribution (o« = 0) to highly skewed distribu-
tion (o = 1). Fig. 3(e) shows the performance of each index
recommendation algorithm with respect to the total workload
cost. The execution time of the algorithms is not shown
because it remains almost constant throughout the evaluation,
showing the same order as in the previous evaluation.

As expected, the naive algorithm yields the least workload
cost in all cases. The scalable algorithm that comes closest to
the naive approach is the cost-based merge algorithms. The
selection algorithm produces the highest workload cost which
slightly decreases as the popularity distribution varies from
uniform to skewed distribution. As with the previous evalu-
ation, the total workload cost of all index recommendation
algorithms is lower than the case where only a single index



with the combination of all attributes is used.

Since all index recommendation algorithms generally try to
include the most popular indices in the final set of recom-
mendations, the total workload cost produced by each index
recommendation algorithm decreases as the query popularity
distribution varies from uniform to skewed distribution.

B. Network Simulation

In this section, we show that the SFC-based cost estima-
tion formula presented in Sec. IV is accurate enough for a
qualitative comparison between different index recommenda-
tion algorithms discussed in Sec. V. In order to do so, we
first evaluate each index recommendation algorithm using the
following parameter values: m = 50, n = 4, » = 50, a = 0.6,
and o = 3. Each evaluation experiment is repeated 5 times
with a different workload. The estimated total workload cost
(c.f. Sec. IV), averaged over 5 runs, calculated by each index
recommendation algorithm, is shown in the following tables:

Algorithm | Total Workload Cost

Naive 1.739 Algor¥thm Total Workload Cost
Selection 2.084

S-Merge 2.038 Single 2.852

C-Merge 1.776 g .

The OID System [11] is then set up in a P2P network
simulation environment. Multiple SFC-based indices, corre-
sponding to the recommendation given by an index recom-
mendation algorithm, are defined in the OID Index Space (c.f.
Sec. IIl). Each query from the same workload used above
is then issued from a random peer in the network. This
experiment is repeated 5 times for each index recommendation
algorithm using the 5 corresponding workloads utilized during
the evaluation above. The following metric is then measured
and averaged over 5 runs for each recommendation algorithm:

Number of Queried Peers — Total number of peers queried
in order to resolve all the queries in the workload.

Fig. 3(f) shows the number of queried peers for each
scalable algorithm (in percentage) relative to the number of
queried peers for the naive algorithm. The relative number of
queried peers are also shown for a single index created using
the combination of all attributes. Fig. 3(f) asserts the same
order of the algorithms as in the tables above, but now with
respect to the actual number of queried peers. This shows that
the cost estimation formula presented in Sec. IV is accurate
enough for a qualitative comparison between different index
recommendation algorithms. Moreover, Fig. 3(f) also shows
that in the best case, the cost-based merge algorithm queries
only 1.5% more peers compared to the naive algorithm.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented an index recommendation tool for
DHT-based information discovery systems. Given a limit for
the maximum number of indices and a workload of queries,
our tool recommends a set of indices that produces close-
to-optimal performance for the workload queries within the
given limit. The index recommendation tool consists of three
scalable index recommendation algorithms: cost-based merge,
similarity-based merge and selection algorithm.

Our evaluations show that there is a trade-off between the
performance and the execution time of the scalable index
recommendation algorithms. With respect to the performance,
the cost-based merge algorithm is the best (only 1.5% worse
than the naive algorithm), generally followed by the similarity-
based merge and the selection algorithms. With respect to the
execution time of the algorithms, the order is reversed.

Our future work focuses on automating the process of index
recommendation and installation in DHT-based information
discovery systems. For that, we need to consider the overhead
of installing an index compared to the benefit of installing
it. Moreover, we will develop a distributed query monitoring
service for gathering the workload of queries in DHTs.
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