
StreamShaper: Coordination Algorithms for

Participatory Mobile Urban Sensing

Harald Weinschrott, Frank Dürr, and Kurt Rothermel

Institute of Parallel and Distributed Systems

Universitätsstraße 38, 70569 Stuttgart, Germany

<weinschrott|duerr|rothermel>@ipvs.uni-stuttgart.de

Abstract—In this paper we introduce mechanisms for auto-
mated mapping of urban areas that provide a virtual sensor
abstraction to the applications. We envision a participatory
system that exploits widely available devices as mobile phones
to cooperatively read environmental conditions as air quality or
noise pollution, and map these measurements to stationary virtual
sensors. We propose spatial and temporal coverage metrics for
measuring the quality of acquired sensor data that reflect the
conditions of urban areas and the uncontrolled movement of
nodes. To achieve quality requirements and efficiency in terms
of energy consumption, this paper presents two algorithms for
coordinating sensing. The first is based on a central control
instance, which assigns sensing tasks to mobile nodes based
on movement predictions. The second algorithm is based on
coordination of mobile nodes in an ad-hoc network. By extensive
simulations, we show that these algorithms achieve a high quality
of readings, which is about 95% of the maximum possible.
Moreover, the algorithms achieve a very high energy efficiency
allowing for drastic savings compared to uncoordinated sensing.

I. INTRODUCTION

In recent years mobile phones have evolved to powerful mobile

sensor platforms that promise to serve as a base for creating

maps of environmental phenomena. They include multiple

sensors such as microphones or GPS-receivers [1], and ex-

ternal sensors can be easily connected to the phones [2], e.g.,

using Bluetooth. At the same time, the interest in contributing

to detailed maps of environmental conditions is growing, as

the increasing number of participants in community-based

projects as OpenStreetMap [3] indicates. These developments

contribute to the emerging field of public urban sensing [1],

[4], which aims for geo-temporal maps created by mobile

users.

Maps of environmental conditions such as noise [5] or air

pollution [6] are valuable when assessing the quality of living

or even health threats in urban areas. While these maps can

be used by citizens to avoid, e.g., regions that are highly noise

polluted, scientists and city administrations can use these maps

to develop counter measures. For example, reroute traffic or

impose speed limits.

The potential of public sensing comes from the large num-

ber of people that cover large urban areas while carrying their

mobile phones. As [7] shows, such mobile sensors achieve a

much higher coverage value compared to the same number of

static sensor nodes. However, the use of these mobile sensors

introduces several challenges. The first challenge is the need to

track the mobile sensors in order to map their measurements.

The higher the required map resolution, the higher is also

the need for tracking accuracy. The second challenge is to

determine the quality, i.e., coverage and accuracy, of the sensed

data that comprises the map. This is crucial since mobility of

sensors is uncontrolled and, therefore, no guarantees about

coverage and data quality are possible. Finally, the impact of

map generation may not interfere with normal operation of

a mobile phone, i.e., the energy consumption for sensing and

tracking of the mobile devices needs to be restricted. Although

Steed and Milton [8] show that using tracked mobile sensors

to make fine-grained maps of environmental effects is feasible,

quality and energy considerations remain open issues.

Our goal are mechanisms for automated mapping of urban

areas that provide a virtual sensor abstraction to the appli-

cations. As [9] points out, such a data-centric abstraction is

needed to decouple applications from the mobile data sources.

Applications specify their quality requirements for virtual

sensors, i.e., for a specific location, and mobile phones assign

the corresponding measurements to the data stream of the

virtual sensor of their location.

Although coverage metrics are available for wireless sensor

networks to specify the quality of sensing, these metrics are

not applicable to urban scenarios with mobile sensors that

move along roads of urban areas. Therefore, our contribu-

tion comprises spatial and temporal coverage metrics that

are especially suited for our scenario. Moreover, this paper

contributes a centralized and a distributed algorithm for pro-

viding measurements with defined quality according to these

metrics, while minimizing the energy consumption of mobile

nodes. In essence, these algorithms schedule physical sensing

according to virtual sensors’ requirements and, hereby, shape

the resulting stream of measurements. Finally, in extensive

simulations, we show the effectiveness and efficiency of these

algorithms.

In the remainder of this paper, we present our system

model (Section II), followed by the model of virtual sensors

(Section III). Then, we present metrics for measuring the

quality of a virtual sensor’s output stream (Section IV), before

we present the algorithms (Section V) for coordinated sensing

with defined quality. Afterwards, we present evaluation setup

and results (Section VI). Finally, we present some related

works (Section VII), before we conclude this paper and give

a brief outlook on future work (Section VIII).

To appear in: Proceedings of the 7th IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS'10), San Francisco, CA, USA, Nov. 2010.
© IEEE 2010

II. SYSTEM MODEL

Our system consists of a reader network, and a central server.

Readers form a network and cooperatively perform sensing

operations. They forward the measurements to their associated

central server where these measurements are stored. Next, we

describe these components and the underlying assumptions in

detail.

The reader network consists of mobile nodes that are carried

by mobile users moving in the service area. Although their

movement is restricted to the street network, it is not controlled

by the system. Nodes have integrated sensors for environ-

mental sensing and a GPS receiver, which allows to derive

trajectory information. Since the number of GPS receivers in

mobile devices as smart phones is constantly growing, we

assume that a large number of mobile devices can participate

in the system. For ad-hoc inter-node communication, nodes

have a wireless communication interface, e.g., 802.11bg. In

Section V-B we will show how this ad-hoc network is used

for the distributed cooperative coordination of sensing. The

transmission range of this interface is denoted by rtx. In

addition, we assume that nodes can communicate with the

central servers in the infrastructure using, for instance, GPRS

or UMTS. In particular, GPRS/UMTS is used for transmitting

measurements from the mobile nodes to the central server.

Mobile nodes are equipped with physical sensors. We refer

to the output of a sensor as measurement Mi. Mi,time is

its acquisition time; Mi,pos is the position of its acquisition.

In order to assign measurements to positions on road seg-

ments, we use the mobile device’s GPS receivers and map

matching techniques such as [10]. We assume such a sensor

to return a measurement instantly when accessed. Note that

this assumption is valid for a wide range of sensors, e.g.,

thermometers or RFID readers. Furthermore, we assume that

a sensor has a defined maximum read range Srange. In case

of an RFID reader, this value is several meters and can be

derived from data sheets. In contrast, in case of a temperature

sensor, an application specifies this value according to its

spatial resolution requirements.

The central server is an infrastructure-based node responsi-

ble for managing the measurements of the mobile readers in

its service area. Moreover, it stores profiles (cf. Section III)

of the virtual sensors in its service area. Further, the central

server coordinates sensing of mobile readers as explained in

Section V-A.

III. VIRTUAL SENSOR

A virtual sensor V is a data-centric abstraction that allows

to access measurements of a certain type Vtype without the

need to refer to physical IDs or addresses of readers. A virtual

sensor is logically associated with a line segment Vsegment,

i.e., a part of a road (cf. Figure 1). Measurements of type Vtype

acquired along this segment are assigned to the corresponding

virtual sensor.

A virtual sensor outputs a stream of virtual readings. A

virtual reading is a collection of measurements acquired by

physical sensors with well-defined spatial and temporal scope.

��������

��	
���
�	��

�	����
�����	
���	�

���

Fig. 1. Virtual Sensor

In detail, the measurements of a virtual reading fulfill the

following requirements. The position Mi,pos of each mea-

surement is on Vsegment. Moreover, the maximum temporal

distance between any pair of measurements of a virtual reading

does not exceed Vduration, which, in analogy to a physical

sensor, is the maximum duration for the virtual sensor to

acquire a virtual reading. Vduration can also be interpreted as

the maximum tolerable time difference between measurements

of one virtual reading to be considered a snapshot of Vsegment.

Since in general multiple measurements are required to cover

the segment, such snapshots cannot be acquired instantly. A

virtual reading is temporally mapped to the point in time when

its acquisition is finished.

We say a virtual reading covers a segment if the distance

of every point on the segment to at least one measurement

is smaller or equal to Srange. This reflects the fact that a

measurement might not capture effects beyond the range of

the respective sensor. For instance, an RFID reader is limited

to a few meters.

In some situations, an application might desire more than

one measurement for each location of a segment. For instance,

to cope with inaccurate and possibly uncalibrated sensors,

redundant measurements at a certain location are necessary to

allow for quality-improving sensor fusion. In case of an audio

sensor, e.g., a high redundancy is needed to allow for filtering

of noise peaks. Therefore, we apply the concept of k-coverage.

A point is k-covered, if there are k measurements within

distance Srange. We say, a segment is k-covered if every point

of it is k-covered. The value of Vk specifies the application

requirement regarding k-coverage of virtual readings.

In analogy to a physical sensor, a virtual sensor has a

sampling rate with a sampling interval of Vsample. Figure 2

shows the relation between Vduration and Vsample.

�������	 �

����� ����� �	��	�
�������	

��
���

Fig. 2. Temporal bounds of a virtual reading

A profile of each virtual sensor is stored at the central server

and disseminated to mobile readers. Such a profile includes the

associated road segment Vsegment, the type of the sensor Vtype,

and the requirement parameters regarding its output stream:

Vduration, Vk, and Vsample.

IV. QUALITY METRICS

Depending on the distribution and movement patterns of

mobile nodes, it cannot be guaranteed that a virtual sensor

meets the performance parameters specified in its profile all

the time. For instance, if no node passes through the segment

of a virtual sensor, no virtual reading can be acquired. In order

to quantify the actual achieved quality of virtual readings,

we introduce two quality metrics for the spatial and temporal

coverage of virtual readings in this section.

A. Spatial coverage

The goal of the conceived spatial coverage metric is to allow

for fine-grained comparisons between the achieved coverage

of a virtual reading and the requested coverage as specified

in the profile of a virtual sensor. Since in particular coverage

“holes” are critical for applications, partial loss of coverage

on a segment may not be outweighed by partially exceeded

coverage requirements. Figure 3 shows several examples of

virtual readings, their requested coverage Vk, and the achieved

coverage. In the left example, measurements are close and

therefore only a small part of the segment is covered compared

to the example in the middle. In the right example, no part

is 2-covered and fulfills the requirement Vk = 2. However, to

allow for fine-grained comparisons, we consider the 1-covered

parts as partially covered.

�

���
���
���
���

	

�
�� 	

�
�� 	

�
��

��
���� ��
���� ���������
��
����

���������
��
����

Fig. 3. Spatial coverage of a virtual reading

The achieved spatial coverage cs(V,R) of a virtual reading

R of a virtual sensor V is defined as follows:

Definition 1. cs(V,R) =
∫
x∈Vsegment

min(k(x), Vk) · dx

In this definition, k(x) defines the coverage of a point x
on the segment of V , i.e., the number of readings that cover

it. Note that in the best case, when the requested coverage

is fulfilled, cs(V,R) = Vk. However, the achieved spatial

coverage cannot exceed Vk.

B. Temporal coverage

The goal of the temporal coverage metric is to compare the

achieved sampling rate of a virtual sensor with the requested

sampling rate based on Vsample. If a virtual reading does

not fulfill the spatial coverage requirements specified by the

application, the sampling rate of valid virtual readings will

be lower than the requested rate Vsample. We say a virtual

reading R is invalid, if its actual spatial coverage is lower

than an application specified threshold cth.

Definition 2. cs(V,R) < cth ↔ R is invalid

In order to quantify the effective reduction of the sampling

rate, we introduce the temporal coverage, which is defined as

follows:

Definition 3. A point in time is temporally covered if at

least one valid virtual reading precedes this point by at most

Vsample.

Definition 4. The achieved temporal coverage of a set of

virtual readings R is the ratio of covered points of time and

the whole monitored time period

V. ALGORITHMS

In this section we describe our approach to implement the

concept of virtual sensors based on mobile readers. With this

approach we aim for two goals. First, we want to provide

applications with sensor data that satisfies the quality require-

ments according to spatial and temporal coverage.

Second, we want to perform sensing as efficiently as pos-

sible. In particular, we want to avoid unnecessary sensing

operations and communication operations to save energy. More

detailed, we want to avoid sensing at times and places that

does not increase quality or that would exceed the quality

requirements.

An approach to access measurements of a specific location

would be to reactively send a query as a geocast message to

the readers close to that location. These nodes then could sense

while they are at that location and send their measurements as

reply. However, this approach has a couple of disadvantages.

First, it introduces a potentially high delay since readers

might take a while until they enter that location. Second, no

readers might be at that location or even close to it, i.e., no

measurement could be acquired. Therefore, our approach is to

proactively sense while readers are on the segment of a virtual

sensor, and collect these measurements in the infrastructure

where applications can access it.

In detail, our approach is based on node selection schemes.

We propose two schemes to adaptively select nodes, based on

Vduration and Vk, for acquiring a virtual reading: centralized

spatial shaper (CSS), and distributed spatial shaper (DSS).

With shaping we refer to the process of forming the output

stream of a virtual sensor. Furthermore, we propose an al-

gorithm, temporal shaper (TS), that determines when a virtual

reading needs to be acquired. Finally, we propose a mechanism

that derives a physical sampling interval for readers according

to the maximum read range Srange of a physical sensor. In

the following sections these algorithms are described in detail.

A. Centralized spatial shaper

The goal of this algorithm is to determine and schedule those

readers for sensing that are needed to fulfill the coverage

requirements, while minimizing the energy consumption of

nodes. This is done by a central instance.

A simple approach to select readers for sensing during a

period Vduration would be to select all readers on a segment.

Such a selection mechanism would yield the maximum pos-

sible coverage. However, this results in redundant measure-

ments if more than Vk trajectories of readers overlap at a

specific location. An improvement to avoid the redundancy

that exceeds Vk, would be to deactivate sensing of a node as

soon as Vk trajectories of nodes overlap. However, position

inaccuracy results in a small overlap of trajectories at such

meeting points between readers. Therefore, and to reduce

coordination overhead of readers, we aim for reducing the

number of readers sensing on a segment.

Therefore, the idea of spatial shaping is, during a period

of Vduration, to select the minimum subset of nodes on

Vsegment for sensing that can achieve the coverage require-

ments (cf. Section V-A1). Formally, we search a minimal

subset S of readers whose combined projected coverage∫
x∈Vsegment

min(
∑

s∈S ks(x), Vk) · dx equals the projected

spatial coverage c(V,R) of the complete set of nodes R. In this

equation, ks(x) is the coverage of a point x on the segment

of V achieved by reader s, i.e., it is one if reader s covers it,

and zero otherwise.

Then, neighboring readers are coordinated to prevent redun-

dant sensing along overlapping trajectories (cf. Section V-A2).

Moreover, progress of readers is monitored and, if neces-

sary, other readers are selected to take over sensing (cf.

Section V-A3). In the following we present a centralized

algorithm for spatial shaping. A distributed algorithm (DSS)

where readers cooperate is presented in Section V-B.

1) Minimum subset selection: Based on its current speed

and the assumption of a uniform movement on the current

segment a node can predict the part of a segment it can

cover within a period of Vduration. We refer to such a part as

fragment f . Each fragment is defined by a start point fstart
and an end point fend. Both are one-dimensional coordinates

relative to the start point of Vsegment. Note that we rely on

one-dimensional coordinates to simplify the presentation of

the algorithm.

The polynomial algorithm for determining the minimal

subset of readers for sensing can be described as follows.

At the beginning of a virtual reading, a central instance

queries all nodes to predict their fragment of the segment they

can cover. If the fragment’s length is larger than zero, they

reply with their fragment and the respective prediction. Based

on all relevant fragments, the minimum subset is computed

according to the Minimum Subset Selection (MSS) algorithm,

as described in Figure 4.

The function minEnd(S, k) returns the right border of

the rightmost part of the segment that is k-covered by the

fragments in S. If there is no such part, it returns zero.

The method remove(T, x) removes all fragments f from T
where fend < x. The function popMaxEnd(T) removes the

fragment f from T with largest fend and returns it.

Basically, the MSS algorithm selects the longest fragments

that allow to achieve the required coverage. Note that also fair

strategies can be implemented that consider, e.g., the remain-

ing energy level of nodes for the MSS algorithm. However,

here we focus on effectiveness, i.e., fulfilling the coverage

requirements. Therefore, the MSS first sorts the fragments

according to fstart in ascending order. Fragments that are

equal in this value, are sorted based on fend in descending

Require: F, k sorted list of fragments, redundancy requirement
S ← ∅ // selected fragments
T ← ∅ // temporary container
for all f in F do

min← minEnd(S, k)
while not empty(T) and min < fstart do

remove(T,min)
if size(T) > 0 then

S ← S ∪ popMaxEnd(T)
min← minEnd(S, k)

end if
end while
if min < fstart then

S ← S ∪ f
else

T ← T ∪ f
end if

end for

Fig. 4. Minimum Subset Selection (MSS) Algorithm

order. The algorithm iterates over the ordered fragments and

checks for each whether the part left of it is k-covered. If this

is the case, the fragment is added to a temporary set T from

which it can be selected afterwards if needed. Such a case

arises if the part left of the current fragment is not covered.

Then, the fragment f with largest fend is selected from T and

added to S. This is repeated until the required coverage is

achieved left of the current fragment or until T is empty. If T
is empty but the coverage is not fulfilled, the current fragment

is added to S.

�

�
� ����	�
�

�

���
����

��� ���

�

�
�
�
�
�

�
��
����
��	�
��

�����
��� ��������

Fig. 5. Generation and ordering of fragments from predicted trajectories

The output of the MSS algorithm determines the nodes to

notify to participate in sensing. Figure 5 shows the trajectories

of several nodes according to their prediction and the resulting

fragments. Dashed are the totally covered fragments, which

can be discarded if Vk is one.

2) Reader coordination: As discussed at the beginning of

this section, the meeting of two selected nodes is critical.

Therefore, nodes with overlapping fragments need to coordi-

nate to avoid redundant measurements. Basically, coordination

is needed to determine for each notified reader where to start

and stop sensing.

Therefore, for each node whose fragment starts at a part

of the segment where the coverage requirement is exceeded,

we determine its coordination partner as the node whose

fragment ends at the respective part. Figure 6 shows eight

selected fragments and the coverage they would achieve if they

would sense uncoordinated. Assuming Vk = 2, the coverage

requirement would be exceeded in three parts of the segment.

In the left part, (2,3) can be easily identified as coordination

partners that need to avoid duplicate sensing where their

trajectories overlap. Similarly, (7,8) are partners in the right

part of the segment. More interesting is the middle part, where

(1,5) and (4,6) are selected as partners. Alternatively, (1,6) and

(4,5) can be selected as partners.

�

�

�

Fig. 6. Determination of coordination partners with Vk = 2

If a node has no coordination partner, start and stop posi-

tions are the predicted ones. Otherwise, coordination partners

need to coordinate sensing where their trajectories overlap.

Figure 7 shows a classification of the coordination problem,

depending on movement patterns of nodes.

�

�

�

�

�

�

������ ����	� ����
��

Fig. 7. Classification of Coordination Problems

The first class is follow, where one node follows another.

In this case nodes simply start to read when notified by the

central instance. However, the following node needs to stop

sensing at the start point of the leading node. The second class

is emerge. In this case two nodes pass by each other. Therefore,

start coordination is necessary. One reader immediately starts

to sense and the other starts as soon as it passes the point where

the first reader started. We say, the second reader emerges from

a covered area and starts to sense. As a heuristic solution we

propose to select the reader with the highest probability to

cover the gap between them. The third class is collide. In

this case, both readers start sensing immediately. However,

coordination is needed to determine the point to stop sensing

of both readers.

Although coordination for classes follow and emerge can

be determined based on the result of the MSS algorithm,

coordination in the case of collide is much more challenging,

and requires constant monitoring of reader movement. The

idea of this coordination is to prevent nodes from sensing

at the same location, and to prevent readers from stopping

sensing while some gap between them is still uncovered. In

the following we describe this mechanism in detail.

Initially, the central server detects the need for collide

coordination and informs the affected readers along with the

notification to start sensing. Based on their predictions, the

readers compute the collision point and consider it as point

where to stop sensing. However, as a reader’s movement

deviates from its prediction, the actual collision point deviates

from the computed. To update the prediction at the other

reader with every change of a reader’s speed leads to high

communication overhead.

Therefore, we propose to send updates only in two cases.

First, if a reader is slower than predicted, it notifies the other

reader before this would stop sensing. Hereby, a new collision

point can be computed, and the remaining gap between the

readers is divided and re-assigned to them. Second, if a reader

is faster than predicted, it updates before it passes into the

section of the other reader. Hereby, a new collision point

is computed and the gap between the nodes is reassigned

accordingly. Both cases are depicted in Figure 8.

�

��������

��������

	

�

	�������

��������

�����	���
���
��	 ��	����
���
��	

�
��	�

�
�

Fig. 8. Update in collide coordination

3) Progress control: Without a limitation of the period

Vduration of a virtual reading, the above described mechanisms

would be sufficient for coordination. However, if a reader

cannot cover its fragment within the available read period, a re-

assignment of the uncovered fragment needs to be performed.

For this purpose, we propose a mechanism similar to collide

coordination.

According to the different coordination classes, each reader

knows a fixed or variable point where to stop sensing. If

its current prediction does not allow a reader to completely

cover its fragment in time, it updates its prediction with the

central server. Note that updates may be deferred to allow for

speed fluctuations and to reduce cost for updating. However,

deferring updates increases the risk for parts of the segment

to remain uncovered. This is the case when a reader would

have been able to take over sensing if it was informed earlier.

Similarly, if a node enters a segment during Vduration or if a

node’s movement deviates from its prediction in a way that

allows it to cover a part of the segment that was not assigned

in the MSS, it updates its prediction with the central server.

Receiving a new prediction or an updated prediction, the

server then initiates the minimum subset selection algorithm

on the respective part of the segment, and notifies suitable

readers to start sensing. Note that the previous results of the

MSS are not discarded. In contrast, nodes that were selected

for sensing, are now pre-selected in the MSS.

When a reader fails that is assigned a fragment for sensing,

it may not update its prediction and measurements to the

central server. To prevent this from happening, we propose

an optional extension to the basic progress control mechanism

that can be applied in scenarios with a high rate of reader

failures. Here, readers send periodic progress reports including

their measurements to the central server. If the server fails

to receive a progress report it assumes the respective reader

to have failed. In this case it initiates the minimum subset

selection algorithm on the scope of the remaining fragment of

the failed reader.

B. Distributed spatial shaper

In the previous section, a centralized spatial shaper algorithm

was introduced. Although it is effective, it depends on the

availability of a permanent connection between readers and a

central server. Although GPRS or UMTS networks are widely

available today, their energy consumption for communicating

a message exceeds that of WiFi, and usage of these networks

involves cost. Since the MSS algorithm only depends on infor-

mation of neighboring readers and the respective fragments,

we present a distributed spatial shaper (DSS) algorithm that is

based on reader cooperation in the area of a virtual sensor in

an ad-hoc network.

In essence, this algorithm consists of the same parts as CSS.

Especially, the minimum subset selection (MSS) algorithm, as

presented in the previous section (cf. Figure 4), is an essential

part of the DSS. However, now we do not consider global

knowledge. Instead, in an initial phase, readers exchange

their predictions with neighbors. In a second phase, they

cooperatively select the readers for sensing. Then, the readers

coordinate sensing and perform a cooperative progress control.

1) Prediction exchange: The idea of the initial phase of

DSS is to distribute local movement predictions of nodes on

a segment among each other as a base for reader selection.

A central server initiates a virtual reading on a segment

by informing one or more readers on the segment. About

details on temporal shaping see Section V-C. When a reader is

informed that a new reading needs to be acquired, it propagates

this information to neighboring nodes by broadcasting its

prediction in the ad-hoc network. First, this triggers other

readers to participate in the virtual reading. Second, it serves

as a means to disseminate predictions. Every node receiving

such a notification for its current segment, either from a

central server or a neighboring node, updates its local view

on neighboring fragments. Then, it predicts the fragment it

can cover during Vduration and broadcasts this together with

the locally known fragments of other nodes. At the end of this

phase every node has a local view on the fragments of nodes

in the segment.

An optimization to reduce message overhead is to broadcast

only if a node is selected by MSS on its local view on

fragments. Since each reader broadcasts at most one message,

this algorithm has, in the worst case, a linear message com-

plexity. However, since readers suppress broadcasting if their

fragment is covered, the number of messages is on average

much smaller. Due to its limited message complexity, this

phase is rapidly completed. We assume node movement during

that time frame to be neglectable.

2) Cooperative reader selection: The idea of the second

phase is that nodes achieve a consistent view on those frag-

ments that are relevant for coordination, i.e., neighboring

fragments. Based on the exchange of fragment information in

the previous phase, nodes establish communication routes to

nodes of other fragments based on the reverse path. Based on

this routing information, nodes of neighboring fragments can

communicate. Although, due to mobility, these routes break

with time, communication shortly after route establishment is

likely to succeed. This communication is needed to initiate

reader selection.

�

�

�

� � �
����	
�	�
���
��
��

��
����	����

���������

�����������

���������

�����������
�	�

����������	���� ��

�	��!���� ��

������

������

� �

���
���

������

������

Fig. 9. Distributed cooperation: prediction exchange and reader selection

Due to possible inconsistent local views of the nodes, the

goal of this phase is to consistently select readers. Therefore,

each reader that locally decided to participate in sensing,

contacts the reader of its left neighbor fragment. Note that

the definition to contact the left neighbor is arbitrary, and

does not affect performance of the mechanism. When a reader

contacts its partner, it assumes, based on its local knowledge,

both readers are selected for sensing. However, due to partial

local knowledge, this might be false. If the receiver locally can

determine that the sender or itself is not selected for sensing,

it notifies the sender accordingly by replying with its local

knowledge about fragments. This process is repeated until each

neighbor relation is verified. When this is achieved, consistent

reader selection is achieved, and each reader knows its left

neighbor fragment.

Figure 9 shows an example with three nodes on a segment,

where, if Vk = 1, only readers 1 and 3 need to sense. In the

example, reader 2 initiates the prediction exchange. Nodes 1

and 3 receive the fragment of reader 2. They also broadcast

the fragments of their local view, and reader 2 learns from

fragments 1 and 3. In the reader selection phase, reader 3 is

the only one that has a left neighbor based on its local view.

It contacts this neighbor (reader 2), which however computes

that it does not need to coordinate with reader 3. It replies

with its local view. Based on this reply, reader 3 then again

determines its left neighbor and contacts it to initiate collide

coordination.

3) Cooperative reader coordination: The idea of the reader

coordination is to avoid redundant sensing due to overlapping

fragments, which is needed between readers of neighboring

fragments. It is performed according to the classification in

Section V-A. In case of follow and emerge, coordination

partners determine start and end points for sensing based on

the consistent view on their fragments after reader selection.

In contrast, collide coordination requires constant monitor-

ing of movement. Since routes may break due to movement, a

reader addresses its prediction update directly to the coordina-

tion partner. The idea of this is that coordination is only needed

if neighboring nodes are close. If the coordination partner

is in transmission range it receives the message, computes a

new meeting point and replies. Otherwise, the delivery of the

update is not crucial, since there is no risk of overlapping

trajectories. However, in this case, the sender needs to re-

send an update regularly. The sender derives the interval based

on an estimation of the receiver’s relative speed and on the

communication range. Note that this approach does not require

a routing mechanism.

4) Cooperative progress control: The idea of the progress

control is to monitor the progress of sensing and, if this

deviates from the predicted, to assign sensing tasks to other

nodes. In essence, when a reader’s prediction indicates that it

cannot cover its fragment in time, other readers need to take

over sensing. Therefore, it broadcasts its current prediction, its

fragment, and its neighboring fragments to its direct commu-

nication neighbors. With this information a cooperative MSS

mechanism is initiated in the scope of the fragment, i.e, nodes

whose current predictions overlap the unassigned part of the

segment exchange their predictions. Similarly, when a node’s

prediction indicates that it can cover an unassigned part of the

segment or if a new node enters the segment, it broadcasts its

current prediction, its fragment, and its neighboring fragments

to its direct neighbors to initiate the MSS mechanism.

When a reader fails, it typically cannot initiate an MSS

beforehand to let other readers take over sensing. Therefore,

we propose an optional mechanism for monitoring readers

based on periodic progress reports. Such a progress report

includes the position and the fragment associated to the reader.

It is broadcasted to the direct neighbors. A reader monitors

those readers whose fragments overlap with its own. Based

on the predicted current position of the monitored reader, it

determines its probability to be in communication range. If it

has a high probability to be in range, and if it fails to receive

a progress report it assumes the other reader to have failed. In

that case, it initiates a cooperative reader selection.

C. Temporal shaper

The basic idea of temporal shaping is to schedule virtual

readings according to the Vsample parameter. This requires

knowledge of the time of the last virtual reading. Several

approaches are conceivable to manage this information. One

approach can be to let the central server, which anyway stores

the updates, notify readers close to the segment of the virtual

server about the start of a new virtual reading. This approach

is especially suited for scenarios where the sampling interval

is rather large, thus managing the time of the last virtual

reading cooperatively at the mobile nodes would be unreliable.

However, alternatively, the readers can store the time of virtual

readings and periodically propagate this information to other

nodes in the vicinity of the sensor.

Both approaches are feasible, but in this paper we assume

central temporal shaping controlled by the central server that

initiates virtual readings according to the temporal shaping

requirement by informing mobile nodes. For details on the

cooperative approach, we refer to our previous work [11].

D. Resolution shaper

The purpose of the resolution shaper is to adjust the physical

sampling interval such that Srange is respected. Basically, the

resolution shaper needs to omit sensing if its position is within

an area where it already acquired measurements. Moreover, it

needs to adjust the physical sampling interval according to its

speed v in a way that it covers a distance of 2·Srange between

two measurements. For this purpose, a reader computes its

sampling interval δ = 2 · Srange/v. Readers adjust δ with

every update of their positioning system.

Since positioning has a high energy consumption, it is

essential to deactivate it if not needed. In the sensing area,

between start and end point of sensing, a reader needs contin-

uous positioning. However, outside that area, it may deactivate

positioning. We propose a positioning interval depending on

the distance a node may move before it enters its sensing area

or before it enters a different segment. Based on this distance

and the maximum speed, a node can compute the time to

deactivate positioning.

VI. EVALUATION

In this section we present our simulation model followed by

the results of the evaluation of our algorithms. The algorithms

were implemented for the network simulator ns-2. In the

following we refer to the following implementations:

• CSS: This implementation is based on the CSS algorithm

(see Section V-A). A central instance coordinates sensing

of mobile nodes.

• DSS: In contrast to the CSS implementation, DSS is

based on the distributed stream shaping algorithm (see

Section V-B), where mobile nodes coordinate sensing in

an ad-hoc network. The central instance is only respon-

sible for managing the data read by mobile nodes.

• Isolated: A simple isolated approach where all nodes

sense independently. A node starts sensing when it en-

ters a segment for which a virtual reading needs to

be acquired; it stops sensing as soon as it leaves the

segment or as soon as the period of the virtual reading is

finished. This implementation presents the worst case for

redundant sensing, but also the best case for coverage.

We implemented our algorithms using the 802.11 extension

of ns-2 with the transmission range rtx = 100m. The nodes

move at pedestrian speed (between 0.7m/s and 1.8m/s)

according to the UDEL pedestrian mobility model [12] on the

street graph of a nine block section of Chicago. Movement

patterns, as in reality, heavily depend on the simulated hour

of the day. Movement predictions are done based on the

current node speed by assuming uniform node movement

along the current segment of a node. Although the simulated

section is relatively small compared to the size of a city, it

is sufficiently large for this evaluation since virtual sensors

cover only road segments. More important as the size of the

service area is the effect of node density which we evaluate

in a wide range. Note that only a small fraction of the nodes

moves simultaneously on the road network. Each edge of the

street graph is assigned a virtual sensor. Each simulation is

performed 10 times and lasts 1800 seconds. During that time,

a virtual reading is acquired every 100 seconds. By default,

Vduration is 60 seconds, and Vk is 2. Srange is set to 0.5 m.

With this small value, the performance of the algorithms is

evaluated under most stressing conditions. Since the temporal

shaper (cf. Section V-C) is already discussed in detail in

previous work [11], we do not consider energy cost introduced

by temporal shaping through notifying nodes to start a virtual

reading.

TABLE I
ENERGY MODEL

Component Energy [mJ]

GPS [13]

Position Fix 75

RFID [14]

Read 80

802.11b at 1 Mbps [15]

(broadcast rate)

Send (1000 Bit) 2

Receive (1000 Bit) 1

GPRS [16]

Send (1000 Bit) 80

Receive (1000 Bit) 40

To measure the energy consumption of the mobile nodes

we rely on the energy model given in TABLE I.

A. Effectiveness

In this section we evaluate the effectiveness of the algorithms

CSS, DSS and Isolated in terms of achieved spatial coverage as

defined in Section IV-A. As a performance metric, we compute

the average spatial coverage cs(V,R) of the virtual readings

acquired during a simulation run.

At first, we evaluate the performance of the algorithms

simulating node mobility at different hours of the day. We plot

the spatial coverage during the course of a day in Figure 10.

In this scenario, the number of nodes in the simulation is

15000. Note that only a small fraction of these nodes moves on

roads during simulation time. And this fraction depends on the

hour of the day. At rush hour, e.g., at 16:00 o’clock, Isolated

achieves its peak coverage value. However, as the coverage

value of about 1.1 indicates, the node density is still too low to

achieve the requested coverage of 2. As expected, the coverage

highly varies during the course of the day. However, CSS and

DSS show a similar behavior as Isolated resulting in a slightly

lower coverage value. This gap of about 6% is due to the fact

that Isolated starts sensing as soon as a node enters a segment.

In contrast, CSS and DSS start sensing based on movement

predictions. However, e.g., at a crossing, such predictions can

only be determined after the node follows a road segment for

some time. Therefore, during that time, sensing is deactivated,

and the coverage is reduced. The coverage-loss depends on

the position uncertainty, which is 5 m in our simulations. A

node misses some measurements when the uncertainty is high

compared to Srange. If the uncertainty is low, or if Srange

is high, a node does not move far compared to Srange until

it can start sensing. Therefore, it does not miss to capture

measurements.

Figure 11 plots the achieved spatial coverage over Vk at

16:00 o’clock. As in the previous scenario, the number of

nodes is set to 15000. The Isolated approach achieves the

maximum possible spatial coverage. CSS and DSS achieve

a coverage value that is about 5% lower. This gap is, as in

the previous paragraph, due to the delay introduced by the

movement prediction. However, as the figure shows, this gap

is independent from Vk, i.e., CSS and DSS are effective for a

wide range of coverage values. The achieved coverage value

is always below the requested coverage Vk. This shows that

some segments are not populated enough to be covered by

nodes, while others are highly populated and a much higher

coverage value as the requested could be achieved.

The same small loss of coverage can also be seen in

Figure 12. Here, the spatial coverage is depicted for varying

numbers of nodes. As the figure shows, this loss is independent

of the node density. This shows that CSS and DSS are effective

independent from the node density.

Moreover, we investigated the effectiveness of the algo-

rithms for varying values of Vduration. The results confirm the

presented results, in that DSS and CSS are also effective in-

dependent from Vduration. However, due to space limitations,

we omit the respective figure.

B. Efficiency

In this section we evaluate the efficiency of the algorithms

in terms of energy consumption (EC). The base to determine

the energy consumption of a node is Table I. By default, we

assume a sensor with a high energy consumption – an RFID

reader. The EC is computed as the average energy a node

spends for positioning, communication, and sensing. Since

mapping requires continuous positioning during sensing, and

due to the high share of positioning in the overall energy

consumption, even usage of low power sensors would result

in similar EC values as the following.

Figure 13 plots the average energy consumption per node

and hour in the course of a day. In this scenario, Vk for each

virtual sensor is set to 2, and the number of nodes in the

simulation is 15000. Basically, this figure shows similarities

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 7 10 13 16 19 22

S
p
a
t
i
a
l

C
o
v
e
r
a
g
e

Hour of Day

DSS
CSS

Isolated

Fig. 10. cs in the course of day

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5

S
p
a
t
i
a
l

C
o
v
e
r
a
g
e

Coverage Value k

DSS
CSS

Isolated

Fig. 11. cs depending on requested coverage

 0.4

 0.6

 0.8

 1

 1.2

 5000 10000 15000 20000

S
p
a
t
i
a
l

C
o
v
e
r
a
g
e

Number of Nodes

DSS
CSS

Isolated

Fig. 12. cs depending on number of nodes

 0

 2

 4

 6

 8

 10

 12

 14

 7 10 13 16 19 22

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

p
e
r

N
o
d
e

[
J
/
h
]

Hour of Day

DSS
CSS

Isolated

Fig. 13. EC in the course of day

 4

 6

 8

 10

 12

 14

 16

 18

 20

 30 60 90

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

p
e
r

N
o
d
e

[
J
/
h
]

Duration of Virtual Reading [s]

DSS
CSS

Isolated

Fig. 14. EC depending on Vduration

 6

 7

 8

 9

 10

 11

 12

 13

 14

 5000 10000 15000 20000

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

p
e
r

N
o
d
e

[
J
/
h
]

Number of Nodes

DSS
CSS

Isolated

Fig. 15. EC depending on number of nodes

to Figure 10. Depending on the hour of the day, Isolated

achieves different coverage values and, related to the coverage,

different values for the energy consumption. However, energy

consumption does not always reflect the achieved coverage.

For instance, cs at 7:00 o’clock is lower than at 10:00 o’clock,

while the EC at 7:00 o’clock is higher compared to 10:00

o’clock. In essence, this is the result of different mobility

patterns. At 7:00 o’clock nodes are more likely to move

along the same paths. In such a scenario, a higher fraction

of measurements is redundant and could be omitted. This can

be seen in the EC values of DSS and CSS. Both algorithms

achieve to reduce the EC by a similar amount. In case of highly

redundant movement patterns of nodes, i.e., at 7:00 o’clock,

the savings are almost 50%, while at 10:00 o’clock, the savings

are only about 20%. At 22:00 o’clock, when only few nodes

move along the roads, the possible savings are minimal. In

this case, EC of all three approaches is nearly equal.

Interestingly, the energy consumption of DSS and CSS are

nearly identical. While the energy consumption for commu-

nication are much higher in case of CSS due to GPRS, DSS

suffers from redundant sensing. This redundancy is based on

the fact that nodes can only coordinate ad-hoc if they are in

transmission range.

As Figure 14 shows, this effect increases with larger

Vduration. This is because nodes in DSS only participate in

the coordination of their current segment.

Finally, Figure 15 plots the EC for several numbers of nodes

in the network. As expected, Isolated shows an energy con-

sumption that is independent of the node density, since each

node independently senses without considering other nodes. In

contrast, DSS and CSS benefit from increasing node density by

preventing unnecessary sensing and, therefore, allow to reduce

the energy consumption per node on average. Interestingly, the

difference between DSS and CSS is decreasing with increasing

node density. This is due to the improved ability of nodes for

ad-hoc coordination. Moreover, with increasing node density,

savings of DSS and CSS compared to Isolated increase. High

node densities promise even higher energy savings for DSS

and CSS compared to Isolated.

VII. RELATED WORK

Public sensing is currently an active topic in various research

fields. In the field of sensor networks, focus is mainly set

on the autonomous monitoring of environmental conditions in

inaccessible areas. However, projects such as [17] use sensor

nodes for public sensing. Sensor nodes imply high cost for

deploying dense large-scale sensor networks. Moreover, they

suffer from the battery depletion problem. In our previous

work [11] we propose to deploy simple and cheap RFID-based

sensors at points of interest, which are then read by passing

mobile devices with integrated RFID readers. Although this

approaches alleviates these problems, it still depends on the

deployment of sensor nodes.

Another set of approaches uses instrumented mobile devices

for sensing in urban areas. Gellersen et al. [18] propose the

integration of sensors into mobile devices to achieve direct

context awareness of these devices. However, the locally col-

lected sensor data is not shared between devices. In contrast,

[19], [2] use mobile devices to collect shared sensor data.

Rudman et al. [19] attach sensors for monitoring air pollution

to a tablet PC. MobGeoSen [2] is based on the integration

of sensors to mobile phones, which are carried by a large

number of people. Although [8] shows that using tracked

mobile sensors to make fine-grained maps of environmental

effects is feasible, these approaches do not consider quality-

aware sensing and energy considerations remain open issues.

One interesting approach that deals with these issues is [20].

However, it lacks distributed coordination algorithms for mo-

bile nodes. To the best of our knowledge, our approach is the

first to consider distributed coordination of sensing to achieve

energy-efficient and quality-aware sensing.

Similar to our approach, [9] proposes virtual sensors as

a data-centric abstraction for applications, when querying

measurements of mobile devices. However, it lacks suitable

metrics for measuring the quality of environmental maps of

urban areas. In the field of sensor networks, a variety of

coverage metrics has been proposed [21]. However, these ap-

proaches consider the coverage of planar areas with stationary

or controlled mobile sensors.

VIII. CONCLUSIONS

This paper introduces mechanisms for automated mapping

of urban areas that provide a virtual sensor abstraction to

the applications. In a participatory system, widely available

devices as mobile phones read environmental conditions as

air quality or noise pollution, and map these measurements to

stationary virtual sensors. We proposed spatial and temporal

coverage metrics for measuring the quality of measurements

and we presented two algorithms for coordinated sensing in

order to achieve the quality requirements, while minimizing

the average energy consumption of nodes. By simulations,

we showed that these algorithms achieve about 95% of the

maximum possible coverage. Moreover, the algorithms achieve

a very high energy efficiency allowing for drastic savings up

to 50% compared to uncoordinated sensing.

In future work we plan to include mechanisms for increas-

ing the fairness of sensing, i.e., to consider the individual

energy consumption of nodes rather than the average energy

consumption. Alternatively, we plan to incorporate strategies

that consider available resources of nodes.

ACKNOWLEDGEMENTS

This work is partially funded by the German Research Foun-

dation within the Collaborative Research Center 627 (Nexus).

REFERENCES

[1] D. Cuff, M. Hansen, and J. Kang, “Urban sensing: out of the woods,”
Commun. ACM, vol. 51, no. 3, pp. 24–33, 2008.

[2] E. Kanjo, S. Benford, M. Paxton, A. Chamberlain, D. S. Fraser,
D. Woodgate, D. Crellin, and A. Woolard, “Mobgeosen: facilitating per-
sonal geosensor data collection and visualization using mobile phones,”
Personal Ubiquitous Comput., vol. 12, no. 8, pp. 599–607, 2008.

[3] M. M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.

[4] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,
H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, “The rise of
people-centric sensing,” IEEE Internet Computing, vol. 12, no. 4, pp.
12–21, 2008.

[5] N. Maisonneuve, M. Stevens, M. E. Niessen, P. Hanappe, and L. Steels,
“Citizen noise pollution monitoring,” in dg.o ’09: Proceedings of the

10th Annual International Conference on Digital Government Research.
Digital Government Society of North America, 2009, pp. 96–103.

[6] S. Kim and E. Paulos, “inair: Measuring and visualizing indoor air
quality,” in Ubicomp 2009, 2009.

[7] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility improves
coverage of sensor networks,” in MobiHoc ’05: Proceedings of the

6th ACM international symposium on Mobile ad hoc networking and

computing. New York, NY, USA: ACM, 2005, pp. 300–308.

[8] A. Steed and R. Milton, “Using tracked mobile sensors to make maps
of environmental effects,” Personal Ubiquitous Comput., vol. 12, no. 4,
pp. 331–342, 2008.

[9] A. Kansal and F. Zhao, “Location and mobility in a sensor network
of mobile phones,” in NOSSDAV 2007: 17th International workshop on

Network and Operating Systems Support for Digital Audio & Video,
June 2007.

[10] A. Civilis, C. S. Jensen, J. Nenortaite, and S. Pakalnis, “Efficient tracking
of moving objects with precision guarantees,” in Proc. of the First

Annual Intl Conf. on Mobile and Ubiquitous Systems (MobiQuitous

2004), Boston, Massachusetts, USA, August 2004, pp. 164–173.

[11] H. Weinschrott, F. Dürr, and K. Rothermel, “Efficient capturing of envi-
ronmental data with mobile rfid readers,” in Proceedings of International

Conference on Mobile Data Management, Taipei, Taiwan, May 2009.

[12] J. Kim, V. Sridhara, and S. Bohacek, “Realistic mobility simulation of
urban mesh networks,” Ad Hoc Netw., vol. 7, no. 2, pp. 411–430, 2009.

[13] Navman, Apr. 2010. [Online]. Available: www.global
time.com.cn/attachment/30DataSheet 060616105012.pdf

[14] Skyetek, Apr. 2010. [Online]. Available: www.skyete
k.com/Portals/0/Documents/Products/SkyeModule M9 D ataSheet.pdf

[15] Summitdatacom, September 2008. [Online]. Available: www.sum
mitdatacom.com/Documents/SDC-CF10G Product Brief 200803.pdf

[16] B. Gedik and L. Liu, “Mobieyes: A distributed location monitoring
service using moving location queries,” IEEE Trans. on Mob. Comp.,
vol. 5, no. 10, pp. 1384–1402, 2006.

[17] J. Beutel, O. Kasten, F. Mattern, K. Roemer, F. Siegemund, and
L. Thiele, “Prototyping wireless sensor network applications with btn-
odes,” in Proc. 1st Euro. Workshop on Sensor Networks (EWSN 2004).
Springer, 2004, pp. 323–338.

[18] H. W. Gellersen, A. Schmidt, and M. Beigl, “Multi-sensor context-
awareness in mobile devices and smart artifacts,” Mob. Netw. Appl.,
vol. 7, no. 5, pp. 341–351, 2002.

[19] P. Rudman, S. North, and M. Chalmers, “Mobile pollution mapping
in the city,” in Proc. UK-UbiNet workshop on eScience and ubicomp,

Edinburgh, May 2005.

[20] A. Krause, E. Horvitz, A. Kansal, F. Zhao, “Toward Community
Sensing,” in Proc. of Information Processing in Sensor Networks.,
Washington, DC, USA, 2008.

[21] P. Brass, “Bounds on coverage and target detection capabilities for
models of networks of mobile sensors,” ACM Trans. Sen. Netw., vol. 3,
no. 2, p. 9, 2007.

