StreamShaper: Coordination Algorithms for
Participatory Mobile Urban Sensing

Harald Weinschrott, Frank Diirr, and Kurt Rothermel
Institute of Parallel and Distributed Systems
Universitatsstrae 38, 70569 Stuttgart, Germany
<weinschrott|duerr|rothermel > @ipvs.uni-stuttgart.de

Abstract—In this paper we introduce mechanisms for auto-
mated mapping of urban areas that provide a virtual sensor
abstraction to the applications. We envision a participatory
system that exploits widely available devices as mobile phones
to cooperatively read environmental conditions as air quality or
noise pollution, and map these measurements to stationary virtual
sensors. We propose spatial and temporal coverage metrics for
measuring the quality of acquired sensor data that reflect the
conditions of urban areas and the uncontrolled movement of
nodes. To achieve quality requirements and efficiency in terms
of energy consumption, this paper presents two algorithms for
coordinating sensing. The first is based on a central control
instance, which assigns sensing tasks to mobile nodes based
on movement predictions. The second algorithm is based on
coordination of mobile nodes in an ad-hoc network. By extensive
simulations, we show that these algorithms achieve a high quality
of readings, which is about 95% of the maximum possible.
Moreover, the algorithms achieve a very high energy efficiency
allowing for drastic savings compared to uncoordinated sensing.

I. INTRODUCTION

In recent years mobile phones have evolved to powerful mobile
sensor platforms that promise to serve as a base for creating
maps of environmental phenomena. They include multiple
sensors such as microphones or GPS-receivers [1], and ex-
ternal sensors can be easily connected to the phones [2], e.g.,
using Bluetooth. At the same time, the interest in contributing
to detailed maps of environmental conditions is growing, as
the increasing number of participants in community-based
projects as OpenStreetMap [3] indicates. These developments
contribute to the emerging field of public urban sensing [1],
[4], which aims for geo-temporal maps created by mobile
users.

Maps of environmental conditions such as noise [5] or air
pollution [6] are valuable when assessing the quality of living
or even health threats in urban areas. While these maps can
be used by citizens to avoid, e.g., regions that are highly noise
polluted, scientists and city administrations can use these maps
to develop counter measures. For example, reroute traffic or
impose speed limits.

The potential of public sensing comes from the large num-
ber of people that cover large urban areas while carrying their
mobile phones. As [7] shows, such mobile sensors achieve a
much higher coverage value compared to the same number of
static sensor nodes. However, the use of these mobile sensors
introduces several challenges. The first challenge is the need to

track the mobile sensors in order to map their measurements.
The higher the required map resolution, the higher is also
the need for tracking accuracy. The second challenge is to
determine the quality, i.e., coverage and accuracy, of the sensed
data that comprises the map. This is crucial since mobility of
sensors is uncontrolled and, therefore, no guarantees about
coverage and data quality are possible. Finally, the impact of
map generation may not interfere with normal operation of
a mobile phone, i.e., the energy consumption for sensing and
tracking of the mobile devices needs to be restricted. Although
Steed and Milton [8] show that using tracked mobile sensors
to make fine-grained maps of environmental effects is feasible,
quality and energy considerations remain open issues.

Our goal are mechanisms for automated mapping of urban
areas that provide a virtual sensor abstraction to the appli-
cations. As [9] points out, such a data-centric abstraction is
needed to decouple applications from the mobile data sources.
Applications specify their quality requirements for virtual
sensors, i.e., for a specific location, and mobile phones assign
the corresponding measurements to the data stream of the
virtual sensor of their location.

Although coverage metrics are available for wireless sensor
networks to specify the quality of sensing, these metrics are
not applicable to urban scenarios with mobile sensors that
move along roads of urban areas. Therefore, our contribu-
tion comprises spatial and temporal coverage metrics that
are especially suited for our scenario. Moreover, this paper
contributes a centralized and a distributed algorithm for pro-
viding measurements with defined quality according to these
metrics, while minimizing the energy consumption of mobile
nodes. In essence, these algorithms schedule physical sensing
according to virtual sensors’ requirements and, hereby, shape
the resulting stream of measurements. Finally, in extensive
simulations, we show the effectiveness and efficiency of these
algorithms.

In the remainder of this paper, we present our system
model (Section II), followed by the model of virtual sensors
(Section III). Then, we present metrics for measuring the
quality of a virtual sensor’s output stream (Section IV), before
we present the algorithms (Section V) for coordinated sensing
with defined quality. Afterwards, we present evaluation setup
and results (Section VI). Finally, we present some related
works (Section VII), before we conclude this paper and give
a brief outlook on future work (Section VIII).

© IEEE 2010

To appear in: Proceedings of the 7th IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS'10), San Francisco, CA, USA, Nov. 2010.

II. SYSTEM MODEL

Our system consists of a reader network, and a central server.
Readers form a network and cooperatively perform sensing
operations. They forward the measurements to their associated
central server where these measurements are stored. Next, we
describe these components and the underlying assumptions in
detail.

The reader network consists of mobile nodes that are carried
by mobile users moving in the service area. Although their
movement is restricted to the street network, it is not controlled
by the system. Nodes have integrated sensors for environ-
mental sensing and a GPS receiver, which allows to derive
trajectory information. Since the number of GPS receivers in
mobile devices as smart phones is constantly growing, we
assume that a large number of mobile devices can participate
in the system. For ad-hoc inter-node communication, nodes
have a wireless communication interface, e.g., 802.11bg. In
Section V-B we will show how this ad-hoc network is used
for the distributed cooperative coordination of sensing. The
transmission range of this interface is denoted by 74,. In
addition, we assume that nodes can communicate with the
central servers in the infrastructure using, for instance, GPRS
or UMTS. In particular, GPRS/UMTS is used for transmitting
measurements from the mobile nodes to the central server.

Mobile nodes are equipped with physical sensors. We refer
to the output of a sensor as measurement M;. M; i is
its acquisition time; M; ;.5 is the position of its acquisition.
In order to assign measurements to positions on road seg-
ments, we use the mobile device’s GPS receivers and map
matching techniques such as [10]. We assume such a sensor
to return a measurement instantly when accessed. Note that
this assumption is valid for a wide range of sensors, e.g.,
thermometers or RFID readers. Furthermore, we assume that
a sensor has a defined maximum read range Syqnge. In case
of an RFID reader, this value is several meters and can be
derived from data sheets. In contrast, in case of a temperature
sensor, an application specifies this value according to its
spatial resolution requirements.

The central server is an infrastructure-based node responsi-
ble for managing the measurements of the mobile readers in
its service area. Moreover, it stores profiles (cf. Section III)
of the virtual sensors in its service area. Further, the central
server coordinates sensing of mobile readers as explained in
Section V-A.

III. VIRTUAL SENSOR

A virtual sensor V' is a data-centric abstraction that allows
to access measurements of a certain type Vi, without the
need to refer to physical IDs or addresses of readers. A virtual
sensor is logically associated with a line segment Vicgment,
i.e., a part of a road (cf. Figure 1). Measurements of type Viype
acquired along this segment are assigned to the corresponding
virtual sensor.

A virtual sensor outputs a stream of virtual readings. A
virtual reading is a collection of measurements acquired by
physical sensors with well-defined spatial and temporal scope.

. end
virtual sensor

AN
T Ve

service area

Fig. 1. Virtual Sensor

In detail, the measurements of a virtual reading fulfill the
following requirements. The position M; ,,s of each mea-
surement iS on Viegment. Moreover, the maximum temporal
distance between any pair of measurements of a virtual reading
does not exceed Vyuration, Which, in analogy to a physical
sensor, is the maximum duration for the virtual sensor to
acquire a virtual reading. Vjyrqtion can also be interpreted as
the maximum tolerable time difference between measurements
of one virtual reading to be considered a snapshot of Vcgment-
Since in general multiple measurements are required to cover
the segment, such snapshots cannot be acquired instantly. A
virtual reading is temporally mapped to the point in time when
its acquisition is finished.

We say a virtual reading covers a segment if the distance
of every point on the segment to at least one measurement
is smaller or equal to S,qnge. This reflects the fact that a
measurement might not capture effects beyond the range of
the respective sensor. For instance, an RFID reader is limited
to a few meters.

In some situations, an application might desire more than
one measurement for each location of a segment. For instance,
to cope with inaccurate and possibly uncalibrated sensors,
redundant measurements at a certain location are necessary to
allow for quality-improving sensor fusion. In case of an audio
sensor, e.g., a high redundancy is needed to allow for filtering
of noise peaks. Therefore, we apply the concept of k-coverage.
A point is k-covered, if there are k measurements within
distance Syqnge. We say, a segment is k-covered if every point
of it is k-covered. The value of Vj specifies the application
requirement regarding k-coverage of virtual readings.

In analogy to a physical sensor, a virtual sensor has a
sampling rate with a sampling interval of Vgpmpie. Figure 2
shows the relation between Vyyration and Vigmpie.

start eqd start eqd

—
duration duration

t
-
I<7 Vsample 4"
Fig. 2. Temporal bounds of a virtual reading
A profile of each virtual sensor is stored at the central server
and disseminated to mobile readers. Such a profile includes the
associated road segment Ve gment, the type of the sensor Vi e,

and the requirement parameters regarding its output stream:
Vduration’ Vk, and Vvsample-

IV. QUALITY METRICS

Depending on the distribution and movement patterns of
mobile nodes, it cannot be guaranteed that a virtual sensor
meets the performance parameters specified in its profile all
the time. For instance, if no node passes through the segment
of a virtual sensor, no virtual reading can be acquired. In order
to quantify the actual achieved quality of virtual readings,
we introduce two quality metrics for the spatial and temporal
coverage of virtual readings in this section.

A. Spatial coverage

The goal of the conceived spatial coverage metric is to allow
for fine-grained comparisons between the achieved coverage
of a virtual reading and the requested coverage as specified
in the profile of a virtual sensor. Since in particular coverage
“holes” are critical for applications, partial loss of coverage
on a segment may not be outweighed by partially exceeded
coverage requirements. Figure 3 shows several examples of
virtual readings, their requested coverage V}, and the achieved
coverage. In the left example, measurements are close and
therefore only a small part of the segment is covered compared
to the example in the middle. In the right example, no part
is 2-covered and fulfills the requirement Vj, = 2. However, to
allow for fine-grained comparisons, we consider the 1-covered
parts as partially covered.

V,=1 V,=1 V,=2 — k=0
— k=1
- k=2
covered || covered
X
/2 NS NN B

Fig. 3. Spatial coverage of a virtual reading

The achieved spatial coverage c(V, R) of a virtual reading
R of a virtual sensor V' is defined as follows:
Definition 1. ¢,(V,R) = [min(k(x), Vi) - dz

$Evseg7nent

In this definition, k(x) defines the coverage of a point z
on the segment of V, i.e., the number of readings that cover
it. Note that in the best case, when the requested coverage
is fulfilled, cs(V, R) = V. However, the achieved spatial
coverage cannot exceed V.

B. Temporal coverage

The goal of the temporal coverage metric is to compare the
achieved sampling rate of a virtual sensor with the requested
sampling rate based on Vigmpie. If a virtual reading does
not fulfill the spatial coverage requirements specified by the
application, the sampling rate of valid virtual readings will
be lower than the requested rate Vigpmpie. We say a virtual
reading R is invalid, if its actual spatial coverage is lower
than an application specified threshold c;p,.

Definition 2. c¢,(V, R) < ¢ip, <> R is invalid

In order to quantify the effective reduction of the sampling
rate, we introduce the temporal coverage, which is defined as
follows:

Definition 3. A point in time is temporally covered if at
least one valid virtual reading precedes this point by at most

‘/sample'

Definition 4. The achieved temporal coverage of a set of
virtual readings R is the ratio of covered points of time and
the whole monitored time period

V. ALGORITHMS

In this section we describe our approach to implement the
concept of virtual sensors based on mobile readers. With this
approach we aim for two goals. First, we want to provide
applications with sensor data that satisfies the quality require-
ments according to spatial and temporal coverage.

Second, we want to perform sensing as efficiently as pos-
sible. In particular, we want to avoid unnecessary sensing
operations and communication operations to save energy. More
detailed, we want to avoid sensing at times and places that
does not increase quality or that would exceed the quality
requirements.

An approach to access measurements of a specific location
would be to reactively send a query as a geocast message to
the readers close to that location. These nodes then could sense
while they are at that location and send their measurements as
reply. However, this approach has a couple of disadvantages.
First, it introduces a potentially high delay since readers
might take a while until they enter that location. Second, no
readers might be at that location or even close to it, i.e., no
measurement could be acquired. Therefore, our approach is to
proactively sense while readers are on the segment of a virtual
sensor, and collect these measurements in the infrastructure
where applications can access it.

In detail, our approach is based on node selection schemes.
We propose two schemes to adaptively select nodes, based on
Viauration and Vi, for acquiring a virtual reading: centralized
spatial shaper (CSS), and distributed spatial shaper (DSS).
With shaping we refer to the process of forming the output
stream of a virtual sensor. Furthermore, we propose an al-
gorithm, temporal shaper (TS), that determines when a virtual
reading needs to be acquired. Finally, we propose a mechanism
that derives a physical sampling interval for readers according
to the maximum read range S,qnge Of a physical sensor. In
the following sections these algorithms are described in detail.

A. Centralized spatial shaper

The goal of this algorithm is to determine and schedule those
readers for sensing that are needed to fulfill the coverage
requirements, while minimizing the energy consumption of
nodes. This is done by a central instance.

A simple approach to select readers for sensing during a
period Viyration Would be to select all readers on a segment.
Such a selection mechanism would yield the maximum pos-
sible coverage. However, this results in redundant measure-
ments if more than Vj, trajectories of readers overlap at a

specific location. An improvement to avoid the redundancy
that exceeds V), would be to deactivate sensing of a node as
soon as Vj trajectories of nodes overlap. However, position
inaccuracy results in a small overlap of trajectories at such
meeting points between readers. Therefore, and to reduce
coordination overhead of readers, we aim for reducing the
number of readers sensing on a segment.

Therefore, the idea of spatial shaping is, during a period
of Viuration, to select the minimum subset of nodes on
Visegment for sensing that can achieve the coverage require-
ments (cf. Section V-Al). Formally, we search a minimal
subset S of readers whose combined projected coverage
fmeVsegmem min(}_,cq ks(x), Vi) - dz equals the projected
spatial coverage ¢(V, R) of the complete set of nodes R. In this
equation, k4(x) is the coverage of a point = on the segment
of V achieved by reader s, i.e., it is one if reader s covers it,
and zero otherwise.

Then, neighboring readers are coordinated to prevent redun-
dant sensing along overlapping trajectories (cf. Section V-A2).
Moreover, progress of readers is monitored and, if neces-
sary, other readers are selected to take over sensing (cf.
Section V-A3). In the following we present a centralized
algorithm for spatial shaping. A distributed algorithm (DSS)
where readers cooperate is presented in Section V-B.

1) Minimum subset selection: Based on its current speed
and the assumption of a uniform movement on the current
segment a node can predict the part of a segment it can
cover within a period of Viyrqtion. We refer to such a part as
fragment f. Each fragment is defined by a start point fsq,
and an end point f.,4. Both are one-dimensional coordinates
relative to the start point of Viegment. Note that we rely on
one-dimensional coordinates to simplify the presentation of
the algorithm.

The polynomial algorithm for determining the minimal
subset of readers for sensing can be described as follows.
At the beginning of a virtual reading, a central instance
queries all nodes to predict their fragment of the segment they
can cover. If the fragment’s length is larger than zero, they
reply with their fragment and the respective prediction. Based
on all relevant fragments, the minimum subset is computed
according to the Minimum Subset Selection (MSS) algorithm,
as described in Figure 4.

The function minEnd(S, k) returns the right border of
the rightmost part of the segment that is k-covered by the
fragments in S. If there is no such part, it returns zero.
The method remove(T, z) removes all fragments f from T
where fe,q < 2. The function popMaxEnd(T) removes the
fragment f from T with largest f.,4 and returns it.

Basically, the MSS algorithm selects the longest fragments
that allow to achieve the required coverage. Note that also fair
strategies can be implemented that consider, e.g., the remain-
ing energy level of nodes for the MSS algorithm. However,
here we focus on effectiveness, i.e., fulfilling the coverage
requirements. Therefore, the MSS first sorts the fragments
according to fsiqr¢ in ascending order. Fragments that are
equal in this value, are sorted based on f.,q in descending

Require: F' k sorted list of fragments, redundancy requirement
S <« @ [/ selected fragments
T < @ [/ temporary container
for all f in F' do
min < minEnd(S, k)
while not empty(T) and min < fstar: do
remove(T, min)
if size(T") > O then
S + SUpopMazxEnd(T)
min < minEnd(S, k)
end if
end while
if min < fstart then
S+« Suf
else
T« TUf
end if
end for

Fig. 4. Minimum Subset Selection (MSS) Algorithm

order. The algorithm iterates over the ordered fragments and
checks for each whether the part left of it is k-covered. If this
is the case, the fragment is added to a temporary set 7' from
which it can be selected afterwards if needed. Such a case
arises if the part left of the current fragment is not covered.
Then, the fragment f with largest f.,q is selected from 7" and
added to S. This is repeated until the required coverage is
achieved left of the current fragment or until 7" is empty. If T’
is empty but the coverage is not fulfilled, the current fragment
is added to S.

At 3 2 4 1 ordered fragments
1
Vdufation 5 J—

0 Vsegment -- discarded — selected

Fig. 5. Generation and ordering of fragments from predicted trajectories

The output of the MSS algorithm determines the nodes to
notify to participate in sensing. Figure 5 shows the trajectories
of several nodes according to their prediction and the resulting
fragments. Dashed are the totally covered fragments, which
can be discarded if V}, is one.

2) Reader coordination: As discussed at the beginning of
this section, the meeting of two selected nodes is critical.
Therefore, nodes with overlapping fragments need to coordi-
nate to avoid redundant measurements. Basically, coordination
is needed to determine for each notified reader where to start
and stop sensing.

Therefore, for each node whose fragment starts at a part
of the segment where the coverage requirement is exceeded,
we determine its coordination partner as the node whose
fragment ends at the respective part. Figure 6 shows eight
selected fragments and the coverage they would achieve if they
would sense uncoordinated. Assuming Vj, = 2, the coverage

requirement would be exceeded in three parts of the segment.
In the left part, (2,3) can be easily identified as coordination
partners that need to avoid duplicate sensing where their
trajectories overlap. Similarly, (7,8) are partners in the right
part of the segment. More interesting is the middle part, where
(1,5) and (4,6) are selected as partners. Alternatively, (1,6) and
(4,5) can be selected as partners.

KA

OND O~ WN =

Fig. 6. Determination of coordination partners with Vj, = 2

If a node has no coordination partner, start and stop posi-
tions are the predicted ones. Otherwise, coordination partners
need to coordinate sensing where their trajectories overlap.
Figure 7 shows a classification of the coordination problem,
depending on movement patterns of nodes.

t t

follow emerge collide
X X X
L L L
Fig. 7. Classification of Coordination Problems

The first class is follow, where one node follows another.
In this case nodes simply start to read when notified by the
central instance. However, the following node needs to stop
sensing at the start point of the leading node. The second class
is emerge. In this case two nodes pass by each other. Therefore,
start coordination is necessary. One reader immediately starts
to sense and the other starts as soon as it passes the point where
the first reader started. We say, the second reader emerges from
a covered area and starts to sense. As a heuristic solution we
propose to select the reader with the highest probability to
cover the gap between them. The third class is collide. In
this case, both readers start sensing immediately. However,
coordination is needed to determine the point to stop sensing
of both readers.

Although coordination for classes follow and emerge can
be determined based on the result of the MSS algorithm,
coordination in the case of collide is much more challenging,
and requires constant monitoring of reader movement. The
idea of this coordination is to prevent nodes from sensing
at the same location, and to prevent readers from stopping
sensing while some gap between them is still uncovered. In
the following we describe this mechanism in detail.

Initially, the central server detects the need for collide
coordination and informs the affected readers along with the
notification to start sensing. Based on their predictions, the
readers compute the collision point and consider it as point
where to stop sensing. However, as a reader’s movement
deviates from its prediction, the actual collision point deviates
from the computed. To update the prediction at the other
reader with every change of a reader’s speed leads to high
communication overhead.

Therefore, we propose to send updates only in two cases.
First, if a reader is slower than predicted, it notifies the other
reader before this would stop sensing. Hereby, a new collision
point can be computed, and the remaining gap between the
readers is divided and re-assigned to them. Second, if a reader
is faster than predicted, it updates before it passes into the
section of the other reader. Hereby, a new collision point
is computed and the gap between the nodes is reassigned
accordingly. Both cases are depicted in Figure 8.

t predicted movement t actual movement
tcollide tcolfide
@
/ \ X updat X
Xcollide > Xcollide >
Fig. 8. Update in collide coordination

3) Progress control: Without a limitation of the period
Vauration Of a virtual reading, the above described mechanisms
would be sufficient for coordination. However, if a reader
cannot cover its fragment within the available read period, a re-
assignment of the uncovered fragment needs to be performed.
For this purpose, we propose a mechanism similar to collide
coordination.

According to the different coordination classes, each reader
knows a fixed or variable point where to stop sensing. If
its current prediction does not allow a reader to completely
cover its fragment in time, it updates its prediction with the
central server. Note that updates may be deferred to allow for
speed fluctuations and to reduce cost for updating. However,
deferring updates increases the risk for parts of the segment
to remain uncovered. This is the case when a reader would
have been able to take over sensing if it was informed earlier.
Similarly, if a node enters a segment during Vi, qtion Or if a
node’s movement deviates from its prediction in a way that
allows it to cover a part of the segment that was not assigned
in the MSS, it updates its prediction with the central server.

Receiving a new prediction or an updated prediction, the
server then initiates the minimum subset selection algorithm
on the respective part of the segment, and notifies suitable
readers to start sensing. Note that the previous results of the
MSS are not discarded. In contrast, nodes that were selected
for sensing, are now pre-selected in the MSS.

When a reader fails that is assigned a fragment for sensing,
it may not update its prediction and measurements to the

central server. To prevent this from happening, we propose
an optional extension to the basic progress control mechanism
that can be applied in scenarios with a high rate of reader
failures. Here, readers send periodic progress reports including
their measurements to the central server. If the server fails
to receive a progress report it assumes the respective reader
to have failed. In this case it initiates the minimum subset
selection algorithm on the scope of the remaining fragment of
the failed reader.

B. Distributed spatial shaper

In the previous section, a centralized spatial shaper algorithm
was introduced. Although it is effective, it depends on the
availability of a permanent connection between readers and a
central server. Although GPRS or UMTS networks are widely
available today, their energy consumption for communicating
a message exceeds that of WiFi, and usage of these networks
involves cost. Since the MSS algorithm only depends on infor-
mation of neighboring readers and the respective fragments,
we present a distributed spatial shaper (DSS) algorithm that is
based on reader cooperation in the area of a virtual sensor in
an ad-hoc network.

In essence, this algorithm consists of the same parts as CSS.
Especially, the minimum subset selection (MSS) algorithm, as
presented in the previous section (cf. Figure 4), is an essential
part of the DSS. However, now we do not consider global
knowledge. Instead, in an initial phase, readers exchange
their predictions with neighbors. In a second phase, they
cooperatively select the readers for sensing. Then, the readers
coordinate sensing and perform a cooperative progress control.

1) Prediction exchange: The idea of the initial phase of
DSS is to distribute local movement predictions of nodes on
a segment among each other as a base for reader selection.
A central server initiates a virtual reading on a segment
by informing one or more readers on the segment. About
details on temporal shaping see Section V-C. When a reader is
informed that a new reading needs to be acquired, it propagates
this information to neighboring nodes by broadcasting its
prediction in the ad-hoc network. First, this triggers other
readers to participate in the virtual reading. Second, it serves
as a means to disseminate predictions. Every node receiving
such a notification for its current segment, either from a
central server or a neighboring node, updates its local view
on neighboring fragments. Then, it predicts the fragment it
can cover during Vyyrqtion and broadcasts this together with
the locally known fragments of other nodes. At the end of this
phase every node has a local view on the fragments of nodes
in the segment.

An optimization to reduce message overhead is to broadcast
only if a node is selected by MSS on its local view on
fragments. Since each reader broadcasts at most one message,
this algorithm has, in the worst case, a linear message com-
plexity. However, since readers suppress broadcasting if their
fragment is covered, the number of messages is on average
much smaller. Due to its limited message complexity, this

phase is rapidly completed. We assume node movement during
that time frame to be neglectable.

2) Cooperative reader selection: The idea of the second
phase is that nodes achieve a consistent view on those frag-
ments that are relevant for coordination, i.e., neighboring
fragments. Based on the exchange of fragment information in
the previous phase, nodes establish communication routes to
nodes of other fragments based on the reverse path. Based on
this routing information, nodes of neighboring fragments can
communicate. Although, due to mobility, these routes break
with time, communication shortly after route establishment is
likely to succeed. This communication is needed to initiate
reader selection.

wWN -

Prediction Exchange

local views: ‘/\‘
1:1,2
2:1,2,3
3:2.3 21 4/3

Reader Selection

N(x,y): x is left
neighbor of y

Fig. 9. Distributed cooperation: prediction exchange and reader selection

Due to possible inconsistent local views of the nodes, the
goal of this phase is to consistently select readers. Therefore,
each reader that locally decided to participate in sensing,
contacts the reader of its left neighbor fragment. Note that
the definition to contact the left neighbor is arbitrary, and
does not affect performance of the mechanism. When a reader
contacts its partner, it assumes, based on its local knowledge,
both readers are selected for sensing. However, due to partial
local knowledge, this might be false. If the receiver locally can
determine that the sender or itself is not selected for sensing,
it notifies the sender accordingly by replying with its local
knowledge about fragments. This process is repeated until each
neighbor relation is verified. When this is achieved, consistent
reader selection is achieved, and each reader knows its left
neighbor fragment.

Figure 9 shows an example with three nodes on a segment,
where, if V, = 1, only readers 1 and 3 need to sense. In the
example, reader 2 initiates the prediction exchange. Nodes 1
and 3 receive the fragment of reader 2. They also broadcast
the fragments of their local view, and reader 2 learns from
fragments 1 and 3. In the reader selection phase, reader 3 is
the only one that has a left neighbor based on its local view.
It contacts this neighbor (reader 2), which however computes
that it does not need to coordinate with reader 3. It replies
with its local view. Based on this reply, reader 3 then again

determines its left neighbor and contacts it to initiate collide
coordination.

3) Cooperative reader coordination: The idea of the reader
coordination is to avoid redundant sensing due to overlapping
fragments, which is needed between readers of neighboring
fragments. It is performed according to the classification in
Section V-A. In case of follow and emerge, coordination
partners determine start and end points for sensing based on
the consistent view on their fragments after reader selection.

In contrast, collide coordination requires constant monitor-
ing of movement. Since routes may break due to movement, a
reader addresses its prediction update directly to the coordina-
tion partner. The idea of this is that coordination is only needed
if neighboring nodes are close. If the coordination partner
is in transmission range it receives the message, computes a
new meeting point and replies. Otherwise, the delivery of the
update is not crucial, since there is no risk of overlapping
trajectories. However, in this case, the sender needs to re-
send an update regularly. The sender derives the interval based
on an estimation of the receiver’s relative speed and on the
communication range. Note that this approach does not require
a routing mechanism.

4) Cooperative progress control: The idea of the progress
control is to monitor the progress of sensing and, if this
deviates from the predicted, to assign sensing tasks to other
nodes. In essence, when a reader’s prediction indicates that it
cannot cover its fragment in time, other readers need to take
over sensing. Therefore, it broadcasts its current prediction, its
fragment, and its neighboring fragments to its direct commu-
nication neighbors. With this information a cooperative MSS
mechanism is initiated in the scope of the fragment, i.e, nodes
whose current predictions overlap the unassigned part of the
segment exchange their predictions. Similarly, when a node’s
prediction indicates that it can cover an unassigned part of the
segment or if a new node enters the segment, it broadcasts its
current prediction, its fragment, and its neighboring fragments
to its direct neighbors to initiate the MSS mechanism.

When a reader fails, it typically cannot initiate an MSS
beforehand to let other readers take over sensing. Therefore,
we propose an optional mechanism for monitoring readers
based on periodic progress reports. Such a progress report
includes the position and the fragment associated to the reader.
It is broadcasted to the direct neighbors. A reader monitors
those readers whose fragments overlap with its own. Based
on the predicted current position of the monitored reader, it
determines its probability to be in communication range. If it
has a high probability to be in range, and if it fails to receive
a progress report it assumes the other reader to have failed. In
that case, it initiates a cooperative reader selection.

C. Temporal shaper

The basic idea of temporal shaping is to schedule virtual
readings according to the Vqypie parameter. This requires
knowledge of the time of the last virtual reading. Several
approaches are conceivable to manage this information. One
approach can be to let the central server, which anyway stores

the updates, notify readers close to the segment of the virtual
server about the start of a new virtual reading. This approach
is especially suited for scenarios where the sampling interval
is rather large, thus managing the time of the last virtual
reading cooperatively at the mobile nodes would be unreliable.
However, alternatively, the readers can store the time of virtual
readings and periodically propagate this information to other
nodes in the vicinity of the sensor.

Both approaches are feasible, but in this paper we assume
central temporal shaping controlled by the central server that
initiates virtual readings according to the temporal shaping
requirement by informing mobile nodes. For details on the
cooperative approach, we refer to our previous work [11].

D. Resolution shaper

The purpose of the resolution shaper is to adjust the physical
sampling interval such that S;.qn4e is respected. Basically, the
resolution shaper needs to omit sensing if its position is within
an area where it already acquired measurements. Moreover, it
needs to adjust the physical sampling interval according to its
speed v in a way that it covers a distance of 2- 5,4y 4. between
two measurements. For this purpose, a reader computes its
sampling interval 6 = 2 - S,4nge/v. Readers adjust 0 with
every update of their positioning system.

Since positioning has a high energy consumption, it is
essential to deactivate it if not needed. In the sensing area,
between start and end point of sensing, a reader needs contin-
uous positioning. However, outside that area, it may deactivate
positioning. We propose a positioning interval depending on
the distance a node may move before it enters its sensing area
or before it enters a different segment. Based on this distance
and the maximum speed, a node can compute the time to
deactivate positioning.

VI. EVALUATION

In this section we present our simulation model followed by
the results of the evaluation of our algorithms. The algorithms
were implemented for the network simulator ns-2. In the
following we refer to the following implementations:

o CSS: This implementation is based on the CSS algorithm
(see Section V-A). A central instance coordinates sensing
of mobile nodes.

e DSS: In contrast to the CSS implementation, DSS is
based on the distributed stream shaping algorithm (see
Section V-B), where mobile nodes coordinate sensing in
an ad-hoc network. The central instance is only respon-
sible for managing the data read by mobile nodes.

o Isolated: A simple isolated approach where all nodes
sense independently. A node starts sensing when it en-
ters a segment for which a virtual reading needs to
be acquired; it stops sensing as soon as it leaves the
segment or as soon as the period of the virtual reading is
finished. This implementation presents the worst case for
redundant sensing, but also the best case for coverage.

We implemented our algorithms using the 802.11 extension
of ns-2 with the transmission range 7;, = 100 m. The nodes

move at pedestrian speed (between 0.7m/s and 1.8m/s)
according to the UDEL pedestrian mobility model [12] on the
street graph of a nine block section of Chicago. Movement
patterns, as in reality, heavily depend on the simulated hour
of the day. Movement predictions are done based on the
current node speed by assuming uniform node movement
along the current segment of a node. Although the simulated
section is relatively small compared to the size of a city, it
is sufficiently large for this evaluation since virtual sensors
cover only road segments. More important as the size of the
service area is the effect of node density which we evaluate
in a wide range. Note that only a small fraction of the nodes
moves simultaneously on the road network. Each edge of the
street graph is assigned a virtual sensor. Each simulation is
performed 10 times and lasts 1800 seconds. During that time,
a virtual reading is acquired every 100 seconds. By default,
Vauration 1 60 seconds, and Vj is 2. Syqpnge is set to 0.5m.
With this small value, the performance of the algorithms is
evaluated under most stressing conditions. Since the temporal
shaper (cf. Section V-C) is already discussed in detail in
previous work [11], we do not consider energy cost introduced
by temporal shaping through notifying nodes to start a virtual
reading.

TABLE I
ENERGY MODEL

Component Energy [mJ]
GPS [13]

Position Fix 75
RFID [14]

Read 80

802.11b at 1 Mbps [15]
(broadcast rate)

Send (1000 Bit) 2
Receive (1000 Bit)

GPRS [16]
Send (1000 Bit) 80
Receive (1000 Bit) 40

To measure the energy consumption of the mobile nodes
we rely on the energy model given in TABLE I.

A. Effectiveness

In this section we evaluate the effectiveness of the algorithms
CSS, DSS and Isolated in terms of achieved spatial coverage as
defined in Section IV-A. As a performance metric, we compute
the average spatial coverage cs(V, R) of the virtual readings
acquired during a simulation run.

At first, we evaluate the performance of the algorithms
simulating node mobility at different hours of the day. We plot
the spatial coverage during the course of a day in Figure 10.
In this scenario, the number of nodes in the simulation is
15000. Note that only a small fraction of these nodes moves on
roads during simulation time. And this fraction depends on the
hour of the day. At rush hour, e.g., at 16:00 o’clock, Isolated
achieves its peak coverage value. However, as the coverage

value of about 1.1 indicates, the node density is still too low to
achieve the requested coverage of 2. As expected, the coverage
highly varies during the course of the day. However, CSS and
DSS show a similar behavior as Isolated resulting in a slightly
lower coverage value. This gap of about 6% is due to the fact
that Isolated starts sensing as soon as a node enters a segment.
In contrast, CSS and DSS start sensing based on movement
predictions. However, e.g., at a crossing, such predictions can
only be determined after the node follows a road segment for
some time. Therefore, during that time, sensing is deactivated,
and the coverage is reduced. The coverage-loss depends on
the position uncertainty, which is 5m in our simulations. A
node misses some measurements when the uncertainty is high
compared to Spqnge. If the uncertainty is low, or if Syange
is high, a node does not move far compared to S;4pnge until
it can start sensing. Therefore, it does not miss to capture
measurements.

Figure 11 plots the achieved spatial coverage over Vj at
16:00 o’clock. As in the previous scenario, the number of
nodes is set to 15000. The Isolated approach achieves the
maximum possible spatial coverage. CSS and DSS achieve
a coverage value that is about 5% lower. This gap is, as in
the previous paragraph, due to the delay introduced by the
movement prediction. However, as the figure shows, this gap
is independent from Vj, i.e., CSS and DSS are effective for a
wide range of coverage values. The achieved coverage value
is always below the requested coverage V. This shows that
some segments are not populated enough to be covered by
nodes, while others are highly populated and a much higher
coverage value as the requested could be achieved.

The same small loss of coverage can also be seen in
Figure 12. Here, the spatial coverage is depicted for varying
numbers of nodes. As the figure shows, this loss is independent
of the node density. This shows that CSS and DSS are effective
independent from the node density.

Moreover, we investigated the effectiveness of the algo-
rithms for varying values of Vg, ,qtion. The results confirm the
presented results, in that DSS and CSS are also effective in-
dependent from Vj,qtion. However, due to space limitations,
we omit the respective figure.

B. Efficiency

In this section we evaluate the efficiency of the algorithms
in terms of energy consumption (EC). The base to determine
the energy consumption of a node is Table I. By default, we
assume a sensor with a high energy consumption — an RFID
reader. The EC is computed as the average energy a node
spends for positioning, communication, and sensing. Since
mapping requires continuous positioning during sensing, and
due to the high share of positioning in the overall energy
consumption, even usage of low power sensors would result
in similar EC values as the following.

Figure 13 plots the average energy consumption per node
and hour in the course of a day. In this scenario, V}, for each
virtual sensor is set to 2, and the number of nodes in the
simulation is 15000. Basically, this figure shows similarities

1.2 3 T
, DSS —w—
1.1 e CSs 1
\ Isolated -
i 2.5
28 - Q o) N
£ 0.9 ' g e
2 g 2 e o
o 0.8 o o
© © © 0.8
5 0.7 T 1.5 @
. - i :
B 0.6 N 5 o
0, / \ 2, o, 0.6
@ @ o
DSS —x— DSS —x—
0.4 1 €SS - 3 0.4 CSS -+
Isolateg """"" 0. I§olated ,,,,,,,,,

7 10 13 16 19 22 1 2
Hour of Day

Coverage Value k

cs depending on requested coverage

3 4 5 5000 10000 15000

Number of Nodes

Fig. 12. c¢s depending on number of nodes

DS5 —*—

Fig. 10. c¢s in the course of day Fig. 11.
14 T = 20
DSS —*— < DSS —*—
CSS = 18 L €SS
12 FIsolated - Isolated -

CSS |
Isolated -—x--

10

Energy Consumption per Node [J/h]

Energy Consumption per Node

Energy Consumption per Node [J/h]
©

7 10 13 16 19 22 30
Hour of Day

Fig. 13. EC in the course of day

to Figure 10. Depending on the hour of the day, Isolated
achieves different coverage values and, related to the coverage,
different values for the energy consumption. However, energy
consumption does not always reflect the achieved coverage.
For instance, ¢, at 7:00 o’clock is lower than at 10:00 o’clock,
while the EC at 7:00 o’clock is higher compared to 10:00
o’clock. In essence, this is the result of different mobility
patterns. At 7:00 o’clock nodes are more likely to move
along the same paths. In such a scenario, a higher fraction
of measurements is redundant and could be omitted. This can
be seen in the EC values of DSS and CSS. Both algorithms
achieve to reduce the EC by a similar amount. In case of highly
redundant movement patterns of nodes, i.e., at 7:00 o’clock,
the savings are almost 50%, while at 10:00 o’clock, the savings
are only about 20%. At 22:00 o’clock, when only few nodes
move along the roads, the possible savings are minimal. In
this case, EC of all three approaches is nearly equal.

Interestingly, the energy consumption of DSS and CSS are
nearly identical. While the energy consumption for commu-
nication are much higher in case of CSS due to GPRS, DSS
suffers from redundant sensing. This redundancy is based on
the fact that nodes can only coordinate ad-hoc if they are in
transmission range.

As Figure 14 shows, this effect increases with larger
Vauration This is because nodes in DSS only participate in
the coordination of their current segment.

Finally, Figure 15 plots the EC for several numbers of nodes
in the network. As expected, Isolated shows an energy con-
sumption that is independent of the node density, since each
node independently senses without considering other nodes. In

Duration of Virtual Reading [s]

Fig. 14. EC depending on Vyiyration

6
60 90 5000 10000 15000

Number of Nodes

2000¢

Fig. 15. EC depending on number of nodes

contrast, DSS and CSS benefit from increasing node density by
preventing unnecessary sensing and, therefore, allow to reduce
the energy consumption per node on average. Interestingly, the
difference between DSS and CSS is decreasing with increasing
node density. This is due to the improved ability of nodes for
ad-hoc coordination. Moreover, with increasing node density,
savings of DSS and CSS compared to Isolated increase. High
node densities promise even higher energy savings for DSS
and CSS compared to Isolated.

VII. RELATED WORK

Public sensing is currently an active topic in various research
fields. In the field of sensor networks, focus is mainly set
on the autonomous monitoring of environmental conditions in
inaccessible areas. However, projects such as [17] use sensor
nodes for public sensing. Sensor nodes imply high cost for
deploying dense large-scale sensor networks. Moreover, they
suffer from the battery depletion problem. In our previous
work [11] we propose to deploy simple and cheap RFID-based
sensors at points of interest, which are then read by passing
mobile devices with integrated RFID readers. Although this
approaches alleviates these problems, it still depends on the
deployment of sensor nodes.

Another set of approaches uses instrumented mobile devices
for sensing in urban areas. Gellersen et al. [18] propose the
integration of sensors into mobile devices to achieve direct
context awareness of these devices. However, the locally col-
lected sensor data is not shared between devices. In contrast,
[19], [2] use mobile devices to collect shared sensor data.
Rudman et al. [19] attach sensors for monitoring air pollution

to a tablet PC. MobGeoSen [2] is based on the integration
of sensors to mobile phones, which are carried by a large
number of people. Although [8] shows that using tracked
mobile sensors to make fine-grained maps of environmental
effects is feasible, these approaches do not consider quality-
aware sensing and energy considerations remain open issues.
One interesting approach that deals with these issues is [20].
However, it lacks distributed coordination algorithms for mo-
bile nodes. To the best of our knowledge, our approach is the
first to consider distributed coordination of sensing to achieve
energy-efficient and quality-aware sensing.

Similar to our approach, [9] proposes virtual sensors as
a data-centric abstraction for applications, when querying
measurements of mobile devices. However, it lacks suitable
metrics for measuring the quality of environmental maps of
urban areas. In the field of sensor networks, a variety of
coverage metrics has been proposed [21]. However, these ap-
proaches consider the coverage of planar areas with stationary
or controlled mobile sensors.

VIII. CONCLUSIONS

This paper introduces mechanisms for automated mapping
of urban areas that provide a virtual sensor abstraction to
the applications. In a participatory system, widely available
devices as mobile phones read environmental conditions as
air quality or noise pollution, and map these measurements to
stationary virtual sensors. We proposed spatial and temporal
coverage metrics for measuring the quality of measurements
and we presented two algorithms for coordinated sensing in
order to achieve the quality requirements, while minimizing
the average energy consumption of nodes. By simulations,
we showed that these algorithms achieve about 95% of the
maximum possible coverage. Moreover, the algorithms achieve
a very high energy efficiency allowing for drastic savings up
to 50% compared to uncoordinated sensing.

In future work we plan to include mechanisms for increas-
ing the fairness of sensing, i.e., to consider the individual
energy consumption of nodes rather than the average energy
consumption. Alternatively, we plan to incorporate strategies
that consider available resources of nodes.

ACKNOWLEDGEMENTS

This work is partially funded by the German Research Foun-
dation within the Collaborative Research Center 627 (Nexus).

REFERENCES

[1] D. Cuff, M. Hansen, and J. Kang, “Urban sensing: out of the woods,”
Commun. ACM, vol. 51, no. 3, pp. 24-33, 2008.

[2] E. Kanjo, S. Benford, M. Paxton, A. Chamberlain, D. S. Fraser,
D. Woodgate, D. Crellin, and A. Woolard, “Mobgeosen: facilitating per-
sonal geosensor data collection and visualization using mobile phones,”
Personal Ubiquitous Comput., vol. 12, no. 8, pp. 599-607, 2008.

[3] M. M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12-18, Oct. 2008.

[4] A.T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,
H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, “The rise of
people-centric sensing,” IEEE Internet Computing, vol. 12, no. 4, pp.
12-21, 2008.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

N. Maisonneuve, M. Stevens, M. E. Niessen, P. Hanappe, and L. Steels,
“Citizen noise pollution monitoring,” in dg.o '09: Proceedings of the
10th Annual International Conference on Digital Government Research.
Digital Government Society of North America, 2009, pp. 96-103.

S. Kim and E. Paulos, “inair: Measuring and visualizing indoor air
quality,” in Ubicomp 2009, 2009.

B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility improves
coverage of sensor networks,” in MobiHoc '05: Proceedings of the
6th ACM international symposium on Mobile ad hoc networking and
computing. New York, NY, USA: ACM, 2005, pp. 300-308.

A. Steed and R. Milton, “Using tracked mobile sensors to make maps
of environmental effects,” Personal Ubiquitous Comput., vol. 12, no. 4,
pp. 331-342, 2008.

A. Kansal and F. Zhao, “Location and mobility in a sensor network
of mobile phones,” in NOSSDAV 2007: 17th International workshop on
Network and Operating Systems Support for Digital Audio & Video,
June 2007.

A. Civilis, C. S. Jensen, J. Nenortaite, and S. Pakalnis, “Efficient tracking
of moving objects with precision guarantees,” in Proc. of the First
Annual Intl Conf. on Mobile and Ubiquitous Systems (MobiQuitous
2004), Boston, Massachusetts, USA, August 2004, pp. 164-173.

H. Weinschrott, F. Diirr, and K. Rothermel, “Efficient capturing of envi-
ronmental data with mobile rfid readers,” in Proceedings of International
Conference on Mobile Data Management, Taipei, Taiwan, May 2009.

J. Kim, V. Sridhara, and S. Bohacek, “Realistic mobility simulation of
urban mesh networks,” Ad Hoc Netw., vol. 7, no. 2, pp. 411-430, 2009.

Navman, Apr. 2010. [Online]. Available: www.global
time.com.cn/attachment/30DataSheet_060616105012.pdf
Skyetek, Apr. 2010. [Online]. Available: www.skyete

k.com/Portals/0/Documents/Products/SkyeModule_M9_D ataSheet.pdf

Summitdatacom, September 2008. [Online]. Available: www.sum
mitdatacom.com/Documents/SDC-CF10G Product Brief 200803.pdf

B. Gedik and L. Liu, “Mobieyes: A distributed location monitoring
service using moving location queries,” IEEE Trans. on Mob. Comp.,
vol. 5, no. 10, pp. 1384-1402, 2006.

J. Beutel, O. Kasten, F. Mattern, K. Roemer, F. Siegemund, and
L. Thiele, “Prototyping wireless sensor network applications with btn-
odes,” in Proc. Ist Euro. Workshop on Sensor Networks (EWSN 2004).
Springer, 2004, pp. 323-338.

H. W. Gellersen, A. Schmidt, and M. Beigl, “Multi-sensor context-
awareness in mobile devices and smart artifacts,” Mob. Netw. Appl.,
vol. 7, no. 5, pp. 341-351, 2002.

P. Rudman, S. North, and M. Chalmers, “Mobile pollution mapping
in the city,” in Proc. UK-UbiNet workshop on eScience and ubicomp,
Edinburgh, May 2005.

A. Krause, E. Horvitz, A. Kansal, F. Zhao, “Toward Community
Sensing,” in Proc. of Information Processing in Sensor Networks.,
Washington, DC, USA, 2008.

P. Brass, “Bounds on coverage and target detection capabilities for
models of networks of mobile sensors,” ACM Trans. Sen. Netw., vol. 3,
no. 2, p. 9, 2007.

