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Abstract—Real-time diagnostic simulations are one challenging
application domain that is expected to introduce high require-
ments to global sensor applications. Besides having hard con-
straints on latency bounds at which data needs to be processed,
such simulation applications will impose high requirements with
respect to available bandwidth. Predictors, originally introduced
in the domain of wireless sensor networks for energy saving,
are one appealing solution to provide real-time estimates and at
the same time significantly reduce the data rates. While in the
setting of wireless sensor networks many prediction models have
been analyzed, their behavior and use is unclear when applied to
distributed data streams where aggregation results are typically
processed over multilevel hierarchies.

In the context of weather simulations, we propose a distributed
R-Tree-based aggregation algorithm that allows for efficient reuse
of aggregate queries. In the setting of real temperature readings
taken from weather stations during one month, we study the
trade-off between updates of the prediction model and the
precision of the predicted values. Our evaluations indicate that
even in situations where complex prediction models are expected
to perform best, simple prediction models give higher benefits
with respect to saving bandwidth while providing similar data
accuracy.

Keywords-Global Sensor Networks; Distributed Stream Pro-
cessing; Predictors

I. INTRODUCTION

With the increasing deployment of local sensor networks
it has become possible to use their data for a wide range
of applications on a global scale as part of a global sensor
network (GSN). Especially the simulation of natural habi-
tats and ecosystems has gained attention over recent years
to better understand global environmental changes. As the
popularity of such applications and the number of users in-
creases, it becomes important to provide middleware solutions
and expressive continuous query paradigms for efficient data
retrieval. This includes optimized bandwidth usage and the
need to avoid the overload of data sources. Several Distributed
Stream Processing Systems (DSPS) [1], [2], [3], [4] have
been proposed that process data streams inside the network.
In-network processing like filtering and aggregation reduces
traffic in the system and therefore improves its efficiency.

While those approaches are an important step in contribut-
ing to a scalable deployment for GSN applications, major open
research challenges are the provision of timely data access as
well as the handling of large bursts of data. Such bursts need

to be addressed particularly in real-time simulations where it
is important to directly investigate the impact of environmental
disasters on habitats and ecosystems to take countermeasures.
However, traditional approaches proposed to enable real-time
processing such as network reservation protocols are typically
not available at the global scale. Moreover, the occurrence of
unforeseen data bursts may still cause overload on the reserved
capacity on the underlying communication links.

In this paper we propose and evaluate an alternative ap-
proach to real-time communication based on prediction mod-
els. Predictors were originally proposed in the domain of
Wireless Sensor Networks (WSN) [5] to prolong the lifespan
of individual sensors that are only scarcely equipped with
resources. To achieve this, the amount of data reported to the
WSN gateway is reduced by using predicted values instead
of actual readings at the expense of slightly less accurate
values. Additionally, an estimated measurement can be ob-
tained instantly without introducing any communication delay.
In the WSN domain various prediction models [5], [6], [7],
[8], [9] have been proposed, widely differing in their employed
algorithms and complexity.

However, in a global system for sensor information, single
hop communication between sensors and applications prevents
the reuse of data for multiple recipients. Therefore we present
a new approach to multilevel data sensor data aggregation
which allows efficient reuse of results. In this setting of mul-
tilevel hierarchies, the different accuracy in predicted values
and applicability of predictors remain unclear. Even for sensor
networks there exists no classification, which prediction model
is best-suited for a certain type of data (e.g. temperature
readings or wind speed). This question becomes even more
difficult with in-network processing in a global multilevel
context.

We demonstrate for a distributed R-Tree-based aggregation
algorithm optimized for data reuse, how multilevel predictions
can be integrated into distributed stream processing systems.
The performance is evaluated on the basis of temperature
sensor readings of the National Oceanic and Atmospheric
Association (NOAA) [10] and the German Weather Service
(DWD) [11] taken during a whole month. In addition, the Intel
Lab Data set [12] was used to compare the results to existing
approaches. Complex prediction models were expected to
perform best since they capture the daily recurring features of
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sensor data. However, our results show that computationally
simple models provide the best performance with respect to
saving bandwidth.

In the remainder of the paper, Section II discusses related
work. Section III presents our approach to a distributed R-
Tree and the multilevel predictions along with the underlying
system model. Our evaluations results are shown in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

The Global Sensor Networks middleware (GSN) [13] pro-
poses virtual sensors. By specifying local physical sensors or
other remote virtual sensors as input and supplying algorithms
for data processing, the result can be published as new
virtual sensor to other users. However, GSN does not support
direct queries to sensors without defining a virtual sensor
for the set of sensors of interest and lacks the possibility to
automatically find sensors of interest. Publish/subscribe [14],
[15], [16] has emerged as a generic powerful many-to-many
communication paradigm. It is applied for efficient decoupling
of data sources (sensor nodes in a GSN) and subscribers
to data streams mostly in event processing systems. More
recent approaches also consider the delay and bandwidth con-
straints of subscribers [17], [18]. Applied in a GSN however,
publish/subscribe lacks the possibility to perform in-network
processing required to greatly reduce the high data rates.

To exploit the advantages of in-network processing of data,
several distributed stream processing systems (DSPS) like
Borealis [1] have been proposed. However, its query interface
requires manual stream modeling and distribution of operators
to available nodes. Other approaches like IrisNet [2] and HiFi
[3] focus on the special properties of sensor data and provide
data filtering and preprocessing close to the sensors. Hourglass
[4] provides robust so called circuits on intermittent connec-
tions between nodes. Although they all support information
source lookup and automatic routing of data streams, they lack
the reuse of streams and intuitive range querying as required
for global sensor data. SBON [19] introduces a layer between
the DSPS and the physical network to optimize placement for
network usage. The approach was improved towards optimal
mapping of operators with respect to the underlying network
[20]. Although similar operators might be placed on the same
node, explicit reuse is not supported by this approach.

Contrary to these DSPS, our approach is to exploit the
similarities in data streams by actively avoiding redundant
data transmission. To reuse data streams we extended the R-
Tree [21] to be organized in a distributed fashion that can be
used to locate data as well as to route data streams. Previous
approaches for distributed R-Trees like NR-Tree [22], Peer-
Tree [23] or TPR*-Tree [24] only covered query routing
and data source lookup but not the routing of the actual
data streams. The DR-Tree [25] does handle routing in pub-
lish/subscribe to minimize false positives. However, it does not
optimize reuse of data processing.

The optimization for reuse of data and reduction of band-
width usually results in additional hops in the network com-

munication and therefore increased delay. To provide real-
time estimated results, we use the concept of predictors
as introduced in the context of WSN [5]. First successful
approaches focused on compression of multiple measurements
before transmitting them as a whole. Between the reception
of measurement blocks, the WSN gateway supplies predicted
values to the user [6]. With the increasing computational
power, the predictions were calculated directly on the sensor
nodes using simple models. By simultaneously calculating
them on the gateways only differing measurements actually
had to be transferred from sensor nodes to the gateway, thereby
reducing communication and hence energy consumption [26],
[27], [7], [8]. More complex SARIMA models are used in
PRESTO [9]. However, these models are too complex for
sensor nodes and have to be computed on the WSN gate-
way. Further projects tried adaptations of control theory and
Kalman filters for prediction [28]. Although these filters are
versatile, they require manual modeling for each sensor and
its individual characteristic. This is unfeasible for a global
sensor network with a huge number of sensors where further
challenges arise when using predictors [29]. However, besides
the most basic prediction in the form of caching [30], the
Kalman filter was the only approach that has yet been applied
in DSPS [31].

III. PREDICTION-BASED AGGREGATION OF DATA

In the following, we introduce our approach to support real-
time estimates on the aggregated sensor data of a geographical
region. We use this setting to evaluate prediction models
applied over multilevel hierarchies. In Section III-A, we first
introduce the basic system model and describe the partici-
pating nodes. Section III-B shows how aggregation streams
can be established over an R-Tree-based overlay to enable 1)
efficient reuse of existing streams to reduce network load on
the sensor network gateways and ii) fair distribution of this
load according to the interest of peers. Finally, Section III-C
shows how to integrate different prediction techniques into
our system to save additional bandwidth and provide real-time
estimations.

A. System Model

A GSN is formed by a set of gateways and peers. A gateway
is associated with a local sensor network and can answer
queries on the data available in that sensor network. In case of
a failure of a gateway its associated WSN could not be queried
at all. We therefore assume reliably available gateways and use
them to build up a basic indexing structure for data source
lookup. Peers are all other nodes participating in the GSN
with a query which they can perform by either contacting a
gateway or another peer of the GSN. Every peer that queries
the GSN is then automatically integrated in the system and
contributes to the maintenance of the GSN. This way, the task
of data dissemination can be distributed among peers in a fair
fashion and the reuse of data streams becomes possible.

We approximate the real world using a plane since coordi-
nates can then be easily converted to latitude and longitude



values. As already described it is unfeasible to explicitly
address every single sensor to query in a global sensor network
with a huge number of sensors. Therefore, we chose a query
model which focuses on the specification of a region of interest
rather than individual sensors. The region is used to find
nodes which have the desired information available and finally
resolved to single sensor nodes.

Applications specify the geographical area of interest as
a rectangular shape using the lower left and upper right
corners as identification marks. Besides these coordinates,
a query includes the requested type of sensor data and an
aggregation function which should be used to combine the
measurements of single sensors. In particular, we consider in
our evaluations only the average aggregate function although
our architecture can easily be extended to support arbitrary
aggregating operators. It is also possible to only gather the
information and provide raw data without further processing.
The result of a query is a continuous data stream of sensor
information about the area of interest. The approach presented
in this paper implicitly defines the routing of the data stream
according to the reuse relationship between multiple queries.

Predictors provide expected future measurement values
based on the as yet observed data. They are established on
every data link in the system to provide real-time estimated
values. With the forwarding of reused results between peers, a
multilevel prediction hierarchy emerges. To exploit predictors
not only for real-time purposes but also for data reduction,
a maximum tolerated deviation can be additionally specified
in the query. Both sender and receiver agree on the same
predictor setup and synchronize their operation. When the
predictor on the sender produces an estimation that differs less
from the actual measurement than the given threshold no data
needs to be transferred to the receiver. The detailed description
of the operation of predictors is given in Section III-C.

B. Distributed Data Aggregation

Our query model allows for queries to specify a geograph-
ical area rather than explicitly stating single data sources.
Therefore, we need an efficient index structure for source
discovery. If all queries that are already running are integrated
into this index, it can be exploited to allow the reuse of the
associated data streams by identifying intersections between
new and already existing queries. To achieve this, all peers
and gateways are integrated into an R-Tree which is commonly
used for indexing of points and rectangular shapes in database
systems. On the way from a leaf to the tree’s root, each parent
vertex manages a rectangle that is a representation of all its
children merged together, called minimum bounding rectangle
(MBR). In other words, each node manages a rectangular
shape which is becoming smaller from the root to the leaves.
The rectangle managed by a node contains all of its children;
this is called the containment relationship of an R-Tree. In our
scenario, the leaves in the R-Tree consist of MBRs of single
sensor networks represented by their respective gateway which
then manages access to the single sensors. The tree structure
is distributed into the network by mapping the logical vertices
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Fig. 1. The connection between the geographical alignment of queries and
their positioning in the R-Tree

of the tree to available physical nodes (namely gateways
and peers) forming a distributed R-tree index. To exploit
the distributed R-Tree index for reuse of data streams the
construction, insertion, and routing mechanisms were modified
as described in the following.

Index Construction: Initially, the R-Tree is constructed
using the gateways of the available sensor networks which are
specified by their MBRs. As a result, certain gateways will
not only appear as leaves inside the tree but additionally serve
as intermediate vertices. However, the intermediate vertices
that are represented by gateways are only used for sensor
data lookup and not the actual routing. As queries will be
integrated during runtime, the querying peers will step by
step replace them. The root of the tree represents an MBR of
all known sensor networks and therefore covers the complete
world as represented in our system. To avoid overloading the
node responsible for the root vertex, it can be replicated to
multiple nodes.

Inserting a New Query: A new peer can send a query to
any node already participating in the R-Tree. On reception of
a new query, the receiver compares the query to the MBR it
is currently managing. If there is no match, i.e. the query is
not contained inside the MBR, the receiver passes the query
to the parent in the R-Tree. Eventually, the query will reach
a node whose MBR completely contains the query. Note that
the root vertex comprises the entire world. From this point on,
the query is passed down the tree by forwarding the query to
the child which potentially still contains the requested area.
When a node is reached where the containment relationship
to the new query is no longer given, the node initiates the
insertion of the new peer into the distributed R-Tree index.
The peer will be assigned an MBR which matches exactly
its query rectangle. If there is a gateway node managing the
same MBR in the tree, the new peer replaces the respective
gateway. Figure 1 shows an example matching between the
areas of different queries on the left and the corresponding
tree structure on the right.

Routing for Efficient Reuse of Sensor Data: The structure
to route sensor data can easily be constructed from this R-
Tree. Figure 1 shows, how data routing is handled between



intersecting queries: The peers share the matching areas with
another and create horizontal routes. Apart from these special
cases, the routing structure resembles the R-Tree created for
indexing. Using this routing scheme, the number of outgoing
links is inherently limited: Links are built by descending the
tree, thus a peer receiving a certain data stream is discovered
before the actual gateway. Instead of creating a second route
to the source, the already receiving peer has to share his data
stream by forwarding the appropriate sensor readings. Gate-
ways provide data of the sensor network they are connected
to on the lowest level of the tree. Therefore, any gateways
serving as intermediate nodes are left out while creating the
routes, sending the data directly to the next peer.

Aggregate Calculation: In a system of global scale, a new
query will receive mostly partial results from other queries
instead of getting data directly from a gateway. Duplicate sen-
sitive aggregations like the average function require additional
computation when they are computed in multiple steps. As
each of the reused results is an aggregation of values over a
differently sized area, it is necessary to weigh the incoming
values accordingly (cf. Figure 1: Query ()2 receives partial
results Q21 and (2.2 from queries 3 and Q4 respectively).
The individual weights w; for each of the k incoming results
are calculated according to the area of the reused result. In
our approach the result r* for a query at the time ¢ is then
computed by weighting the values of n reused partial results
according to their area A; with respect to the total queried
area Ay

k
¢ A Ai
rt = ;wldi , with w; = A,
denoting the weight for the " incoming data stream and
dt denoting the value of the i*" stream at the time ¢. This
assignment of weights is adequate for temperature data with a
reasonably equal density of sensors in all areas. However, other
adapted average calculations like median estimation are likely
to be better suited by weighting according to the number of
sensors instead of area size. Different alternatives have already
been investigated for sensor networks (e.g. [32]) and their
integration is subject to future work.

Fair Load Distribution: The additional load of sharing
data streams is distributed in a fair manner across all peers.
Every node only has to provide the data, it has actually
queried. Therefore, the load induced by this distribution is
proportional to the amount of data the respective peer acquires
from the system. Furthermore, the number of outgoing links
for each peer is limited to a system wide maximum. Although
the system could also work with a single outgoing link for each
peer, a higher number of links reduces the average number of
hops required.

With our approach we satisfied the two main goals: first, the
reuse of data streams is inherent in the R-Tree structure by the
containment property which is maintained between a parent
and its children. By mapping the vertices that correspond to
queries of the peers that issued them, those peers can provide
their results to their fathers and siblings. Gateways are thereby

alleviated of distributing their data to each and every consumer
by themselves. Our insertion procedure can furthermore ensure
that each gateway only has to maintain a single outgoing data
link by shifting additional load to the peers in a fair manner.

C. Multilevel Prediction

While the aggregation structure introduced in Section III-B
provides efficient sensor lookup and reuse of data streams, it
does not optimize for network latency. To overcome this and
provide real-time estimated results, predictors are integrated
into our stream processing system.

Predictor Models: A predictor uses a certain predictor
model to generate an estimated value of the next expected
measurement. This is done by combining a set of model
parameters u; with a set of recently received sensor mea-
surements df, where ¢ denotes the time the measurement was
received. The number of model parameters depends on the
order of the predictor. In our system we focused on a seasonal
autoregressive integrated moving average (SARIMA) model
[33], [9] as a representative for more complex approaches.
The SARIMA model originates from the time series analysis
domain where long term trend analysis is more important than
fast generation of model parameters. The least-mean-square-
algorithm (LMS) [7] provides a simple and fast alternative
with low memory and computational overhead.

The LMS algorithm uses a simple approach to update the
model parameters in each time step. For each parameter its
new value ) is calculated based only on the absolute error
of the last prediction ¢! = d* — p' and its corresponding last
measurement 2'~"+? The adaptation speed of the model is
controlled by pu, which depends on the variability of the input
data.

uf = u; + petd ="

In this case, the parameters and measurements can then be
evaluated to a prediction of the expected future measurement
as a weighted sum:

n
pt+1 — E uidt—n—‘ri
i=1

In contrast, a SARIMA model is specified by two statistical
processes one of which covers the seasonal part while the
other models the general trend. Both processes consist again
of an auto-regressive and a moving average part. Furthermore,
SARIMA models differ in the order of differencing that is
used to estimate the current trend in the observed data for
the general and seasonal part. The order of a SARIMA model
is given by (p,d, q) x (P,D,Q)s, where p and d denote the
orders of the auto-regressive and moving average processes,
respectively. d is the order of differencing used, the upper-
case letters stand for the according values of the seasonal
components. The model parameters can be estimated using
several strategies [33]. A detailed description of this estimation
is, however, out of the scope of this paper.

Note that parameter estimation takes a considerable amount
of computational effort and is therefore only done during
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an initial training phase. Approaches for periodically re-
fining the model parameters to capture qualitative changes
in the observed measurements have also been proposed for
the PRESTO architecture [9]. It was also observed that the
optimal order of the SARIMA model for temperature data is
(0,1,1) x (0,1,1)s.

The computation of a prediction for the SARIMA model
takes into account historical measurements and their respective
prediction errors. S thereby denotes the length of the seasonal
period of the observed phenomena, for example, one day in
the context of temperature measurements. With the model
order proposed in the PRESTO architecture, predictions are
computed as follows:

Pt+1 = Tt + Ti-S+1 — Tt—S

+  Urer — Uet—S+1 + UIUE— S

Operation Modes: To use predictors to reduce the number
of measurements transmitted from a data source to a corre-
sponding sink, they agree on the same prediction model along
with the according set of model parameters. They also have
to agree on the same history of measurements and prediction
errors in order to provide the same predictions. This can be
done during an initial setup phase where measurements are
directly sent to the sink until a certain history of data is
available at both, the source and the sink.

During normal operation, in each time step, they indepen-
dently estimate the next measurement. Only if the source
detects that the actual measurement deviates more than the
user-given threshold from the prediction, it sends and update
to the sink. If the prediction was sufficiently precise, it is
added to the set of recent sensor measurements and the model
parameters remain unchanged.

Although the generation of model parameters is the most
expensive part of predictors with respect to the processing
time, each peer in GSN is powerful enough to perform it
locally. Model parameters can therefore be computed on the
source, the sink, or both. This also allows a flexible decision
on how much information is exchanged for an update between
two correspondent predictors. Possibilities range from single
measurements over a set of model parameters to a complete
history of data. By using a modular design, all operation
modes can be combined with arbitrary prediction models in
our system.

The sink-based operation shown in Figure 2(a) requires
the transfer of measurements to the sink where predictor
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Three operation modes: Model parameters are generated on the gray node

model parameters are computed. Model parameters are then
transferred back to the data source where the prediction is
calculated and compared to the actual measurement. It is
well suited for the resource-constrained environment of WSN
to unburden the sensor nodes from expensive computations.
However, in distributed stream processing the reduction of
transmitted data is more important and such constraints are
not present. Therefore, we did not focus on the sink-generated
approach due to its additional traffic caused by communicating
measurements and model parameters.

If the model parameters are generated locally on both ends
of the communication link, their transmission can be avoided
at cost of increased computational load. The location of the
parameter generation and transfer of measurements is shown
in Figure 2(b). The major problem is to keep the models in
sync, since a single lost update can cause increasing deviation
in the two predictions over time. Depending on the order of
the predictor and the properties of the measured data, the
models can either be synchronized using single updates or
larger blocks of measurements. With data that can be predicted
with high accuracy over long time periods, larger blocks of
measurements can be profitable over single measurements. A
trade-off between the reduction of messages and transmitted
information has to be found that allows the most effective
operation of the predictor.

Another possible mode of operation is source-based, as can
be seen in Figure 2(c). In this case, model parameters are only
computed on the data source, where all actual measurements
are available. This approach requires the transmission of the
whole parameter set to the sink node. The amount of data
that has to be transmitted is therefore higher than for the
synchronous approach, but if an update is lost, the parameters
are completely replaced with the next update. However, since
the measurement histories also have to be in sync, updates
are extremely costly in terms of bandwidth. We expect this
approach to perform best for more complex prediction models
that can encode more information in the set of model param-
eters.

Multi-Level Operation: In our multilevel aggregation
setup, predictors are employed on every data link between
peers. Since measurements may arrive late, each peer sends
its own estimation of the actual sensor measurement to its
successor and provides real-time results. As a result, the
theoretically possible deviation increases with each predictor
hop in the system. However, in each time step, the predictor
cannot deviate more than the user-defined threshold. It takes



Fig. 3.

The sensor stations considered in the area of Minnesota

as many consecutive time steps without update as hops in
the system to reach this theoretical bound. Additionally, the
prediction error has to be only marginally smaller than the
received data in each of these time steps. Due to the variance in
measurements, this threshold is never met over a longer period
in practical use. Since the predictors operate on aggregated
data, the prediction model can also benefit from the smoothed
input data. Especially by using the average operator, prediction
errors with opposite sign mutually compensate and result in
smaller prediction errors on the outgoing data link.

IV. EVALUATION

The system described in Section III has been evaluated
with multiple real-world datasets. More specifically, we se-
lected a total of 184 sensor stations freely available from the
NOAA [10] in the area of 97°W to 91°W and 43°N to 48°N
(NOAA dataset). This is a rough approximation of the state of
Minnesota, for the concrete placement of sensor stations, see
Figure 3. The sensor readings were collected over a period of
one month, December 2008, on an hourly basis. Two further
sets of data include all stations from the German Weather
Service (DWD) [11] during April 2008. One set includes data
from 489 stations on an hourly basis (DWDsy dataset), the
other consists of measurements from 184 (DWDmu dataset)
stations that gather data every 10 minutes. To provide a
comparison to the originally proposed predictors, the set of
Intel Lab Data [12] measurements (mitlab dataset) was also
used for evaluation. In general, evaluations have shown very
similar results for all datasets and therefore only the DWDmu
dataset is shown in most figures for clarity.

Following our goals, the experiments intend to investigate
the following issues:

o What is the impact of the smoothing effect of building
an aggregated average over sensor data?

« How efficient can predictors reduce traffic in a multilevel
environment?

o What is the user-experienced deviation from the actually
measured values?

e Which prediction model performs best in terms of saving
network bandwidth with respect to the used type of sensor
data?

To clearly stress the properties of predictors in this scenario,
we set up an idealized aggregation tree for a single query
over all available sensors. Data is transmitted to a single node
using predictors. The average over all sensor predictions is
then calculated and forwarded using a second predictor. The
overall prediction error was determined for each of the links
originating directly from the sensors as well as for the overall
average. Although this setup only involves two successive
prediction steps, our results clearly show the applicability of
different predictor models.

The two most common predictor models, LMS and
SARIMA, have been chosen for evaluation. To investigate
whether the achieved performance really originates from the
model and not the general prediction approach, a simple model
was also evaluated. This simple model always provides the last
received measurement as prediction without considering any
history or trend of the data.

Evaluations have shown that none of the approaches pro-
vides a sufficiently high prediction horizon to compensate for
additional transmission of complete parameter sets or blocks
of measurements. Therefore, only the synchronous operation
mode, which provides the intended benefit of reduced traffic,
is shown in the results. In particular, only single measurements
are transmitted when the desired deviation is exceeded. Trans-
mission of multiple values for updates has shown to cancel out
the data reduction properties of a predictor.

To show the ability of different predictor models to reduce
traffic, their hit ratio has been investigated. A prediction
is sufficiently precise if it differs less than the user given
threshold from the measurements. The hit ratio is defined
as the number of sufficiently precise predictions divided by
the total number of measurements over the whole experiment.
As measurements are only transferred when the deviation is
exceeded, this corresponds directly to the reduction in traffic.
In other words, the hit ratio quantifies the portion of traffic
that is saved using a predictor.

A. Smoothing of Data by Aggregation

Since high and sudden deviation usually cannot be covered
by predictors, high noise in input data usually leads to poor
predictor accuracy. As already described in Section III-C,
smoothed input data is therefore expected to lead to better
prediction results. Two values characteristic for the noise in
input data were considered: variance and mean input power.
The mean input power is also used to estimate the parameter
w for the LMS predictor which controls its adaptation speed.

We evaluated the smoothing effect of averaging temperature
measurements on a large scale to show the resulting significant



Dataset Avg. Var. | Var. of Agg.

DWD sy 18.4 13.8

DWD mu | 17.8 13.9

mitlab 9.5 1.7

NOAA 50.2 33.6
TABLE I

REDUCED VARIATION DUE TO AGGREGATION

Dataset Avg. MIP | MIP of Agg.

DWD sy 71.3 68.7

DWD mu | 74.6 66.7

mitlab 477.6 4559

NOAA 179.3 142.7
TABLE II

REDUCED MEAN INPUT POWER (MIP) DUE TO AGGREGATION

reduction in variation and mean input power. Tables I and II
show the results of our evaluation.

The data was averaged over the complete available data
sets to show the maximum possible impact. The reduction of
both, variation and mean input power, is clearly visible for
all datasets. In fact, both, mean input power and variance, are
smaller for the aggregated data than for any single sensor.
Of course, this smoothing effect is smaller when fewer sen-
sors are considered. However, on a system of global scale,
we believe that queries will usually cover many sensors to
improve reliability of results and reduce the effect of outlying
measurements. The following sections discuss the impact on
the different predictor models.

B. Reduced Amount of Data

Results for different predictor models are shown in Fig-
ure 4. The graph shows the average hit ratio over single hop
predictors for all stations.

Since the fast adaptation speed of predictor model of lower
order is best suited for highly variable sensor data, the LMS
model considered is of order 1. Higher order models can be
used to fit the underlying trend in measurements but still do
not achieve the same hit ratio. As a higher order directly
results in increased memory usage and higher computational
effort for parameter estimation, models of order 1 provide the
best overall characteristics. While the LMS model performs
best considering the overall hit ratio, the good performance of
the simple approach indicates that the measured values only
change slowly over time.

The SARIMA model performs very well for a small thresh-
old in maximum deviation. With increasing threshold, the
model gets too few updates to provide sufficiently precise
predictions. This behavior can be improved by using other
operation modes and by transmitting a block of measurement
updates instead of single values. However, outdoor temperature
data does not have the seasonal nature required for efficient
operation of SARIMA predictors.

Figure 5 shows the comparison of the SARIMA and LMS
models to the simple model for a predictor operating on
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Fig. 5. Hit ratio of a predictor using the aggregated DWDmu dataset
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Fig. 6. Hit ratio of different predictor models for a two hop predictor on the
DWDmu dataset

the data aggregated over all stations of the DWDmu dataset.
All predictor models significantly benefit from the smoothed
input values and provide a higher hit ratio. As expected, the
SARIMA model gains most from this effect especially for low
thresholds. The LMS model clearly outperforms the simple
approach in this setting because the current trend in measured
data can be taken into account.

The hit ratio of the considered prediction models in the two
hop setup is shown in Figure 6. Surprisingly, the SARIMA
model performs equally well as in single hop operation while
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Fig. 7. Average prediction error of different predictor models for single hop
using the DWDmu dataset

0.9 T T

SIMPLE —+— %
0.8 LMS --X- R
SARIMA -3 X

06 | K ,

Prediction Error

Threshold

Fig. 8. Prediction error of different predictor models using the aggregated
DWDmu dataset

the other approaches show a decrease in their hit ratio.
Especially the simple model cannot provide the hit ratio as
in single hop operation. The reason for this decrease is that
it cannot cover any kind of trend in the observed data and
therefore lags behind the actual measurements. Opposing to
this, the SARIMA model relies on the daily trends in the
observed data which provide more information about the data
than a simple trend analysis.

C. Errors in Predictions

While the maximum deviation is given by the user-defined
threshold, the user-experienced error presents the more im-
portant information. The average absolute deviation between
the data delivered by the predictor and the actually measured
data is shown in Figure 7 for the non aggregated data of each
station in the dataset. Since the data provided by the stations
is given at a resolution of 0.1°C the error does not decrease
further even for a lower threshold.

The LMS and simple approaches provide a prediction error
below the actual threshold because the changes in the trend
are very low. In contrast, the SARIMA model relies on the
information from the last season, e.g. the day before. It
thereby generates several significantly higher prediction errors
as outdoor temperature greatly varies between days.

Figure 8 shows the results for the aggregated dataset. Again,
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Fig. 9. Prediction error of different predictor models for a two hop predictor
on the DWDmu dataset

the improved performance of predictors can also be seen in
terms of reduced prediction error. As in the case of improved
hit ratio, the gain depends on the prediction model. The
SARIMA model can again benefit most when using low error
thresholds and provide better prediction accuracy.

With two hop operation of predictors the prediction error
perceived by the user increases, as shown in Figure 9. Again,
the result in prediction error is very similar to that of the hit
ratio.

Note that the error increases proportionally with the allowed
deviation, indicating that the variation in temperature is still
significantly higher. This also means that the information
provided to the user still contains the queried information
despite the high reduction in data transmitted.

Since an update is always sent when the maximum specified
deviation is exceeded, the maximum prediction error will be
eventually constrained when the update is received by the user.
However, the average prediction error of the LMS and simple
models is smaller than the provided maximum deviation for a
sufficiently high threshold. This indicates that the predictions
can be used as real-time estimate of the actual sensor data.

D. Applicability of Predictors for Different Sensor Types

The evaluations have shown that the LMS model is best
suited as predictor for temperature data contained in the
DWDmu dataset. Figures 10, 11, and 12 show the data
reduction results for other types of sensor data for a two hop
prediction setup. Instead of temperature the measurements of
relative humidity, wind speed and air pressure of the same
dataset were used as input.

While the seasonal nature of humidity variation is best fit
by the SARIMA model, the highly dynamic non seasonal
wind speed can still be fit by the LMS and simple models.
Most of the predictions can, however, also be provided by a
very simple approach that assumes sensor information to be
constant. Other sensor types like air pressure, where the simple
approach does not perform well, provide a better ground for
prediction models like LMS and SARIMA. This clearly shows
that predictors are not equally suited for different types of
sensor information.
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Fig. 10. Hit ratio for different predictor models for a two hop predictor using
humidity data from the DWDmu dataset
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Fig. 11. Hit ratio for different predictor models for a two hop predictor using
wind speed data from the DWDmu dataset

V. CONCLUSIONS AND FUTURE WORK

We have shown how a distributed R-Tree approach can be
used to provide a scalable solution for global indexing of sen-
sors. By exploiting the containment relation inherent to the R-
Tree structure, we achieved fair load distribution and efficient
reuse of data streams. The basic concept of predictors can be
used to greatly reduce traffic even in a multilevel aggregation
scheme. Our evaluations show that predictor models that have
been proposed for WSN in the literature also perform well in
our multi-hop scenario. Especially the LMS predictor performs
well not only for the original mitlab temperature measurements
but also for other types of sensors and outdoor sensors. As
in WSN, a low order of the LMS predictor provides the
best results and provides a low computational overhead and
requires little memory. The performance of predictors is even
better for smoothed input values which significantly improve
the hit ratio and prediction error for all predictor models.

Although these results provide very powerful mechanisms
for the handling of global sensor data, further research ques-
tions remain. First of all, the system has to cope with different
quality of data requirements of users. When serving data
at different precision levels the identification and reuse of
matching data streams becomes far more complex. If the pre-
cision is determined by the system, the trade-off between user
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Fig. 12. Hit ratio for different predictor models for a two hop predictor using
pressure data from the DWDmu dataset

experienced precision and network load has to be investigated.
Finally, the question remains whether the precision of data
delivered to the user can be adapted on a finer granularity by
pro-actively sending updates before the maximum deviation is
exceeded.
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