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Abstract—Real-time diagnostic simulations are one challenging
application domain that is expected to introduce high require-
ments to global sensor applications. Besides having hard con-
straints on latency bounds at which data needs to be processed,
such simulation applications will impose high requirements with
respect to available bandwidth. Predictors, originally introduced
in the domain of wireless sensor networks for energy saving,
are one appealing solution to provide real-time estimates and at
the same time significantly reduce the data rates. While in the
setting of wireless sensor networks many prediction models have
been analyzed, their behavior and use is unclear when applied to
distributed data streams where aggregation results are typically
processed over multilevel hierarchies.

In the context of weather simulations, we propose a distributed
R-Tree-based aggregation algorithm that allows for efficient reuse
of aggregate queries. In the setting of real temperature readings
taken from weather stations during one month, we study the
trade-off between updates of the prediction model and the
precision of the predicted values. Our evaluations indicate that
even in situations where complex prediction models are expected
to perform best, simple prediction models give higher benefits
with respect to saving bandwidth while providing similar data
accuracy.

Keywords-Global Sensor Networks; Distributed Stream Pro-
cessing; Predictors

I. INTRODUCTION

With the increasing deployment of local sensor networks

it has become possible to use their data for a wide range

of applications on a global scale as part of a global sensor
network (GSN). Especially the simulation of natural habi-

tats and ecosystems has gained attention over recent years

to better understand global environmental changes. As the

popularity of such applications and the number of users in-

creases, it becomes important to provide middleware solutions

and expressive continuous query paradigms for efficient data

retrieval. This includes optimized bandwidth usage and the

need to avoid the overload of data sources. Several Distributed
Stream Processing Systems (DSPS) [1], [2], [3], [4] have

been proposed that process data streams inside the network.

In-network processing like filtering and aggregation reduces

traffic in the system and therefore improves its efficiency.

While those approaches are an important step in contribut-

ing to a scalable deployment for GSN applications, major open

research challenges are the provision of timely data access as

well as the handling of large bursts of data. Such bursts need

to be addressed particularly in real-time simulations where it

is important to directly investigate the impact of environmental

disasters on habitats and ecosystems to take countermeasures.

However, traditional approaches proposed to enable real-time

processing such as network reservation protocols are typically

not available at the global scale. Moreover, the occurrence of

unforeseen data bursts may still cause overload on the reserved

capacity on the underlying communication links.

In this paper we propose and evaluate an alternative ap-

proach to real-time communication based on prediction mod-

els. Predictors were originally proposed in the domain of

Wireless Sensor Networks (WSN) [5] to prolong the lifespan

of individual sensors that are only scarcely equipped with

resources. To achieve this, the amount of data reported to the

WSN gateway is reduced by using predicted values instead

of actual readings at the expense of slightly less accurate

values. Additionally, an estimated measurement can be ob-

tained instantly without introducing any communication delay.

In the WSN domain various prediction models [5], [6], [7],

[8], [9] have been proposed, widely differing in their employed

algorithms and complexity.

However, in a global system for sensor information, single

hop communication between sensors and applications prevents

the reuse of data for multiple recipients. Therefore we present

a new approach to multilevel data sensor data aggregation

which allows efficient reuse of results. In this setting of mul-

tilevel hierarchies, the different accuracy in predicted values

and applicability of predictors remain unclear. Even for sensor

networks there exists no classification, which prediction model

is best-suited for a certain type of data (e. g. temperature

readings or wind speed). This question becomes even more

difficult with in-network processing in a global multilevel

context.

We demonstrate for a distributed R-Tree-based aggregation

algorithm optimized for data reuse, how multilevel predictions

can be integrated into distributed stream processing systems.

The performance is evaluated on the basis of temperature

sensor readings of the National Oceanic and Atmospheric

Association (NOAA) [10] and the German Weather Service

(DWD) [11] taken during a whole month. In addition, the Intel

Lab Data set [12] was used to compare the results to existing

approaches. Complex prediction models were expected to

perform best since they capture the daily recurring features of
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sensor data. However, our results show that computationally

simple models provide the best performance with respect to

saving bandwidth.

In the remainder of the paper, Section II discusses related

work. Section III presents our approach to a distributed R-

Tree and the multilevel predictions along with the underlying

system model. Our evaluations results are shown in Section IV.

Finally, Section V concludes the paper.

II. RELATED WORK

The Global Sensor Networks middleware (GSN) [13] pro-

poses virtual sensors. By specifying local physical sensors or

other remote virtual sensors as input and supplying algorithms

for data processing, the result can be published as new

virtual sensor to other users. However, GSN does not support

direct queries to sensors without defining a virtual sensor

for the set of sensors of interest and lacks the possibility to

automatically find sensors of interest. Publish/subscribe [14],

[15], [16] has emerged as a generic powerful many-to-many

communication paradigm. It is applied for efficient decoupling

of data sources (sensor nodes in a GSN) and subscribers

to data streams mostly in event processing systems. More

recent approaches also consider the delay and bandwidth con-

straints of subscribers [17], [18]. Applied in a GSN however,

publish/subscribe lacks the possibility to perform in-network

processing required to greatly reduce the high data rates.

To exploit the advantages of in-network processing of data,

several distributed stream processing systems (DSPS) like

Borealis [1] have been proposed. However, its query interface

requires manual stream modeling and distribution of operators

to available nodes. Other approaches like IrisNet [2] and HiFi

[3] focus on the special properties of sensor data and provide

data filtering and preprocessing close to the sensors. Hourglass

[4] provides robust so called circuits on intermittent connec-

tions between nodes. Although they all support information

source lookup and automatic routing of data streams, they lack

the reuse of streams and intuitive range querying as required

for global sensor data. SBON [19] introduces a layer between

the DSPS and the physical network to optimize placement for

network usage. The approach was improved towards optimal

mapping of operators with respect to the underlying network

[20]. Although similar operators might be placed on the same

node, explicit reuse is not supported by this approach.

Contrary to these DSPS, our approach is to exploit the

similarities in data streams by actively avoiding redundant

data transmission. To reuse data streams we extended the R-

Tree [21] to be organized in a distributed fashion that can be

used to locate data as well as to route data streams. Previous

approaches for distributed R-Trees like NR-Tree [22], Peer-

Tree [23] or TPR*-Tree [24] only covered query routing

and data source lookup but not the routing of the actual

data streams. The DR-Tree [25] does handle routing in pub-

lish/subscribe to minimize false positives. However, it does not

optimize reuse of data processing.

The optimization for reuse of data and reduction of band-

width usually results in additional hops in the network com-

munication and therefore increased delay. To provide real-

time estimated results, we use the concept of predictors

as introduced in the context of WSN [5]. First successful

approaches focused on compression of multiple measurements

before transmitting them as a whole. Between the reception

of measurement blocks, the WSN gateway supplies predicted

values to the user [6]. With the increasing computational

power, the predictions were calculated directly on the sensor

nodes using simple models. By simultaneously calculating

them on the gateways only differing measurements actually

had to be transferred from sensor nodes to the gateway, thereby

reducing communication and hence energy consumption [26],

[27], [7], [8]. More complex SARIMA models are used in

PRESTO [9]. However, these models are too complex for

sensor nodes and have to be computed on the WSN gate-

way. Further projects tried adaptations of control theory and

Kalman filters for prediction [28]. Although these filters are

versatile, they require manual modeling for each sensor and

its individual characteristic. This is unfeasible for a global

sensor network with a huge number of sensors where further

challenges arise when using predictors [29]. However, besides

the most basic prediction in the form of caching [30], the

Kalman filter was the only approach that has yet been applied

in DSPS [31].

III. PREDICTION-BASED AGGREGATION OF DATA

In the following, we introduce our approach to support real-

time estimates on the aggregated sensor data of a geographical

region. We use this setting to evaluate prediction models

applied over multilevel hierarchies. In Section III-A, we first

introduce the basic system model and describe the partici-

pating nodes. Section III-B shows how aggregation streams

can be established over an R-Tree-based overlay to enable i)

efficient reuse of existing streams to reduce network load on

the sensor network gateways and ii) fair distribution of this

load according to the interest of peers. Finally, Section III-C

shows how to integrate different prediction techniques into

our system to save additional bandwidth and provide real-time

estimations.

A. System Model

A GSN is formed by a set of gateways and peers. A gateway

is associated with a local sensor network and can answer

queries on the data available in that sensor network. In case of

a failure of a gateway its associated WSN could not be queried

at all. We therefore assume reliably available gateways and use

them to build up a basic indexing structure for data source

lookup. Peers are all other nodes participating in the GSN

with a query which they can perform by either contacting a

gateway or another peer of the GSN. Every peer that queries

the GSN is then automatically integrated in the system and

contributes to the maintenance of the GSN. This way, the task

of data dissemination can be distributed among peers in a fair

fashion and the reuse of data streams becomes possible.

We approximate the real world using a plane since coordi-

nates can then be easily converted to latitude and longitude



values. As already described it is unfeasible to explicitly

address every single sensor to query in a global sensor network

with a huge number of sensors. Therefore, we chose a query

model which focuses on the specification of a region of interest

rather than individual sensors. The region is used to find

nodes which have the desired information available and finally

resolved to single sensor nodes.

Applications specify the geographical area of interest as

a rectangular shape using the lower left and upper right

corners as identification marks. Besides these coordinates,

a query includes the requested type of sensor data and an

aggregation function which should be used to combine the

measurements of single sensors. In particular, we consider in

our evaluations only the average aggregate function although

our architecture can easily be extended to support arbitrary

aggregating operators. It is also possible to only gather the

information and provide raw data without further processing.

The result of a query is a continuous data stream of sensor

information about the area of interest. The approach presented

in this paper implicitly defines the routing of the data stream

according to the reuse relationship between multiple queries.

Predictors provide expected future measurement values

based on the as yet observed data. They are established on

every data link in the system to provide real-time estimated

values. With the forwarding of reused results between peers, a

multilevel prediction hierarchy emerges. To exploit predictors

not only for real-time purposes but also for data reduction,

a maximum tolerated deviation can be additionally specified

in the query. Both sender and receiver agree on the same

predictor setup and synchronize their operation. When the

predictor on the sender produces an estimation that differs less

from the actual measurement than the given threshold no data

needs to be transferred to the receiver. The detailed description

of the operation of predictors is given in Section III-C.

B. Distributed Data Aggregation

Our query model allows for queries to specify a geograph-

ical area rather than explicitly stating single data sources.

Therefore, we need an efficient index structure for source

discovery. If all queries that are already running are integrated

into this index, it can be exploited to allow the reuse of the

associated data streams by identifying intersections between

new and already existing queries. To achieve this, all peers

and gateways are integrated into an R-Tree which is commonly

used for indexing of points and rectangular shapes in database

systems. On the way from a leaf to the tree’s root, each parent

vertex manages a rectangle that is a representation of all its

children merged together, called minimum bounding rectangle
(MBR). In other words, each node manages a rectangular

shape which is becoming smaller from the root to the leaves.

The rectangle managed by a node contains all of its children;

this is called the containment relationship of an R-Tree. In our

scenario, the leaves in the R-Tree consist of MBRs of single

sensor networks represented by their respective gateway which

then manages access to the single sensors. The tree structure

is distributed into the network by mapping the logical vertices

Fig. 1. The connection between the geographical alignment of queries and
their positioning in the R-Tree

of the tree to available physical nodes (namely gateways

and peers) forming a distributed R-tree index. To exploit

the distributed R-Tree index for reuse of data streams the

construction, insertion, and routing mechanisms were modified

as described in the following.
Index Construction: Initially, the R-Tree is constructed

using the gateways of the available sensor networks which are

specified by their MBRs. As a result, certain gateways will

not only appear as leaves inside the tree but additionally serve

as intermediate vertices. However, the intermediate vertices

that are represented by gateways are only used for sensor

data lookup and not the actual routing. As queries will be

integrated during runtime, the querying peers will step by

step replace them. The root of the tree represents an MBR of

all known sensor networks and therefore covers the complete

world as represented in our system. To avoid overloading the

node responsible for the root vertex, it can be replicated to

multiple nodes.
Inserting a New Query: A new peer can send a query to

any node already participating in the R-Tree. On reception of

a new query, the receiver compares the query to the MBR it

is currently managing. If there is no match, i.e. the query is

not contained inside the MBR, the receiver passes the query

to the parent in the R-Tree. Eventually, the query will reach

a node whose MBR completely contains the query. Note that

the root vertex comprises the entire world. From this point on,

the query is passed down the tree by forwarding the query to

the child which potentially still contains the requested area.

When a node is reached where the containment relationship

to the new query is no longer given, the node initiates the

insertion of the new peer into the distributed R-Tree index.

The peer will be assigned an MBR which matches exactly

its query rectangle. If there is a gateway node managing the

same MBR in the tree, the new peer replaces the respective

gateway. Figure 1 shows an example matching between the

areas of different queries on the left and the corresponding

tree structure on the right.
Routing for Efficient Reuse of Sensor Data: The structure

to route sensor data can easily be constructed from this R-

Tree. Figure 1 shows, how data routing is handled between



intersecting queries: The peers share the matching areas with

another and create horizontal routes. Apart from these special

cases, the routing structure resembles the R-Tree created for

indexing. Using this routing scheme, the number of outgoing

links is inherently limited: Links are built by descending the

tree, thus a peer receiving a certain data stream is discovered

before the actual gateway. Instead of creating a second route

to the source, the already receiving peer has to share his data

stream by forwarding the appropriate sensor readings. Gate-

ways provide data of the sensor network they are connected

to on the lowest level of the tree. Therefore, any gateways

serving as intermediate nodes are left out while creating the

routes, sending the data directly to the next peer.
Aggregate Calculation: In a system of global scale, a new

query will receive mostly partial results from other queries

instead of getting data directly from a gateway. Duplicate sen-

sitive aggregations like the average function require additional

computation when they are computed in multiple steps. As

each of the reused results is an aggregation of values over a

differently sized area, it is necessary to weigh the incoming

values accordingly (cf. Figure 1: Query Q2 receives partial

results Q2.1 and Q2.2 from queries Q3 and Q4 respectively).

The individual weights wi for each of the k incoming results

are calculated according to the area of the reused result. In

our approach the result rt for a query at the time t is then

computed by weighting the values of n reused partial results

according to their area Ai with respect to the total queried

area Aq:

rt =

k∑

i=1

wid
t
i , with wi =

Ai

Aq

denoting the weight for the ith incoming data stream and

dti denoting the value of the ith stream at the time t. This

assignment of weights is adequate for temperature data with a

reasonably equal density of sensors in all areas. However, other

adapted average calculations like median estimation are likely

to be better suited by weighting according to the number of

sensors instead of area size. Different alternatives have already

been investigated for sensor networks (e.g. [32]) and their

integration is subject to future work.
Fair Load Distribution: The additional load of sharing

data streams is distributed in a fair manner across all peers.

Every node only has to provide the data, it has actually

queried. Therefore, the load induced by this distribution is

proportional to the amount of data the respective peer acquires

from the system. Furthermore, the number of outgoing links

for each peer is limited to a system wide maximum. Although

the system could also work with a single outgoing link for each

peer, a higher number of links reduces the average number of

hops required.

With our approach we satisfied the two main goals: first, the

reuse of data streams is inherent in the R-Tree structure by the

containment property which is maintained between a parent

and its children. By mapping the vertices that correspond to

queries of the peers that issued them, those peers can provide

their results to their fathers and siblings. Gateways are thereby

alleviated of distributing their data to each and every consumer

by themselves. Our insertion procedure can furthermore ensure

that each gateway only has to maintain a single outgoing data

link by shifting additional load to the peers in a fair manner.

C. Multilevel Prediction

While the aggregation structure introduced in Section III-B

provides efficient sensor lookup and reuse of data streams, it

does not optimize for network latency. To overcome this and

provide real-time estimated results, predictors are integrated

into our stream processing system.

Predictor Models: A predictor uses a certain predictor
model to generate an estimated value of the next expected

measurement. This is done by combining a set of model
parameters ui with a set of recently received sensor mea-

surements dt, where t denotes the time the measurement was

received. The number of model parameters depends on the

order of the predictor. In our system we focused on a seasonal

autoregressive integrated moving average (SARIMA) model

[33], [9] as a representative for more complex approaches.

The SARIMA model originates from the time series analysis

domain where long term trend analysis is more important than

fast generation of model parameters. The least-mean-square-

algorithm (LMS) [7] provides a simple and fast alternative

with low memory and computational overhead.

The LMS algorithm uses a simple approach to update the

model parameters in each time step. For each parameter its

new value u′i is calculated based only on the absolute error

of the last prediction et = dt − pt and its corresponding last

measurement xt−n+i. The adaptation speed of the model is

controlled by μ, which depends on the variability of the input

data.

u′i = ui + μetdt−n+i

In this case, the parameters and measurements can then be

evaluated to a prediction of the expected future measurement

as a weighted sum:

pt+1 =

n∑

i=1

uid
t−n+i

In contrast, a SARIMA model is specified by two statistical

processes one of which covers the seasonal part while the

other models the general trend. Both processes consist again

of an auto-regressive and a moving average part. Furthermore,

SARIMA models differ in the order of differencing that is

used to estimate the current trend in the observed data for

the general and seasonal part. The order of a SARIMA model

is given by (p, d, q) × (P,D,Q)S , where p and d denote the

orders of the auto-regressive and moving average processes,

respectively. d is the order of differencing used, the upper-

case letters stand for the according values of the seasonal

components. The model parameters can be estimated using

several strategies [33]. A detailed description of this estimation

is, however, out of the scope of this paper.

Note that parameter estimation takes a considerable amount

of computational effort and is therefore only done during



(a) Sink-based operation (b) Synchronous operation (c) Source-based operation

Fig. 2. Three operation modes: Model parameters are generated on the gray node

an initial training phase. Approaches for periodically re-

fining the model parameters to capture qualitative changes

in the observed measurements have also been proposed for

the PRESTO architecture [9]. It was also observed that the

optimal order of the SARIMA model for temperature data is

(0, 1, 1)× (0, 1, 1)S .

The computation of a prediction for the SARIMA model

takes into account historical measurements and their respective

prediction errors. S thereby denotes the length of the seasonal

period of the observed phenomena, for example, one day in

the context of temperature measurements. With the model

order proposed in the PRESTO architecture, predictions are

computed as follows:

pt+1 = xt + xt−S+1 − xt−S

+ u1et − u2et−S+1 + u1u2et−S

Operation Modes: To use predictors to reduce the number

of measurements transmitted from a data source to a corre-

sponding sink, they agree on the same prediction model along

with the according set of model parameters. They also have

to agree on the same history of measurements and prediction

errors in order to provide the same predictions. This can be

done during an initial setup phase where measurements are

directly sent to the sink until a certain history of data is

available at both, the source and the sink.

During normal operation, in each time step, they indepen-

dently estimate the next measurement. Only if the source

detects that the actual measurement deviates more than the

user-given threshold from the prediction, it sends and update

to the sink. If the prediction was sufficiently precise, it is

added to the set of recent sensor measurements and the model

parameters remain unchanged.

Although the generation of model parameters is the most

expensive part of predictors with respect to the processing

time, each peer in GSN is powerful enough to perform it

locally. Model parameters can therefore be computed on the

source, the sink, or both. This also allows a flexible decision

on how much information is exchanged for an update between

two correspondent predictors. Possibilities range from single

measurements over a set of model parameters to a complete

history of data. By using a modular design, all operation

modes can be combined with arbitrary prediction models in

our system.

The sink-based operation shown in Figure 2(a) requires

the transfer of measurements to the sink where predictor

model parameters are computed. Model parameters are then

transferred back to the data source where the prediction is

calculated and compared to the actual measurement. It is

well suited for the resource-constrained environment of WSN

to unburden the sensor nodes from expensive computations.

However, in distributed stream processing the reduction of

transmitted data is more important and such constraints are

not present. Therefore, we did not focus on the sink-generated

approach due to its additional traffic caused by communicating

measurements and model parameters.

If the model parameters are generated locally on both ends

of the communication link, their transmission can be avoided

at cost of increased computational load. The location of the

parameter generation and transfer of measurements is shown

in Figure 2(b). The major problem is to keep the models in

sync, since a single lost update can cause increasing deviation

in the two predictions over time. Depending on the order of

the predictor and the properties of the measured data, the

models can either be synchronized using single updates or

larger blocks of measurements. With data that can be predicted

with high accuracy over long time periods, larger blocks of

measurements can be profitable over single measurements. A

trade-off between the reduction of messages and transmitted

information has to be found that allows the most effective

operation of the predictor.

Another possible mode of operation is source-based, as can

be seen in Figure 2(c). In this case, model parameters are only

computed on the data source, where all actual measurements

are available. This approach requires the transmission of the

whole parameter set to the sink node. The amount of data

that has to be transmitted is therefore higher than for the

synchronous approach, but if an update is lost, the parameters

are completely replaced with the next update. However, since

the measurement histories also have to be in sync, updates

are extremely costly in terms of bandwidth. We expect this

approach to perform best for more complex prediction models

that can encode more information in the set of model param-

eters.

Multi-Level Operation: In our multilevel aggregation

setup, predictors are employed on every data link between

peers. Since measurements may arrive late, each peer sends

its own estimation of the actual sensor measurement to its

successor and provides real-time results. As a result, the

theoretically possible deviation increases with each predictor

hop in the system. However, in each time step, the predictor

cannot deviate more than the user-defined threshold. It takes



Fig. 3. The sensor stations considered in the area of Minnesota

as many consecutive time steps without update as hops in

the system to reach this theoretical bound. Additionally, the

prediction error has to be only marginally smaller than the

received data in each of these time steps. Due to the variance in

measurements, this threshold is never met over a longer period

in practical use. Since the predictors operate on aggregated

data, the prediction model can also benefit from the smoothed

input data. Especially by using the average operator, prediction

errors with opposite sign mutually compensate and result in

smaller prediction errors on the outgoing data link.

IV. EVALUATION

The system described in Section III has been evaluated

with multiple real-world datasets. More specifically, we se-

lected a total of 184 sensor stations freely available from the

NOAA [10] in the area of 97◦W to 91◦W and 43◦N to 48◦N
(NOAA dataset). This is a rough approximation of the state of

Minnesota, for the concrete placement of sensor stations, see

Figure 3. The sensor readings were collected over a period of

one month, December 2008, on an hourly basis. Two further

sets of data include all stations from the German Weather

Service (DWD) [11] during April 2008. One set includes data

from 489 stations on an hourly basis (DWDsy dataset), the

other consists of measurements from 184 (DWDmu dataset)

stations that gather data every 10 minutes. To provide a

comparison to the originally proposed predictors, the set of

Intel Lab Data [12] measurements (mitlab dataset) was also

used for evaluation. In general, evaluations have shown very

similar results for all datasets and therefore only the DWDmu

dataset is shown in most figures for clarity.

Following our goals, the experiments intend to investigate

the following issues:

• What is the impact of the smoothing effect of building

an aggregated average over sensor data?

• How efficient can predictors reduce traffic in a multilevel

environment?

• What is the user-experienced deviation from the actually

measured values?

• Which prediction model performs best in terms of saving

network bandwidth with respect to the used type of sensor

data?

To clearly stress the properties of predictors in this scenario,

we set up an idealized aggregation tree for a single query

over all available sensors. Data is transmitted to a single node

using predictors. The average over all sensor predictions is

then calculated and forwarded using a second predictor. The

overall prediction error was determined for each of the links

originating directly from the sensors as well as for the overall

average. Although this setup only involves two successive

prediction steps, our results clearly show the applicability of

different predictor models.

The two most common predictor models, LMS and

SARIMA, have been chosen for evaluation. To investigate

whether the achieved performance really originates from the

model and not the general prediction approach, a simple model

was also evaluated. This simple model always provides the last

received measurement as prediction without considering any

history or trend of the data.

Evaluations have shown that none of the approaches pro-

vides a sufficiently high prediction horizon to compensate for

additional transmission of complete parameter sets or blocks

of measurements. Therefore, only the synchronous operation

mode, which provides the intended benefit of reduced traffic,

is shown in the results. In particular, only single measurements

are transmitted when the desired deviation is exceeded. Trans-

mission of multiple values for updates has shown to cancel out

the data reduction properties of a predictor.

To show the ability of different predictor models to reduce

traffic, their hit ratio has been investigated. A prediction

is sufficiently precise if it differs less than the user given

threshold from the measurements. The hit ratio is defined

as the number of sufficiently precise predictions divided by

the total number of measurements over the whole experiment.

As measurements are only transferred when the deviation is

exceeded, this corresponds directly to the reduction in traffic.

In other words, the hit ratio quantifies the portion of traffic

that is saved using a predictor.

A. Smoothing of Data by Aggregation

Since high and sudden deviation usually cannot be covered

by predictors, high noise in input data usually leads to poor

predictor accuracy. As already described in Section III-C,

smoothed input data is therefore expected to lead to better

prediction results. Two values characteristic for the noise in

input data were considered: variance and mean input power.

The mean input power is also used to estimate the parameter

μ for the LMS predictor which controls its adaptation speed.

We evaluated the smoothing effect of averaging temperature

measurements on a large scale to show the resulting significant



Dataset Avg. Var. Var. of Agg.
DWD sy 18.4 13.8
DWD mu 17.8 13.9
mitlab 9.5 1.7
NOAA 50.2 33.6

TABLE I
REDUCED VARIATION DUE TO AGGREGATION

Dataset Avg. MIP MIP of Agg.
DWD sy 77.3 68.7
DWD mu 74.6 66.7
mitlab 477.6 455.9
NOAA 179.3 142.7

TABLE II
REDUCED MEAN INPUT POWER (MIP) DUE TO AGGREGATION

reduction in variation and mean input power. Tables I and II

show the results of our evaluation.

The data was averaged over the complete available data

sets to show the maximum possible impact. The reduction of

both, variation and mean input power, is clearly visible for

all datasets. In fact, both, mean input power and variance, are

smaller for the aggregated data than for any single sensor.

Of course, this smoothing effect is smaller when fewer sen-

sors are considered. However, on a system of global scale,

we believe that queries will usually cover many sensors to

improve reliability of results and reduce the effect of outlying

measurements. The following sections discuss the impact on

the different predictor models.

B. Reduced Amount of Data

Results for different predictor models are shown in Fig-

ure 4. The graph shows the average hit ratio over single hop

predictors for all stations.

Since the fast adaptation speed of predictor model of lower

order is best suited for highly variable sensor data, the LMS

model considered is of order 1. Higher order models can be

used to fit the underlying trend in measurements but still do

not achieve the same hit ratio. As a higher order directly

results in increased memory usage and higher computational

effort for parameter estimation, models of order 1 provide the

best overall characteristics. While the LMS model performs

best considering the overall hit ratio, the good performance of

the simple approach indicates that the measured values only

change slowly over time.

The SARIMA model performs very well for a small thresh-

old in maximum deviation. With increasing threshold, the

model gets too few updates to provide sufficiently precise

predictions. This behavior can be improved by using other

operation modes and by transmitting a block of measurement

updates instead of single values. However, outdoor temperature

data does not have the seasonal nature required for efficient

operation of SARIMA predictors.

Figure 5 shows the comparison of the SARIMA and LMS

models to the simple model for a predictor operating on
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Fig. 4. Average hit ratio of different predictor models for single hop using
the DWDmu dataset
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Fig. 5. Hit ratio of a predictor using the aggregated DWDmu dataset
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Fig. 6. Hit ratio of different predictor models for a two hop predictor on the
DWDmu dataset

the data aggregated over all stations of the DWDmu dataset.

All predictor models significantly benefit from the smoothed

input values and provide a higher hit ratio. As expected, the

SARIMA model gains most from this effect especially for low

thresholds. The LMS model clearly outperforms the simple

approach in this setting because the current trend in measured

data can be taken into account.

The hit ratio of the considered prediction models in the two

hop setup is shown in Figure 6. Surprisingly, the SARIMA

model performs equally well as in single hop operation while
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Fig. 7. Average prediction error of different predictor models for single hop
using the DWDmu dataset
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Fig. 8. Prediction error of different predictor models using the aggregated
DWDmu dataset

the other approaches show a decrease in their hit ratio.

Especially the simple model cannot provide the hit ratio as

in single hop operation. The reason for this decrease is that

it cannot cover any kind of trend in the observed data and

therefore lags behind the actual measurements. Opposing to

this, the SARIMA model relies on the daily trends in the

observed data which provide more information about the data

than a simple trend analysis.

C. Errors in Predictions

While the maximum deviation is given by the user-defined

threshold, the user-experienced error presents the more im-

portant information. The average absolute deviation between

the data delivered by the predictor and the actually measured

data is shown in Figure 7 for the non aggregated data of each

station in the dataset. Since the data provided by the stations

is given at a resolution of 0.1◦C the error does not decrease

further even for a lower threshold.

The LMS and simple approaches provide a prediction error

below the actual threshold because the changes in the trend

are very low. In contrast, the SARIMA model relies on the

information from the last season, e.g. the day before. It

thereby generates several significantly higher prediction errors

as outdoor temperature greatly varies between days.

Figure 8 shows the results for the aggregated dataset. Again,
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Fig. 9. Prediction error of different predictor models for a two hop predictor
on the DWDmu dataset

the improved performance of predictors can also be seen in

terms of reduced prediction error. As in the case of improved

hit ratio, the gain depends on the prediction model. The

SARIMA model can again benefit most when using low error

thresholds and provide better prediction accuracy.

With two hop operation of predictors the prediction error

perceived by the user increases, as shown in Figure 9. Again,

the result in prediction error is very similar to that of the hit

ratio.

Note that the error increases proportionally with the allowed

deviation, indicating that the variation in temperature is still

significantly higher. This also means that the information

provided to the user still contains the queried information

despite the high reduction in data transmitted.

Since an update is always sent when the maximum specified

deviation is exceeded, the maximum prediction error will be

eventually constrained when the update is received by the user.

However, the average prediction error of the LMS and simple

models is smaller than the provided maximum deviation for a

sufficiently high threshold. This indicates that the predictions

can be used as real-time estimate of the actual sensor data.

D. Applicability of Predictors for Different Sensor Types

The evaluations have shown that the LMS model is best

suited as predictor for temperature data contained in the

DWDmu dataset. Figures 10, 11, and 12 show the data

reduction results for other types of sensor data for a two hop

prediction setup. Instead of temperature the measurements of

relative humidity, wind speed and air pressure of the same

dataset were used as input.

While the seasonal nature of humidity variation is best fit

by the SARIMA model, the highly dynamic non seasonal

wind speed can still be fit by the LMS and simple models.

Most of the predictions can, however, also be provided by a

very simple approach that assumes sensor information to be

constant. Other sensor types like air pressure, where the simple

approach does not perform well, provide a better ground for

prediction models like LMS and SARIMA. This clearly shows

that predictors are not equally suited for different types of

sensor information.
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Fig. 10. Hit ratio for different predictor models for a two hop predictor using
humidity data from the DWDmu dataset
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Fig. 11. Hit ratio for different predictor models for a two hop predictor using
wind speed data from the DWDmu dataset

V. CONCLUSIONS AND FUTURE WORK

We have shown how a distributed R-Tree approach can be

used to provide a scalable solution for global indexing of sen-

sors. By exploiting the containment relation inherent to the R-

Tree structure, we achieved fair load distribution and efficient

reuse of data streams. The basic concept of predictors can be

used to greatly reduce traffic even in a multilevel aggregation

scheme. Our evaluations show that predictor models that have

been proposed for WSN in the literature also perform well in

our multi-hop scenario. Especially the LMS predictor performs

well not only for the original mitlab temperature measurements

but also for other types of sensors and outdoor sensors. As

in WSN, a low order of the LMS predictor provides the

best results and provides a low computational overhead and

requires little memory. The performance of predictors is even

better for smoothed input values which significantly improve

the hit ratio and prediction error for all predictor models.

Although these results provide very powerful mechanisms

for the handling of global sensor data, further research ques-

tions remain. First of all, the system has to cope with different

quality of data requirements of users. When serving data

at different precision levels the identification and reuse of

matching data streams becomes far more complex. If the pre-

cision is determined by the system, the trade-off between user
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Fig. 12. Hit ratio for different predictor models for a two hop predictor using
pressure data from the DWDmu dataset

experienced precision and network load has to be investigated.

Finally, the question remains whether the precision of data

delivered to the user can be adapted on a finer granularity by

pro-actively sending updates before the maximum deviation is

exceeded.
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