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Abstract—High level context recognition and situation detec-
tion are enabling technologies for unobtrusive mobile comput-
ing systems. Significant progress has been made in processing
and managing context information, leading to sophisticated
frameworks, middlewares, and algorithms. Despite great im-
provements, context aware systems still require a significantly
increased recognition accuracy for high-level context information
on uncertain sensor data to enable the robust execution of
context-aware applications. Recently Adaptable Pervasive Work-
flows (APF)s have been presented as innovative programming
paradigm for mobile context-aware applications. We propose a
novel Flow Context System (FlowCon) that builds upon APFs.
FlowCon uses structural information from the APF to increase
accuracy of uncertain high-level context information up to 49%.
This way we make an important step to enable robust execution
of mobile context-aware applications.

Index Terms—context-aware mobile computing, flows, uncer-
tain high-level context information, robustness

I. Introduction

In general, context information is one of the most important

information sources for mobile computing applications and the

development of mobile devices and sensors has made them

widely available. But the acquisition of sensor data inherently

introduces uncertainty into the system that applications have

to deal with. A great number of context management systems

have been developed that provide context information to

applications considering different application areas such as

sensor networks, mobile computing, smart homes, and even

systems suited for global context management [1]–[3]. These

systems are built to handle a great variety of different context

information, ranging from primary context such as location,

time and identity of objects, to complex context information

based on ontologies and context reasoning [4].

Usually, context management systems have to measure

context information from the real world using sensors. Sensor

data is always uncertain, but can be quantified by accuracy and

precision. While accuracy defines how close the current read-

ing represents the actual measured value, precision denotes the

statistical deviation when the measurement is repeated under

unchanged conditions. The more accurate and precise the

measurement is the less uncertain the measured information

is. Acquired context information is then processed, aiming

for two goals. 1) Reduce uncertainty using multiple readings

or sensor fusion techniques. 2) Combine context information

to get more abstract high-level context information based on

context reasoning, situation detection or activity recognition.

High-level context information is less certain, because it is

extracted from already uncertain data. The context manage-

ment system then delivers the context information to the single

applications, which should handle the uncertain information.

However, context management systems do not deal with

uncertainty of context information at all [1], or provide only

uncertainty handling for rather simple low-level context infor-

mation [5], [6]. But certain high-level context information is

necessary for the correct execution of context-aware mobile

applications. Actually, none of the existing systems allows the

applications to assist the context management system to deal

with uncertainty of abstract high-level context information.

We propose an algorithm to increase the accuracy of high-

level context information using Adaptable Pervasive Flows

(APF) or shortly flows. Flows originate from classical work-

flows [8], and were recently proposed as a programming

paradigm for pervasive applications [7] suitable for execution

on mobile devices. A flow basically consists of a set of

activities that are glued together by transitions which define the

execution order of the activities. An activity in a flow either

represents some computational task, like writing a database

record or calling a Web Service, or it describes a task that a

human has to perform in the real world. In the latter case the

successful flow execution depends on a context management

system that recognizes the activities of the human, when the

tasks are actually performed.

As main contribution of this paper, we propose the Flow
Context System (FlowCon). FlowCon is a context manager

that performs workflow mining on the flow structure to derive

dependencies between context information which drive the

flow execution. The gained knowledge is used to increase

the recognition accuracy of the related human activities, thus

decreasing their uncertainty. This way the flow execution

becomes more robust i.e. even when the original accuracy

of the available context information is low the flow executes

correctly.

We evaluate the FlowCon algorithm using real traces gath-

ered in a health-care environment, and show through sim-

ulation that we can increase the accuracy of the context

information delivered to the application up to 49%. The overall

robustness of the system can also be increased significantly,

despite the very low accuracy of the activity recognition results

from the traces.

The rest of the paper is structured as follows: In Sec-

tion II, we discuss previous approaches that are related to

workflows and context awareness and then introduce our

application scenario in Section III. Subsequently, we describe

FlowCon, including our formal flow model specification and

the FlowCon algorithm in Section IV. We then discuss the
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evaluation results in Section V. Finally, we conclude the paper

with a summary and an outlook in Section VI.

II. RelatedWork

As our approach is based on flows, we investigate existing

work on context-aware and mobile workflow management.

Furthermore, we discuss the relation of FlowCon to the area

of workflow mining.

Mobile workflow execution is a key technology to enable the

use of flows on mobile devices. A feasible approach to execute

workflows on mobile devices has been presented by Hackmann

et al. [9], [10]. But the mobile workflows considered do not

take context information into account and thus they are suited

for classical workflows only.

For the classical workflows, context integration was first

introduced by Wieland et al. [11], where the authors provide

certain operators to access context provided by a context

management system. The approach was later extended to deal

with Quality of Context [12]. A policy language is used to

define the amount of uncertainty in context information the

workflow accepts and filter out context information that does

not match this filter. This allows the flow to omit context

information that may lead to wrong execution. But there is no

algorithm or evaluation provided. Fuzzy Workflows, have been

presented by Adam et al. [13], [14] A Fuzzy Workflow is able

to make decisions based on fuzzy input information. The input

from different sources is fed into a fuzzy logic operator within

the flow and the result leads to a clear decision which is used to

continue the workflow execution accordingly. However, these

approaches are extensions for classical workflows, which are

usually not flexible enough for execution in a mobile context-

aware environments. But even more importantly, they do not

enable the workflow to contribute in decreasing uncertainty of

context information.

The PerFlows presented by Urbanski et al. [15] are context-

aware, suitable for pervasive scenarios and provide flexible

activity scheduling and processing. However, they require

heavy user interaction to work properly. In our previous work

[16], we presented an approach for dynamic context-awareness

suited for pervasive flow-based applications. Both approaches

neglect the handling of uncertain context information.

Workflow Mining comes in two different flavors. On the one

hand, a new workflow is created from event logs of different

applications in order to visualize the actual flow of work

and possibly automate the created workflow using classical

workflow management techniques. On the other hand existing

workflows can be used to extract knowledge. While we also

extract knowledge from flows, there are no approaches that

improve context processing this way. Buffett and Geng [17]

have proposed to label the activities of workflows by learning

from event logs. This approach is somewhat similar to ours. It

uses learning with Bayesian Networks, resolves the ordering

of activities in the generated workflows and analyzes the paths

taken in workflow execution. However the algorithm is applied

to collected event logs and the workflows are mined in with

an offline algorithm. Furthermore, it assumes that the log data

contains no uncertain information, e.g., no real-world context

is taken into account. In contrast, we know the flow structure

and learn the event dependencies at runtime, taking uncertain

context information into account.

In summary, classical context-aware workflows and work-

flows tailored for pervasive computing provide little mecha-

nisms to deal with uncertain context information. Furthermore

no system discussed here uses the knowledge encoded in the

workflow to improve the accuracy of context recognition, thus

reducing the amount of uncertainty the flow actually has to

deal with. To the best of our knowledge FlowCon is the first

system to achieve this.

III. Scenario Description

To evaluate FlowCon, we used a set of data collected in

a geriatric nursing ward. This is an intensive care station

for elderly people suffering from dementia and similar old-

age diseases. Each of the patients there needs help around-

the-clock. There are well-defined medical guidelines for ac-

complishing the daily work within the ward. This scenario

provides a relatively limited and basically fixed set of nurses

and patients and the process structure is also quite stable. All

activities performed (e.g. treatment, medication) stringently

have to follow the guidelines and the results of some must

be documented. But, there is rich human interaction between

nurses and patients. In practice the nurses do not have the time

to document all their activities properly, even when using a

mobile device. This necessitates the use of activity recognition

systems to sense which tasks the nurses actually accomplish.

These properties assure that the scenario is suitable for testing

our system.

The traces we obtained from the nursing ward follow the

daily morning routine of a single nurse. Each nurse was given

a mobile phone which she wears in her coat pocket for data

collection. The sensor readings available in the traces are

(1) received WiFi signal strength, (2) measured magnetic field

strength, (3) measured acceleration and (4) recorded sound

The WiFi readings were used to estimate the indoor position

of the nurse on a room-level granularity, the magnetic field

sensor for facing direction. The necessary WiFi infrastructure

was already present in the hospital, so there was no need

to deploy further infrastructure. The acceleration data were

used to do activity recognition like mode of locomotion. The

recorded sound snippets were also used to classify activities

according to typical background noises like the sound of a

shower when a nurse is helping a patient taking a shower. For

more complex context information, multiple of the mentioned

modalities were used for recognition. The collected data has

been manually labeled for a training set, but there is also an

unlabeled test set.

Each trace covers about 2 and a half hours, where the nurse

had to care for a total of three patients. The basic support

for every patient is very similar and consists of four distinct

steps. The (1) morning examination includes measuring the

pulse and the blood pressure of the patient. Blood samples are

taken regularly once or twice a week per patient. During the



(2) morning hygiene, the nurse helps the patient with getting

up, washing and dressing. Following that the nurses help the

patients having their (3) breakfast. Finally she supervises and

assists the patient taking his (4) daily morning medication

according to the patients capabilities.

This process consists of a number of more concrete tasks.

While most of these tasks are accomplished every day, each

nurse flexibly alters the execution order. In order to limit these

flexible changes, we focus the process execution on the blood

sample examination process. In the following, we describe the

process guideline in detail and point at the possible execution

variations that may happen. Those variations are important

for our algorithm design because the knowledge we extract is

influenced by the habits of the nurse.

When a blood sample examination is scheduled for a

patient—this is documented in the patient record—the nurse

takes it after the daily measurement of pulse and blood

pressure. A reusable butterfly needle is used, because there

are taken up to four blood samples in a row. A formal

representation of the flow is depicted in Figure 1 but some

of the details there will be explained later. To obtain a blood

sample the nurse has to perform the following activities. First,

she (a1) fastens a cuff to the upper arm of the patient. She then

starts (a2) searching a vein for setting the butterfly. After that,

she (a3) unpacks the butterfly and (a4) disinfects the elbow pit.

She punctures the patient (a5) setting the butterfly and (a6-

a9) takes the samples. Finally, she (a10) labels each sample

with the patients credentials.

While getting the blood sample from the patient, the nurse

basically has two variation options. She can either disinfect

the elbow pit first and then unpack the butterfly, or the other

way around. However she must complete both activities before

she can set the butterfly. Moreover, she is free to chose the

order in which the individual samples are taken when she has

set the butterfly.

The mentioned variations lead to interesting questions.

When the activity a2—search vein—has been recognized, the

context system cannot know which will be the next activity

that the nurse executes. Because of this, it is much harder

to recognize the following activity compared to a scenario

with a predefined fixed sequence of activities. In this case

FlowCon is able to increase context recognition performance.

Furthermore, when the flow execution waits for an activity

a5—set butterfly—which depends on more than one previous

activity, the recognition of the preceding activities (a3, a4)

increases the probability that the next recognized activity will

likely be a5.

The correct flow execution leverages automatic documen-

tation of the blood sample taking and relives the nurse of

some of the paperwork. But this is a tough task, because it

requires to recognize the activities for every single step just

using the uncertain activity recognition results to drive the

workflow execution.

IV. FlowCon

In this section, we introduce FlowCon. At first, we define

the formal context model as foundation for the algorithm.

Next, we present our formal flow model, which allows the

application programmer to create flows and to specify the

context information that is relevant to the flow. We then explain

the execution semantics for flows and finally describe the

FlowCon algorithm itself.

A. Context Model

As we motivated in the introduction, the flow execution

is driven by the recognized activities performed by human

users. In order to execute pervasive applications based on

flows, we need to define the representation of recognized

activities and uncertainty. The activities we consider in terms

of our hospital scenario have been described in Section III. For

successful recognition, context information from a multitude

of sensor readings and also from different modalities that

are all uncertain have to be composed. For practical usage,

neither the accuracy nor the precision of situation detection is

adequate. The sampling rate can hardly be increased due to

data overload and higher processing costs. Furthermore, the

accuracy of the results decreases significantly, depending on

the situation and the used detection and classification methods.

Another drawback of situation detection is the high effort spent

for training the system. Because of this, feasible situation

detection is only possible for specific and well defined ap-

plication areas. However our hospital scenario does not fulfill

this requirement and situation detection is only applicable with

low overall accuracy.

In the following we assume that the number of situations to

detect in our hospital scenario is finite in practice. Based on

this, we define our representation of events.

Definition 4.1 (Event): A situation that can be acquired

from the environment is referred to as event e ∈ Ue, where

Ue denotes the universe of all events that the context system

can measure.

In our blood sample flow we have events for the following

situations: (e1) Apply Cuff, (e2) Search Vein, (e3) Disinfect

Elbow Pit, (e4) Unpack Butterfly, (e5) Set Butterfly, (e6) Get

Blood Sample and (e7) Label Samples. Each event indicates

that the corresponding task has been performed in the real

world. When compared to the blood sample flow (cf. Figure

1) it can be seen that there is a one-to-one mapping between

events and activities for the scenario. It is of course possible

to have more than one event indicating the completion of an

activity in the flow. We discuss the details when we introduce

the flow execution semantics later in this section. Each event

e is a member of at least one event type.

Definition 4.2 (Event Type): An event type E ⊂ Ue con-

tains a number of individual events E � {e1, . . . , en}.
The event type is a tool for the application designer. When

the application is created, the individual events e are grouped

together to certain types E which correspond semantically. For

the blood sample flow, we define only a single event type

Eb � {e1, . . . , e7} ⊂ Ue that contains all events that should



happen, during its execution. The purpose of an event type

is twofold: Firstly it allows the application designer to react

to multiple related events in a distinct fashion. For example,

the events of Eb indicate that something has happened that

is important for the blood sample flow. Secondly the related

semantics of the grouped events allow a more accurate recog-

nition and classification. Other events that are not contained

in the expected event type are likely out of scope. When the

flow executes a certain activity, it registers the event type and

receives a notification from the context recognition system.

The notification contains an event instance that indicates which

situation has been detected by the context system.

Definition 4.3 (Event Instance): Let E � {e1, . . . , em} be

an event type. An event instance IE : E → [0, 1] defines

a probability distribution function over all events for the

specified event type, i.e.
∑

e∈E IE(e) = 1. Further let P(IE)

denote the set of all possible event instances for a given event

type E i.e. all possible distributions.

The definition of the event instance probability distribution

indicates that we decided to use Probability Theory to repre-

sent uncertainty for our events. Other uncertainty models like

Possibility Theory [18] or Dempster-Shafer Theory of Evi-

dence [19] have also been considered. There were two reasons

to use Probability Theory instead. Firstly, the interpretation

of those other models is not trivial and can cause unwanted

side effects, such as counter-intuitive results when combining

uncertain events. Probability Theory is simpler, but it leaves

little space for interpretation, thus easing decision making.

Secondly, the other uncertainty models provide additional

information, but also have stricter requirements regarding the

context system. In order to provide meaningful probability

distribution functions for the event instances, the context

system has to provide statistical data on sensor information

such as trustworthiness of a given modality or a certain sensor.

Those values were not available from the given traces and the

number of traces was to small to extract useful values on our

own (c.f. Section V).

B. Flow Modeling

A flow model is a template for a single running flow based

application. The application programmer defines all the activ-
ities and their partial ordering using transitions. Conditions,

that are annotated to the transitions, further influence the

ordering. When the flow is actually executed an instance is

created and supplied with additional information. For example,

information of the actual nurse and patient are provided to

the specific blood sample flow (cf. [16]). We explain each

component of the flow model and subsequently define the

execution semantics.

Definition 4.4 (Flow Model): A flow model F is a 4-tuple

F � (A,T,C, μ), consisting of a set of activities A, a set of

transitions T , a set of conditions C and a transition marker

function μ.

The flow model F specifies a directed acyclic graph with

activities as vertexes and transitions as edges. The set of

c1

c2

c3 c4

c4

c4

c4

a1 apply Cuff a3 unpack butterfly a5 set butterfly a7 sample 2 a9 sample 4

a2 search vein a4 disinfect elbow pit a6 sample 1 a8 sample 3 a10 labeling

a10

a6

a7

a8

a9

a5

a3

a4

a2a1

Fig. 1. Blood Sample Flow

conditions as well as the transition marker function add

information to the single transitions.

Definition 4.5 (Activity): An activity a represents an

atomic piece of work within a flow. This includes invoking

external (possibly human) services as well as internal com-

putations. The set A � {a1, . . . , an} defines all activities of

a flow. An arbitrary number of event types can be added

to each activity. Let εa : N → P(Ue) be the event type

assignment function for a, where P(Ue) denotes powerset over

the universe of events. Further, let k be the number of event

types associated to a then, εa(i) yields the corresponding event

type for i ≤ k, and ∅ otherwise. Furthermore activities may be

marked as mandatory.

The activities Ab � {a1, . . . , a10} of the blood sample flow

are depicted in Figure 1. As the nurse executes every activity,

each one depends on context information, hence the event

type Eb is associated with every activity, i.e. k = 1 and

εa(1) = Eb for a ∈ Ab. Furthermore all the activities but

a6 − a9 are mandatory in order to complete the flow execution

successfully. The mandatory activities depicted in Figure 1

have a dashed border.

Definition 4.6 (Transition): Given a set of activities A, the

set of all transitions within a flow is T ⊆ A×A. A transition t =
(ax, ay) represents a directed control flow dependency from ax

to ay with ax, ay ∈ A. A transition is annotated with exactly one

transition condition, that is referred to as t.c. Further, we define

din(ai) � |{(ax, ay) ∈ T |ai = ay}| and dout(ai) � |{(ax, ay) ∈
T |ai = ax}| as degree of incoming and outgoing transitions for

an activity.

The transitions allow certain control flow variants (cf.

Figure 1): linear sequences (dout(a1) = 1), parallel branching

(dout(a2) > 1) and joins like for (din(a4) > 1), and combina-

tions of those. Conditional decisions can be made taking the

transition conditions into account.

Definition 4.7 (Condition): A condition c is inductively

defined as c → (IE(e))|(c1 ∨ c2)|(c1 ∧ c2)|¬(c1) with e ∈ E,

c1, c2 ∈ C and the common semantics for the probabilistic

logical operators. C is then the set of all conditions within a

flow model.

Please note that evaluation semantics for the events IE(e)

and the logical operators depend on the used uncertainty

model. Using Probability Theory, we evaluate the conditions



with plain probabilistic logic (cf. [20]). Conditions allow

control flows like conditional branching a5 and forks a2 (cf.

Figure 1). We used the following four transition conditions

in the blood sample flow. The condition c1 validates that the

cuff has actually been applied correctly before the nurse starts

searching a vein, which may be impossible otherwise. c2 and

c3 guarantee that the disinfect elbow and unpack butterfly have

been completed, maintaining hygiene guidelines, before it is

allowed to puncture the patient. Finally, c4 checks that no

blood sample is taken before the butterfly actually has been

set up correctly. The corresponding transitions in Figure 1 are

annotated with the condition identifier.

In order to specify well-defined execution semantics for our

flow model, we further introduce transition markers.

Definition 4.8 (Transition marker): The transition marker

function μ � T → [true, f alse] assigns markers to all

transitions in the flow, where μ(t) = true . If a transition has

a marker, the execution of this transition is not required to be

active in order to start the target activity of the transition.

The transition markers allow joins of multiple flow branches

where not all branches must or can be executed during a single

flow execution. As we explained in the scenario description,

the number of taken blood samples varies. Therefore all the

incoming edges of the final activity a10 have a marker (c.f.

Figure 1). This way the execution of the activity is possible,

when at least one of the previous activities (a6-a9) has been

completed. The markers are denoted as dots at the origin of

transitions.

We now present the execution semantics of a flow model.

On instantiation the flow model, starts with the execution of

the activities, where din(a) = 0. When an activity is executed it

subscribes for its event types εa(i), i ∈ {1, . . . , k} at the context

system. After an event instance IE has arrived for every event

type, the activity is completed and the outgoing transitions are

checked. The transition conditions t.c are evaluated as defined

earlier. When the resulting probability is above a certain

navigation threshold tn, the condition becomes true and the

transition is also activated. The navigation threshold defines

the minimal probability a certain condition must have. Assume

the execution of a5 has just been completed and the received

event instance IEb (e5) = 0.47 indicates that the butterfly was

set. Given a navigation threshold tn = 0.4 would allow the

transition to trigger the target activity. When the navigation

threshold would be higher, e.g. tn = 0.5, then the flow

execution would not be continued because the situation de-

tection result was too uncertain. A subsequent activity begins

execution if all incoming transitions are activated (t.c ≥ tn) or

marked (μ(t) = true). If all transitions are marked at least one

has to be activated.

The execution of the flow model yields a flow trace. When

an activity is completed, this is recorded in the flow trace along

with the event instances it received.

Definition 4.9 (Flow Trace): A flow trace T is a sequence

of completed activities T � (a1, . . . , ak) ordered increasingly

by completion time with k ≤ |A|. The event instances each

activity has received are also stored within the trace. The

Flow Engine

Events

Flow Engine

~

Events BN

HistoryFlow Structure

(e1,p)
(e1,p‘)

(e 1,p‘‘)
(e1,p)

a) simple event usage b) flow-based event usage

Fig. 2. Architecture Comparison

function θa : P(Ue) → P(IE) yields the received instance for

an event type, if the event type is associated to the activity a.

From a single trace, it is possible to reconstruct the actual

execution of a flow instance and which context information,

i.e. event instances, lead to this execution. All traces are stored

in a flow history documenting the executions for later analysis.

We use the flow history of a flow model as the data set for

training the FlowCon algorithm later.

C. Algorithm

The general goal of FlowCon is to increase the accuracy of

the events the flow execution relies on. More specifically, we

adjust the probability distribution of an event instance, so

that the statistically most probable event will be favored. The

probability of this event is increased, while simultaneously the

probabilities of the possible other events are decreased. This

way the accuracy of the events expected by the application

will be increased and their uncertainty is decreased. We train

a Bayesian Network (BN) [20] to extract the knowledge from

the flow, which event currently is the most probable. BN train-

ing consists of two phases: structure learning and parameter

learning. While parameter learning can be achieved efficiently

from a set of given observations, learning the optimal structure

of a BN from such data is NP-hard. The FlowCon algorithm

avoids the structure learning problem completely. It basically

works in three steps. First, it analyzes the flow structure and

generates a BN structure from that analysis. In the second

step, it then uses the observed data from the flow history

to do the parameter learning. While both of these steps can

happen offline before the actual instantiation of a certain flow,

the third step—the information combination—is executed at

runtime. A comparison to the naive approach is depicted in

Figure 2. Usually the application has to deal with the provided

probability of an event (e1, p), but FlowCon queries the BN

for the current event, using the actual execution state of the

flow and the already received event instances. It then combines

the event with its derived statistical probability from the BN

(e1, p′) and generates a new probability for the event (e1, p′′).
The probability p′′ will be higher than p if e1 is statistically

more probable for the application in the given context.



1) Structure Learning: To build the structure of the BN

from the flow structure we assume that there exists a depen-

dency between the events associated to two activities ax and ay

if there exists a transition t = (ax, ay). For example, in terms of

our blood sample flow, the occurrence of the event e1—apply

cuff—necessitates the occurrence of the event e2—search

vein—afterwards. While this dependency is simple, there are

more difficult cases. When we consider forks dout(a2) = 2, it

is not clear if there is a dependency between the events of

a2 and the events of a3, a4. A single nurse could disinfect

the arm first every time and then unpack the butterfly. This

does of course change the statistical dependency between the

events. The one between e2—search vein—and e3—unpack

butterfly— will be low, while the other between e2 and e4—

disinfect elbow pit— will be high. When we further consider

the activities with din(a) > 1 we see that the occurrence of

an event may depended on more than one previous event.

Some of the preceding events may have a strong statistical

dependency, while others have no effect at all. However, we

create each of the possible dependencies in the beginning and

adapt their strength later in the parameter learning phase, e.g.

to deal with changing behavior of nurses.

We use a Bayesian Network BN � (N,D) to represent the

statistical dependencies from the flows, where n ∈ N is a node

and d ∈ D is a conditional dependency. The nodes of the BN

represent discrete random variables. The state space of a node

n is equal to the event type E adding a null class. For every

event type of an activity we create a node n = a.E identified

by the name of the activity and the event type. After that, we

add the dependencies between those nodes where the activities

also have a directed dependency, or more formally:

((ax, ay) ∈ T ) ∧ (∃i : εax (i) = E) ∧ (∃ j : εay ( j)) = E ⇒
((ax.E), (ay.E) ∈ D)

The result is a structured BN. Please note that the learning

has been very simple, because we have the flow structure

which provides us with a realistic assumption which events

are related to each other. Furthermore, the structure is fixed for

a specific flow model. Therefore, this step can be performed

offline right after the modeling phase. However, there may be

multiple instances of the BN in use for different locations

where the flow is actually deployed and executed, or for

different actors that are associated with the flow. For example,

there could be a single network trained for every nurse to

take personal habits into account when executing the flow and

processing the context information.

2) Parameter Learning: The next step is to train the BN

with the actual statistical dependencies that have occurred. At

first the conditional probability tables (CPT)s of each node

are initialized with a uniform distribution. In order to train

a BN we need a training data set with observations for the

value of each node. We use the flow traces that are collected

for each execution of a flow as data set for training. As the

event instances are stored together with the flow trace, it can

be converted to an observation of the values.

As an example, we look at a trace T from our blood sample

flow. For activity a1 there is an event instance IEb = θa1
(εa(1))

stored in the trace. The probability distribution of this event

instance IEb indicates that e1 is the most significant event, i.e.

the one with the highest probability. So for training from this

trace we would set the observed value for the corresponding

node a1.Eb to e1.

The event types associated to activities that have not been

executed in a trace cannot provide event instances, thus the

corresponding nodes are set to the to the null state for this

trace. In the mentioned trace the activity a7 may not have

been executed because the corresponding blood test was not

scheduled. So the value for the corresponding node a7.Eb

would be null. The BN can be trained incrementally with

the traces, as they become available. This way the CPTs are

adjusted until the dependencies are appropriately represented.

As we demonstrate in the evaluations a rather small training

set of 25 to 50 traces is sufficient for training.

3) Information Combination: The third and final step is

to retrieve the information from the BN and combine it with

current context information to increase accuracy. Querying a

BN usually means to initialize some of the variables with

observed values and compute the conditional probabilities of

the unknown variables. The observed values for the instance

of the flow that is currently executed, are the past events that

have already been recognized. We take all available events as

evidence into account.

When the next event instance IE arrives that only marginally

denotes that the expected event has happened, we compute the

conditional probability for this event using the previous event

instances as current observations. The result from the BN is

also a probability distribution function for the event type E. We

combine this result with the probability distribution function

IE of the actual event instance. We compute the average

probability for each event in the distribution and normalize the

results afterwards to make the probability distribution valid

again. This averaging adjusts the probability of each event

by the amount of its statistical probability under the given

context of the previously occurred events. Here we actually

adjust the context measurement. The probability of an event

that statistically occurs more often is increased, while the other

way around, the probability gets lowered. Note that higher

probability also means a higher accuracy for the measured

event. The resulting probability distribution is stored in the

event instance. The event instance is then sent to the flow

instead of the original one, and processed according to the

flow execution semantics.

V. Evaluation

To evaluate our system, we used the blood sample exam-

ination flow we presented in this paper. The scenario data

and the flow were directly extracted from the collected real-

world traces. Unfortunately, some of the event data had to

be simulated and we discuss this in the setup section, along

with some technical details. Following that, we present our

evaluation results and analyze them.
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Fig. 3. Simulation Results

A. Setup

Our simulation setup consists of three main components. First

a basic flow engine that is able to execute our flow models

using the JUNG Framework [21]. The flow engine defines

the navigation threshold tn as described in Section IV-B. The

navigation threshold is our first simulation parameter. The

flow engine also implements the evaluation semantics defined

for the conditions based on Probability Theory. The second

component is the Bayesian Network Event Processor that

implements our algorithm and processes the event instances.

To represent the Bayesian Networks, we used the well-known

Weka framework [22].

The third component is the context system which is re-

sponsible for feeding the context events into the flow engine.

Based on the recognition results from the real traces, we

generated artificial traces with the same structure and prob-

ability distributions in order to produce statistically relevant

results. We first created lists of events that would allow

the engine to complete the flow successfully. We did not

consider out of order events or completely missing ones,

but just the uncertainty of false recognitions. The event lists

were then assigned with the results of the real recognition

to keep the simulation as realistic as possible. The average

recognition probabilities were between 40% and 60% for the

correct events. But there have also been false recognitions with

probabilities also up to 40%. We further added noise to those

single probabilities, which effectively introduces a variance v
on the absolute recognition probabilities. The resulting values

were normalized to get a sound probability distribution. The

variance value v is our second simulation parameter.

An experiment we simulated, consisted of the subsequent

execution of 100 blood sample flows. Each experiment was

repeated 25 times with the same parameter settings to achieve

statistical relevance. We started with a freshly initialized BN

every time and had no training data available from flow

histories i.e. the parameter learning phase of our algorithm is

performed online. The number of available traces for training

then increases with every completed flow instance. We chose

navigation thresholds between tn = 0.4 and tn = 0.65 with

steps of 0.05 and accuracy variance values between v = 0.05

and v = 0.7 also in steps of 0.05. Please note that a variance

value of v = 0.4 basically introduces the same amount of noise

into the simulation as we have recognition probabilities from

the traces. When we further increase the variance up to v = 0.7
this can be interpreted as feeding significantly more noise into

the flow compared to the given recognition probabilities.

B. Results

We measured two properties of our system, the accuracy

improvement of the events that should be delivered to the flow

engine in order to allow a correct execution of the flow and the

overall number of completed flows which can be interpreted

as the robustness of the flow execution.

1) Event Improvement: For the event improvement we

measured the relative event improvement, which is depicted in

Figure 3 on the left. By relative event improvement we mean

the probability of the significant event of the event instance

divided by its original probability before the processing with

our algorithm (p′′/p c.f. Figure 2). We left out some curves

for better visibility. For the thresholds tn = 0.4 and tn = 0.5
we observe a very good accuracy improvement performance

between 49% and 39%, for variance values up to v = 0.4. This

conditions indicate a system that has equal to higher require-

ments for the recognition accuracies that could actually be

provided. Furthermore we can deal with a significant amount

of noise quite well. However when we further increase the

variance up to v = 0.7 the average event improvement slowly

degrades to only 7%. But we still manage to improve the

recognition probabilities a little. When we further increase the

navigation threshold tn = 0.6 and tn = 0.65 the performance

degrades much faster. While FlowCon is still able to achieve

a good improvement for small variance values up to v = 0.15,

we quickly get counter productive results when we further

increase the variance. The break even point, where we actually

make things worse using FlowCon, is v = 0.45 for a threshold

tn = 0.6 and v = 0.25 for a threshold tn = 0.65. This

strong degradation can be explained as we train the BN online

during the experiments. The correct training gets more difficult

and finally impossible with higher variance, values because

we have fewer correct traces and the navigation threshold to



achieve a correct trace is very high.
2) Flow Execution Robustness: The second observed prop-

erty is ratio of flows that were executed successfully during an

experiment. Those results are depicted in Figure 3 on the right.

As a reference, we have also shown here the performance of

our flow engine under the same conditions, but without the

processing accomplished by FlowCon. Given this setting, the

engine is only able to complete an average between 10.6% and

0.8% of all flows, while the combination with the FlowCon al-

gorithm yields an average number of completed flows between

90.0% and 27.6% which is a significant improvement. The

same degradation behavior as in the event quality improvement

can also be observed for the overall system robustness. We

perform quite well with slow degradation and a measurable

drop at a variance v = 0.45 for the lower thresholds (tn = 0.4
and tn = 0.5). For the upper thresholds, the performance

degrades much faster for the reasons we explained before.

VI. Conclusions and FutureWork

In this paper, we have presented the Flow Context Manager

(FlowCon), a novel approach based on flow-based pervasive

applications that increases the accuracy of context information.

Flow Evaluations, based on real-world traces gathered in a

geriatric nursing home, have shown a significant increase of

event accuracy of up to 49%. Furthermore, we made the

execution of flow-based mobile applications more robust. The

ratio of flows that could complete their execution successfully

was increased significantly to up to 90% of the overall flows.

The results are promising and, thus, may leverage automatic

documentation in the presented scenario that frees the nurses

partially of some of their paperwork.
Our approach allows flow-based pervasive applications to

contribute information for the processing of high-level un-

certain context information. However, the expressiveness of

the used flow model is a limiting factor at the moment. We

aim to extend our approach so that it can be used on more

flexible flow models which can handle more complex human

behavior. Consequently, we believe we can support a broader

range of applications and provide them too with better activity

recognition accuracy. We also want to study the use of more

complex uncertainty models with our algorithm for further

accuracy improvement.
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