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Abstract—High level context recognition and situation detec-
tion are enabling technologies for unobtrusive mobile comput-
ing systems. Significant progress has been made in processing
and managing context information, leading to sophisticated
frameworks, middlewares, and algorithms. Despite great im-
provements, context aware systems still require a significantly
increased recognition accuracy for high-level context information
on uncertain sensor data to enable the robust execution of
context-aware applications. Recently Adaptable Pervasive Work-
flows (APF)s have been presented as innovative programming
paradigm for mobile context-aware applications. We propose a
novel Flow Context System (FlowCon) that builds upon APFs.
FlowCon uses structural information from the APF to increase
accuracy of uncertain high-level context information up to 49%.
This way we make an important step to enable robust execution
of mobile context-aware applications.

Index Terms—context-aware mobile computing, flows, uncer-
tain high-level context information, robustness

1. INTRODUCTION

In general, context information is one of the most important
information sources for mobile computing applications and the
development of mobile devices and sensors has made them
widely available. But the acquisition of sensor data inherently
introduces uncertainty into the system that applications have
to deal with. A great number of context management systems
have been developed that provide context information to
applications considering different application areas such as
sensor networks, mobile computing, smart homes, and even
systems suited for global context management [1]-[3]. These
systems are built to handle a great variety of different context
information, ranging from primary context such as location,
time and identity of objects, to complex context information
based on ontologies and context reasoning [4].

Usually, context management systems have to measure
context information from the real world using sensors. Sensor
data is always uncertain, but can be quantified by accuracy and
precision. While accuracy defines how close the current read-
ing represents the actual measured value, precision denotes the
statistical deviation when the measurement is repeated under
unchanged conditions. The more accurate and precise the
measurement is the less uncertain the measured information
is. Acquired context information is then processed, aiming
for two goals. 1) Reduce uncertainty using multiple readings
or sensor fusion techniques. 2) Combine context information
to get more abstract high-level context information based on
context reasoning, situation detection or activity recognition.
High-level context information is less certain, because it is
extracted from already uncertain data. The context manage-

ment system then delivers the context information to the single
applications, which should handle the uncertain information.

However, context management systems do not deal with
uncertainty of context information at all [1], or provide only
uncertainty handling for rather simple low-level context infor-
mation [5], [6]. But certain high-level context information is
necessary for the correct execution of context-aware mobile
applications. Actually, none of the existing systems allows the
applications to assist the context management system to deal
with uncertainty of abstract high-level context information.

We propose an algorithm to increase the accuracy of high-
level context information using Adaptable Pervasive Flows
(APF) or shortly flows. Flows originate from classical work-
flows [8], and were recently proposed as a programming
paradigm for pervasive applications [7] suitable for execution
on mobile devices. A flow basically consists of a set of
activities that are glued together by transitions which define the
execution order of the activities. An activity in a flow either
represents some computational task, like writing a database
record or calling a Web Service, or it describes a task that a
human has to perform in the real world. In the latter case the
successful flow execution depends on a context management
system that recognizes the activities of the human, when the
tasks are actually performed.

As main contribution of this paper, we propose the Flow
Context System (FlowCon). FlowCon is a context manager
that performs workflow mining on the flow structure to derive
dependencies between context information which drive the
flow execution. The gained knowledge is used to increase
the recognition accuracy of the related human activities, thus
decreasing their uncertainty. This way the flow execution
becomes more robust i.e. even when the original accuracy
of the available context information is low the flow executes
correctly.

We evaluate the FlowCon algorithm using real traces gath-
ered in a health-care environment, and show through sim-
ulation that we can increase the accuracy of the context
information delivered to the application up to 49%. The overall
robustness of the system can also be increased significantly,
despite the very low accuracy of the activity recognition results
from the traces.

The rest of the paper is structured as follows: In Sec-
tion II, we discuss previous approaches that are related to
workflows and context awareness and then introduce our
application scenario in Section III. Subsequently, we describe
FlowCon, including our formal flow model specification and
the FlowCon algorithm in Section IV. We then discuss the
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evaluation results in Section V. Finally, we conclude the paper
with a summary and an outlook in Section VI.

II. RELATED WORK

As our approach is based on flows, we investigate existing
work on context-aware and mobile workflow management.
Furthermore, we discuss the relation of FlowCon to the area
of workflow mining.

Mobile workflow execution is a key technology to enable the
use of flows on mobile devices. A feasible approach to execute
workflows on mobile devices has been presented by Hackmann
et al. [9], [10]. But the mobile workflows considered do not
take context information into account and thus they are suited
for classical workflows only.

For the classical workflows, context integration was first
introduced by Wieland et al. [11], where the authors provide
certain operators to access context provided by a context
management system. The approach was later extended to deal
with Quality of Context [12]. A policy language is used to
define the amount of uncertainty in context information the
workflow accepts and filter out context information that does
not match this filter. This allows the flow to omit context
information that may lead to wrong execution. But there is no
algorithm or evaluation provided. Fuzzy Workflows, have been
presented by Adam et al. [13], [14] A Fuzzy Workflow is able
to make decisions based on fuzzy input information. The input
from different sources is fed into a fuzzy logic operator within
the flow and the result leads to a clear decision which is used to
continue the workflow execution accordingly. However, these
approaches are extensions for classical workflows, which are
usually not flexible enough for execution in a mobile context-
aware environments. But even more importantly, they do not
enable the workflow to contribute in decreasing uncertainty of
context information.

The PerFlows presented by Urbanski et al. [15] are context-
aware, suitable for pervasive scenarios and provide flexible
activity scheduling and processing. However, they require
heavy user interaction to work properly. In our previous work
[16], we presented an approach for dynamic context-awareness
suited for pervasive flow-based applications. Both approaches
neglect the handling of uncertain context information.

Workflow Mining comes in two different flavors. On the one
hand, a new workflow is created from event logs of different
applications in order to visualize the actual flow of work
and possibly automate the created workflow using classical
workflow management techniques. On the other hand existing
workflows can be used to extract knowledge. While we also
extract knowledge from flows, there are no approaches that
improve context processing this way. Buffett and Geng [17]
have proposed to label the activities of workflows by learning
from event logs. This approach is somewhat similar to ours. It
uses learning with Bayesian Networks, resolves the ordering
of activities in the generated workflows and analyzes the paths
taken in workflow execution. However the algorithm is applied
to collected event logs and the workflows are mined in with
an offline algorithm. Furthermore, it assumes that the log data

contains no uncertain information, e.g., no real-world context
is taken into account. In contrast, we know the flow structure
and learn the event dependencies at runtime, taking uncertain
context information into account.

In summary, classical context-aware workflows and work-
flows tailored for pervasive computing provide little mecha-
nisms to deal with uncertain context information. Furthermore
no system discussed here uses the knowledge encoded in the
workflow to improve the accuracy of context recognition, thus
reducing the amount of uncertainty the flow actually has to
deal with. To the best of our knowledge FlowCon is the first
system to achieve this.

III. SceENARIO DESCRIPTION

To evaluate FlowCon, we used a set of data collected in
a geriatric nursing ward. This is an intensive care station
for elderly people suffering from dementia and similar old-
age diseases. Each of the patients there needs help around-
the-clock. There are well-defined medical guidelines for ac-
complishing the daily work within the ward. This scenario
provides a relatively limited and basically fixed set of nurses
and patients and the process structure is also quite stable. All
activities performed (e.g. treatment, medication) stringently
have to follow the guidelines and the results of some must
be documented. But, there is rich human interaction between
nurses and patients. In practice the nurses do not have the time
to document all their activities properly, even when using a
mobile device. This necessitates the use of activity recognition
systems to sense which tasks the nurses actually accomplish.
These properties assure that the scenario is suitable for testing
our system.

The traces we obtained from the nursing ward follow the
daily morning routine of a single nurse. Each nurse was given
a mobile phone which she wears in her coat pocket for data
collection. The sensor readings available in the traces are
(1) received WiFi signal strength, (2) measured magnetic field
strength, (3) measured acceleration and (4) recorded sound
The WiFi readings were used to estimate the indoor position
of the nurse on a room-level granularity, the magnetic field
sensor for facing direction. The necessary WiFi infrastructure
was already present in the hospital, so there was no need
to deploy further infrastructure. The acceleration data were
used to do activity recognition like mode of locomotion. The
recorded sound snippets were also used to classify activities
according to typical background noises like the sound of a
shower when a nurse is helping a patient taking a shower. For
more complex context information, multiple of the mentioned
modalities were used for recognition. The collected data has
been manually labeled for a training set, but there is also an
unlabeled test set.

Each trace covers about 2 and a half hours, where the nurse
had to care for a total of three patients. The basic support
for every patient is very similar and consists of four distinct
steps. The (1) morning examination includes measuring the
pulse and the blood pressure of the patient. Blood samples are
taken regularly once or twice a week per patient. During the



(2) morning hygiene, the nurse helps the patient with getting
up, washing and dressing. Following that the nurses help the
patients having their (3) breakfast. Finally she supervises and
assists the patient taking his (4) daily morning medication
according to the patients capabilities.

This process consists of a number of more concrete tasks.
While most of these tasks are accomplished every day, each
nurse flexibly alters the execution order. In order to limit these
flexible changes, we focus the process execution on the blood
sample examination process. In the following, we describe the
process guideline in detail and point at the possible execution
variations that may happen. Those variations are important
for our algorithm design because the knowledge we extract is
influenced by the habits of the nurse.

When a blood sample examination is scheduled for a
patient—this is documented in the patient record—the nurse
takes it after the daily measurement of pulse and blood
pressure. A reusable butterfly needle is used, because there
are taken up to four blood samples in a row. A formal
representation of the flow is depicted in Figure 1 but some
of the details there will be explained later. To obtain a blood
sample the nurse has to perform the following activities. First,
she (a) fastens a cuff to the upper arm of the patient. She then
starts (a,) searching a vein for setting the butterfly. After that,
she (a3) unpacks the butterfly and (a4) disinfects the elbow pit.
She punctures the patient (as) setting the butterfly and (ae-
ag) takes the samples. Finally, she (a;o) labels each sample
with the patients credentials.

While getting the blood sample from the patient, the nurse
basically has two variation options. She can either disinfect
the elbow pit first and then unpack the butterfly, or the other
way around. However she must complete both activities before
she can set the butterfly. Moreover, she is free to chose the
order in which the individual samples are taken when she has
set the butterfly.

The mentioned variations lead to interesting questions.
When the activity a,—search vein—has been recognized, the
context system cannot know which will be the next activity
that the nurse executes. Because of this, it is much harder
to recognize the following activity compared to a scenario
with a predefined fixed sequence of activities. In this case
FlowCon is able to increase context recognition performance.
Furthermore, when the flow execution waits for an activity
as—set butterfly—which depends on more than one previous
activity, the recognition of the preceding activities (asz,ay)
increases the probability that the next recognized activity will
likely be as.

The correct flow execution leverages automatic documen-
tation of the blood sample taking and relives the nurse of
some of the paperwork. But this is a tough task, because it
requires to recognize the activities for every single step just
using the uncertain activity recognition results to drive the
workflow execution.

IV. FLowCon

In this section, we introduce FlowCon. At first, we define
the formal context model as foundation for the algorithm.
Next, we present our formal flow model, which allows the
application programmer to create flows and to specify the
context information that is relevant to the flow. We then explain
the execution semantics for flows and finally describe the
FlowCon algorithm itself.

A. Context Model

As we motivated in the introduction, the flow execution
is driven by the recognized activities performed by human
users. In order to execute pervasive applications based on
flows, we need to define the representation of recognized
activities and uncertainty. The activities we consider in terms
of our hospital scenario have been described in Section III. For
successful recognition, context information from a multitude
of sensor readings and also from different modalities that
are all uncertain have to be composed. For practical usage,
neither the accuracy nor the precision of situation detection is
adequate. The sampling rate can hardly be increased due to
data overload and higher processing costs. Furthermore, the
accuracy of the results decreases significantly, depending on
the situation and the used detection and classification methods.
Another drawback of situation detection is the high effort spent
for training the system. Because of this, feasible situation
detection is only possible for specific and well defined ap-
plication areas. However our hospital scenario does not fulfill
this requirement and situation detection is only applicable with
low overall accuracy.

In the following we assume that the number of situations to
detect in our hospital scenario is finite in practice. Based on
this, we define our representation of events.

Definition 4.1 (Event): A situation that can be acquired
from the environment is referred to as event e € U,, where
U, denotes the universe of all events that the context system
can measure.

In our blood sample flow we have events for the following
situations: (e;) Apply Cuff, (e;) Search Vein, (e3) Disinfect
Elbow Pit, (e4) Unpack Butterfly, (es) Set Butterfly, (es) Get
Blood Sample and (e7) Label Samples. Each event indicates
that the corresponding task has been performed in the real
world. When compared to the blood sample flow (cf. Figure
1) it can be seen that there is a one-to-one mapping between
events and activities for the scenario. It is of course possible
to have more than one event indicating the completion of an
activity in the flow. We discuss the details when we introduce
the flow execution semantics later in this section. Each event
e is a member of at least one event type.

Definition 4.2 (Event Type): An event type E C U, con-
tains a number of individual events E := {ey,...,e,}.

The event type is a tool for the application designer. When
the application is created, the individual events e are grouped
together to certain types £ which correspond semantically. For
the blood sample flow, we define only a single event type
E, = {ey,...,e7} C U, that contains all events that should



happen, during its execution. The purpose of an event type
is twofold: Firstly it allows the application designer to react
to multiple related events in a distinct fashion. For example,
the events of E; indicate that something has happened that
is important for the blood sample flow. Secondly the related
semantics of the grouped events allow a more accurate recog-
nition and classification. Other events that are not contained
in the expected event type are likely out of scope. When the
flow executes a certain activity, it registers the event type and
receives a notification from the context recognition system.
The notification contains an event instance that indicates which
situation has been detected by the context system.

Definition 4.3 (Event Instance): Let E = {ej,...,e,} be
an event type. An event instance Ir : E — [0, 1] defines
a probability distribution function over all events for the
specified event type, i.e. ), .cglg(e) = 1. Further let (/)
denote the set of all possible event instances for a given event
type E i.e. all possible distributions.

The definition of the event instance probability distribution
indicates that we decided to use Probability Theory to repre-
sent uncertainty for our events. Other uncertainty models like
Possibility Theory [18] or Dempster-Shafer Theory of Evi-
dence [19] have also been considered. There were two reasons
to use Probability Theory instead. Firstly, the interpretation
of those other models is not trivial and can cause unwanted
side effects, such as counter-intuitive results when combining
uncertain events. Probability Theory is simpler, but it leaves
little space for interpretation, thus easing decision making.
Secondly, the other uncertainty models provide additional
information, but also have stricter requirements regarding the
context system. In order to provide meaningful probability
distribution functions for the event instances, the context
system has to provide statistical data on sensor information
such as trustworthiness of a given modality or a certain sensor.
Those values were not available from the given traces and the
number of traces was to small to extract useful values on our
own (c.f. Section V).

B. Flow Modeling

A flow model is a template for a single running flow based
application. The application programmer defines all the activ-
ities and their partial ordering using transitions. Conditions,
that are annotated to the transitions, further influence the
ordering. When the flow is actually executed an instance is
created and supplied with additional information. For example,
information of the actual nurse and patient are provided to
the specific blood sample flow (cf. [16]). We explain each
component of the flow model and subsequently define the
execution semantics.

Definition 4.4 (Flow Model): A flow model ¥ is a 4-tuple
F = (A, T,C,p), consisting of a set of activities A, a set of
transitions 7', a set of conditions C and a transition marker
function u.

The flow model ¥ specifies a directed acyclic graph with
activities as vertexes and transitions as edges. The set of
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Fig. 1. Blood Sample Flow

conditions as well as the transition marker function add
information to the single transitions.

Definition 4.5 (Activity): An activity a represents an
atomic piece of work within a flow. This includes invoking
external (possibly human) services as well as internal com-
putations. The set A := {aj,...,a,} defines all activities of
a flow. An arbitrary number of event types can be added
to each activity. Let ¢, : N — P(U,) be the event type
assignment function for a, where P(U,) denotes powerset over
the universe of events. Further, let k£ be the number of event
types associated to a then, €,(i) yields the corresponding event
type for i < k, and 0 otherwise. Furthermore activities may be
marked as mandatory.

The activities A, = {aj,...,a;o} of the blood sample flow
are depicted in Figure 1. As the nurse executes every activity,
each one depends on context information, hence the event
type E, is associated with every activity, i.e. k = 1 and
(1) = E, for a € A,. Furthermore all the activities but
ag — ag are mandatory in order to complete the flow execution
successfully. The mandatory activities depicted in Figure 1
have a dashed border.

Definition 4.6 (Transition): Given a set of activities A, the
set of all transitions within a flow is 7 € AXA. A transition ¢ =
(ay,ay) represents a directed control flow dependency from a,
to a, with a,,a, € A. A transition is annotated with exactly one
transition condition, that is referred to as t.c. Further, we define
din(a;) = |{(ax, ay) € Tla; = ay}l and dy,(a;) = [{(ax, ay) €
T\a; = a,}| as degree of incoming and outgoing transitions for
an activity.

The transitions allow certain control flow variants (cf.
Figure 1): linear sequences (d,,(a;) = 1), parallel branching
(dyu(az) > 1) and joins like for (d;(as) > 1), and combina-
tions of those. Conditional decisions can be made taking the
transition conditions into account.

Definition 4.7 (Condition): A condition ¢ is inductively
defined as ¢ — (Ig(e))l(cy V c)l(cy A ¢3)|—=(cy) with e € E,
c1,c € C and the common semantics for the probabilistic
logical operators. C is then the set of all conditions within a
flow model.

Please note that evaluation semantics for the events Ir(e)
and the logical operators depend on the used uncertainty
model. Using Probability Theory, we evaluate the conditions



with plain probabilistic logic (cf. [20]). Conditions allow
control flows like conditional branching as and forks a, (cf.
Figure 1). We used the following four transition conditions
in the blood sample flow. The condition ¢; validates that the
cuff has actually been applied correctly before the nurse starts
searching a vein, which may be impossible otherwise. ¢, and
c3 guarantee that the disinfect elbow and unpack butterfly have
been completed, maintaining hygiene guidelines, before it is
allowed to puncture the patient. Finally, ¢4 checks that no
blood sample is taken before the butterfly actually has been
set up correctly. The corresponding transitions in Figure 1 are
annotated with the condition identifier.

In order to specify well-defined execution semantics for our
flow model, we further introduce transition markers.

Definition 4.8 (Transition marker): The transition marker
function y = T — [true, false] assigns markers to all
transitions in the flow, where u(r) = true . If a transition has
a marker, the execution of this transition is not required to be
active in order to start the target activity of the transition.

The transition markers allow joins of multiple flow branches
where not all branches must or can be executed during a single
flow execution. As we explained in the scenario description,
the number of taken blood samples varies. Therefore all the
incoming edges of the final activity a;o have a marker (c.f.
Figure 1). This way the execution of the activity is possible,
when at least one of the previous activities (ag-ag) has been
completed. The markers are denoted as dots at the origin of
transitions.

We now present the execution semantics of a flow model.
On instantiation the flow model, starts with the execution of
the activities, where d;,(a) = 0. When an activity is executed it
subscribes for its event types €,(i),i € {1,...,k} at the context
system. After an event instance I/ has arrived for every event
type, the activity is completed and the outgoing transitions are
checked. The transition conditions f.c are evaluated as defined
earlier. When the resulting probability is above a certain
navigation threshold t,, the condition becomes true and the
transition is also activated. The navigation threshold defines
the minimal probability a certain condition must have. Assume
the execution of as has just been completed and the received
event instance /g, (es) = 0.47 indicates that the butterfly was
set. Given a navigation threshold #, = 0.4 would allow the
transition to trigger the target activity. When the navigation
threshold would be higher, e.g. 7, = 0.5, then the flow
execution would not be continued because the situation de-
tection result was too uncertain. A subsequent activity begins
execution if all incoming transitions are activated (f.c > t,) or
marked (u(f) = true). If all transitions are marked at least one
has to be activated.

The execution of the flow model yields a flow trace. When
an activity is completed, this is recorded in the flow trace along
with the event instances it received.

Definition 4.9 (Flow Trace): A flow trace 7 is a sequence
of completed activities 7 := (ay,...,a;) ordered increasingly
by completion time with k < |A|. The event instances each
activity has received are also stored within the trace. The
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function 6, : P(U,) — P(Ig) yields the received instance for
an event type, if the event type is associated to the activity a.

From a single trace, it is possible to reconstruct the actual
execution of a flow instance and which context information,
1.e. event instances, lead to this execution. All traces are stored
in a flow history documenting the executions for later analysis.
We use the flow history of a flow model as the data set for
training the FlowCon algorithm later.

C. Algorithm

The general goal of FlowCon is to increase the accuracy of
the events the flow execution relies on. More specifically, we
adjust the probability distribution of an event instance, so
that the statistically most probable event will be favored. The
probability of this event is increased, while simultaneously the
probabilities of the possible other events are decreased. This
way the accuracy of the events expected by the application
will be increased and their uncertainty is decreased. We train
a Bayesian Network (BN) [20] to extract the knowledge from
the flow, which event currently is the most probable. BN train-
ing consists of two phases: structure learning and parameter
learning. While parameter learning can be achieved efficiently
from a set of given observations, learning the optimal structure
of a BN from such data is NP-hard. The FlowCon algorithm
avoids the structure learning problem completely. It basically
works in three steps. First, it analyzes the flow structure and
generates a BN structure from that analysis. In the second
step, it then uses the observed data from the flow history
to do the parameter learning. While both of these steps can
happen offline before the actual instantiation of a certain flow,
the third step—the information combination—is executed at
runtime. A comparison to the naive approach is depicted in
Figure 2. Usually the application has to deal with the provided
probability of an event (ej, p), but FlowCon queries the BN
for the current event, using the actual execution state of the
flow and the already received event instances. It then combines
the event with its derived statistical probability from the BN
(e1, p’) and generates a new probability for the event (ey, p”).
The probability p” will be higher than p if e; is statistically
more probable for the application in the given context.



1) Structure Learning: To build the structure of the BN
from the flow structure we assume that there exists a depen-
dency between the events associated to two activities a, and ay
if there exists a transition t = (a,, a,). For example, in terms of
our blood sample flow, the occurrence of the event e;—apply
cuff—necessitates the occurrence of the event e,—search
vein—afterwards. While this dependency is simple, there are
more difficult cases. When we consider forks d,,,(a>) = 2, it
is not clear if there is a dependency between the events of
a, and the events of a3, a4. A single nurse could disinfect
the arm first every time and then unpack the butterfly. This
does of course change the statistical dependency between the
events. The one between e,—search vein—and e;—unpack
butterfly— will be low, while the other between e, and e4—
disinfect elbow pit— will be high. When we further consider
the activities with d;,(a) > 1 we see that the occurrence of
an event may depended on more than one previous event.
Some of the preceding events may have a strong statistical
dependency, while others have no effect at all. However, we
create each of the possible dependencies in the beginning and
adapt their strength later in the parameter learning phase, e.g.
to deal with changing behavior of nurses.

We use a Bayesian Network BN := (N, D) to represent the
statistical dependencies from the flows, where n € N is a node
and d € D is a conditional dependency. The nodes of the BN
represent discrete random variables. The state space of a node
n is equal to the event type E adding a null class. For every
event type of an activity we create a node n = a.E identified
by the name of the activity and the event type. After that, we
add the dependencies between those nodes where the activities
also have a directed dependency, or more formally:

((ava) e T)ANTi: e, =E)Nj:e,()=E=
((ay.E), (ay.E) € D)

The result is a structured BN. Please note that the learning
has been very simple, because we have the flow structure
which provides us with a realistic assumption which events
are related to each other. Furthermore, the structure is fixed for
a specific flow model. Therefore, this step can be performed
offline right after the modeling phase. However, there may be
multiple instances of the BN in use for different locations
where the flow is actually deployed and executed, or for
different actors that are associated with the flow. For example,
there could be a single network trained for every nurse to
take personal habits into account when executing the flow and
processing the context information.

2) Parameter Learning: The next step is to train the BN
with the actual statistical dependencies that have occurred. At
first the conditional probability tables (CPT)s of each node
are initialized with a uniform distribution. In order to train
a BN we need a training data set with observations for the
value of each node. We use the flow traces that are collected
for each execution of a flow as data set for training. As the
event instances are stored together with the flow trace, it can
be converted to an observation of the values.

As an example, we look at a trace 7~ from our blood sample
flow. For activity @, there is an event instance Ig, = 6,,(€,(1))
stored in the trace. The probability distribution of this event
instance /g, indicates that e; is the most significant event, i.e.
the one with the highest probability. So for training from this
trace we would set the observed value for the corresponding
node a;.Ej, to e;.

The event types associated to activities that have not been
executed in a trace cannot provide event instances, thus the
corresponding nodes are set to the to the null state for this
trace. In the mentioned trace the activity a; may not have
been executed because the corresponding blood test was not
scheduled. So the value for the corresponding node a;.Ej
would be null. The BN can be trained incrementally with
the traces, as they become available. This way the CPTs are
adjusted until the dependencies are appropriately represented.
As we demonstrate in the evaluations a rather small training
set of 25 to 50 traces is sufficient for training.

3) Information Combination: The third and final step is
to retrieve the information from the BN and combine it with
current context information to increase accuracy. Querying a
BN usually means to initialize some of the variables with
observed values and compute the conditional probabilities of
the unknown variables. The observed values for the instance
of the flow that is currently executed, are the past events that
have already been recognized. We take all available events as
evidence into account.

When the next event instance /g arrives that only marginally
denotes that the expected event has happened, we compute the
conditional probability for this event using the previous event
instances as current observations. The result from the BN is
also a probability distribution function for the event type E. We
combine this result with the probability distribution function
Ip of the actual event instance. We compute the average
probability for each event in the distribution and normalize the
results afterwards to make the probability distribution valid
again. This averaging adjusts the probability of each event
by the amount of its statistical probability under the given
context of the previously occurred events. Here we actually
adjust the context measurement. The probability of an event
that statistically occurs more often is increased, while the other
way around, the probability gets lowered. Note that higher
probability also means a higher accuracy for the measured
event. The resulting probability distribution is stored in the
event instance. The event instance is then sent to the flow
instead of the original one, and processed according to the
flow execution semantics.

V. EvVALUATION

To evaluate our system, we used the blood sample exam-
ination flow we presented in this paper. The scenario data
and the flow were directly extracted from the collected real-
world traces. Unfortunately, some of the event data had to
be simulated and we discuss this in the setup section, along
with some technical details. Following that, we present our
evaluation results and analyze them.
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Fig. 3. Simulation Results
A. Setup and v = 0.7 also in steps of 0.05. Please note that a variance

Our simulation setup consists of three main components. First
a basic flow engine that is able to execute our flow models
using the JUNG Framework [21]. The flow engine defines
the navigation threshold 7, as described in Section IV-B. The
navigation threshold is our first simulation parameter. The
flow engine also implements the evaluation semantics defined
for the conditions based on Probability Theory. The second
component is the Bayesian Network Event Processor that
implements our algorithm and processes the event instances.
To represent the Bayesian Networks, we used the well-known
Weka framework [22].

The third component is the context system which is re-
sponsible for feeding the context events into the flow engine.
Based on the recognition results from the real traces, we
generated artificial traces with the same structure and prob-
ability distributions in order to produce statistically relevant
results. We first created lists of events that would allow
the engine to complete the flow successfully. We did not
consider out of order events or completely missing ones,
but just the uncertainty of false recognitions. The event lists
were then assigned with the results of the real recognition
to keep the simulation as realistic as possible. The average
recognition probabilities were between 40% and 60% for the
correct events. But there have also been false recognitions with
probabilities also up to 40%. We further added noise to those
single probabilities, which effectively introduces a variance v
on the absolute recognition probabilities. The resulting values
were normalized to get a sound probability distribution. The
variance value v is our second simulation parameter.

An experiment we simulated, consisted of the subsequent
execution of 100 blood sample flows. Each experiment was
repeated 25 times with the same parameter settings to achieve
statistical relevance. We started with a freshly initialized BN
every time and had no training data available from flow
histories i.e. the parameter learning phase of our algorithm is
performed online. The number of available traces for training
then increases with every completed flow instance. We chose
navigation thresholds between #, = 0.4 and #, = 0.65 with
steps of 0.05 and accuracy variance values between v = 0.05

value of v = 0.4 basically introduces the same amount of noise
into the simulation as we have recognition probabilities from
the traces. When we further increase the variance up tov = 0.7
this can be interpreted as feeding significantly more noise into
the flow compared to the given recognition probabilities.

B. Results

We measured two properties of our system, the accuracy
improvement of the events that should be delivered to the flow
engine in order to allow a correct execution of the flow and the
overall number of completed flows which can be interpreted
as the robustness of the flow execution.

1) Event Improvement: For the event improvement we
measured the relative event improvement, which is depicted in
Figure 3 on the left. By relative event improvement we mean
the probability of the significant event of the event instance
divided by its original probability before the processing with
our algorithm (p”/p c.f. Figure 2). We left out some curves
for better visibility. For the thresholds 7, = 0.4 and #, = 0.5
we observe a very good accuracy improvement performance
between 49% and 39%, for variance values up to v = 0.4. This
conditions indicate a system that has equal to higher require-
ments for the recognition accuracies that could actually be
provided. Furthermore we can deal with a significant amount
of noise quite well. However when we further increase the
variance up to v = 0.7 the average event improvement slowly
degrades to only 7%. But we still manage to improve the
recognition probabilities a little. When we further increase the
navigation threshold 7, = 0.6 and #, = 0.65 the performance
degrades much faster. While FlowCon is still able to achieve
a good improvement for small variance values up to v = 0.15,
we quickly get counter productive results when we further
increase the variance. The break even point, where we actually
make things worse using FlowCon, is v = 0.45 for a threshold
t, 0.6 and v 0.25 for a threshold 1, 0.65. This
strong degradation can be explained as we train the BN online
during the experiments. The correct training gets more difficult
and finally impossible with higher variance, values because
we have fewer correct traces and the navigation threshold to



achieve a correct trace is very high.

2) Flow Execution Robustness: The second observed prop-
erty is ratio of flows that were executed successfully during an
experiment. Those results are depicted in Figure 3 on the right.
As a reference, we have also shown here the performance of
our flow engine under the same conditions, but without the
processing accomplished by FlowCon. Given this setting, the
engine is only able to complete an average between 10.6% and
0.8% of all flows, while the combination with the FlowCon al-
gorithm yields an average number of completed flows between
90.0% and 27.6% which is a significant improvement. The
same degradation behavior as in the event quality improvement
can also be observed for the overall system robustness. We
perform quite well with slow degradation and a measurable
drop at a variance v = 0.45 for the lower thresholds (7, = 0.4
and #, = 0.5). For the upper thresholds, the performance
degrades much faster for the reasons we explained before.

VI. ConcLusioNs AND FUTURE WORK

In this paper, we have presented the Flow Context Manager
(FlowCon), a novel approach based on flow-based pervasive
applications that increases the accuracy of context information.
Flow Evaluations, based on real-world traces gathered in a
geriatric nursing home, have shown a significant increase of
event accuracy of up to 49%. Furthermore, we made the
execution of flow-based mobile applications more robust. The
ratio of flows that could complete their execution successfully
was increased significantly to up to 90% of the overall flows.
The results are promising and, thus, may leverage automatic
documentation in the presented scenario that frees the nurses
partially of some of their paperwork.

Our approach allows flow-based pervasive applications to
contribute information for the processing of high-level un-
certain context information. However, the expressiveness of
the used flow model is a limiting factor at the moment. We
aim to extend our approach so that it can be used on more
flexible flow models which can handle more complex human
behavior. Consequently, we believe we can support a broader
range of applications and provide them too with better activity
recognition accuracy. We also want to study the use of more
complex uncertainty models with our algorithm for further
accuracy improvement.
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