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Abstract—This paper introduces mechanisms for the au-
tomated detection of mobile objects in urban areas. Widely
available devices such as mobile phones with integrated prox-
imity sensors such as RFID readers or Bluetooth cooperatively
perform sensing operations to discover mobile objects. In this
paper, we propose a coverage metric for assessing the complete-
ness of sensing that considers spatial and temporal aspects. To
maximize coverage while minimizing energy consumption of
mobile nodes, we propose both a centralized and a distributed
coordination algorithm for selecting nodes that need to sense.
Moreover, we present strategies that allow selected nodes to
perform efficient sense operations. By extensive simulations,
we show that distributed coordination achieves drastic energy
savings of up to 63%, while limiting the coverage loss to
13%. Moreover, we show that the centralized algorithm loses
less than 1% coverage compared to the maximum possible
coverage.

I. INTRODUCTION

The evolution and proliferation of mobile phones in recent
years promise to provide multi-sensor platforms for envi-
ronmental sensing. Today, phones have several integrated
sensors such as RFID-readers [1] and GPS [2], and external
sensors can be easily connected to the phones [3] using for
instance Bluetooth. At the same time, a growing number
of people is willing to contribute to so called community-
based projects, which for instance create detailed maps of the
environment (cf. OpenStreetMap [4]). Mainly, these trends
lead to a concentration of research on public urban sensing
[2], [5], which aims for environmental sensing with the
abundantly available mobile resources in urban areas.

In addition to generating maps of environmental condi-
tions such as noise [6] or air pollution [7], pervasive mobile
devices can be used to detect the proximity of mobile objects
[8] using proximity sensors based on Bluetooth or RFID
technology. Such a mobile sensor network of phones can
track mobile objects allowing for applications ranging from
lost-and-found scenarios to the tracking of objects such
as buses to estimate, for instance, accurate arrival times.
Another scenario is the collection of traffic information,
e.g., the number of cars on a street segment. Traffic control
systems could use this information to reroute traffic or
impose temporary speed limits.

The potential of public sensing for these tracking applica-
tions comes from the large number of people that cover large
urban areas while carrying their mobile phones. Such mobile

sensors can achieve a coverage beyond that of the same
number of stationary sensor nodes [9]. However, the use of
these mobile sensors introduces two main challenges. Due
to uncontrolled node mobility, no guarantees about coverage
and, therefore, completeness of the search are possible.
Therefore, the first challenge is to determine the quality
of tracking, i.e., the completeness in terms of coverage of
the search area. Second, sensing may not interfere with
normal operation of mobile nodes. In essence, this requires
efficiency in terms of energy consumption, i.e., sensing and
communication of mobile nodes needs to be limited. In our
previous works [10], [11], we have presented coordination
algorithms for the efficient sensing of stationary phenomena.
However, for mobile object tracking, coverage metrics need
to be redefined, and completely new coordination algorithms
need to be designed.

The main contribution of this paper are concepts and
algorithms for the coverage-aware automated tracking of
mobile objects in urban areas. Although coverage metrics
are available for wireless sensor networks and mobile sen-
sors moving along roads of urban areas, these metrics are
not applicable for the proposed scenario of mobile object
tracking. Therefore, our contribution comprises coverage
metrics that integrate spatial and temporal coverage to reflect
the requirements of tracking applications. Moreover, this
paper presents a centralized and a distributed algorithm
for coordinating sensing of mobile nodes to achieve the
maximum possible coverage, while minimizing the energy
consumption of nodes. Finally, using extensive simulations,
we show the effectiveness and efficiency of these algorithms.

In the following section we present related work (Section
II). Then we introduce our system model (Section III), be-
fore we discuss quality metrics (Section IV). Afterwards, we
present the algorithms (Section V) for coordinated sensing.
Then, we present the evaluation setup and results (Section
VI). Finally, we conclude this paper and give a brief outlook
on future work (Section VII).

II. RELATED WORK

In the research field of public sensing, the focus lies on
the mapping of environmental phenomena. Approaches such
as [3], [12] use instrumented mobile devices to collect
shared sensor data. While Rudman et al. [12] attach sensors
for monitoring air pollution to a tablet PC, MobGeoSen
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[3] relies on mobile phones with integrated sensors that
can be carried around by a large number of people. As
[13] shows, tracked mobile sensors allow for a fine-grained
mapping of environmental effects. Approaches such as [11],
[14] consider quality aspects of this mapping. In our previ-
ous work [10], [11], we presented distributed coordination
algorithms to efficiently achieve quality requirements for
mapping stationary phenomena. Similar to us, [15] and [8]
use instrumented mobile devices to find objects, and their
scoped query mechanisms complement our work in that they
allow to select regions for sensing. However, our paper is
the first to propose algorithms for the efficient detection of
mobile objects in public sensing.

In the field of sensor networks, coverage metrics [16] and
mechanisms [17] for tracking or detecting objects have been
actively researched. However, research in the field of sensor
networks focuses mainly on the autonomous operation in in-
accessible areas. Since these scenarios fundamentally differ
from our scenario of mobile sensors moving uncontrolled
in urban areas, available coverage metrics that assume sta-
tionary or controlled sensors moving in the plane cannot be
applied to our scenario. To the best of our knowledge, this
is the first work to propose algorithms for quality-aware and
energy-efficient detection of mobile objects in urban areas.

Our work is complemented by AnonySense [18], which
proposes a framework for preserving privacy of participating
users in urban sensing scenarios.

III. SYSTEM MODEL

Our system consists of a reader network, a central server,
and mobile objects. Readers form a network and coop-
eratively perform sensing operations to detect the mobile
objects. Next, we describe these components and the under-
lying assumptions.

A central server is associated to a specific geographic
region (service area). The reader network consists of mo-
bile nodes moving in the service area. Their movement
is uncontrollable but restricted to the street network. The
maximum node speed iS ¥V, q2n. Nodes have integrated prox-
imity sensors (RFID, Bluetooth, or ZigBee) for detecting
mobile objects. Moreover they have a GPS receiver, which
allows to derive trajectory information. For ad-hoc inter-
node communication, nodes have a wireless communication
interface, e.g., 802.11bg, with transmission range 7¢,. In
Section V-B we will show how the ad-hoc network is
used for the distributed detection of objects. In addition,
we assume that nodes have WWAN connectivity (GPRS
or UMTS). In particular, WWAN is used for transmitting
readings from nodes to the central server.

We assume the proximity sensors integrated in the mobile
nodes can identify mobile objects with a specific probability
Pdetect 1f the object is within the maximum detection range
Tdetect- In case of an RFID reader or Bluetooth device,
Tdetect 1S several meters and documented in a sensor’s data

sheet. Finally, we assume a sensor to instantly report a
reading when queried.

Similarly to mobile nodes, mobile objects O; move un-
controllable on the street network. Their speed is limited
to vUpmazo- Each object has a unique identifier, for instance,
Bluetooth MAC address or ID of RFID tag, which is
reported by the proximity sensor of a mobile node.

The street network is modeled as a graph G. Edges
represent segments S of a street. Their weight denotes the
length of the respective segment. Its width is assumed to be
smaller than rgeiec. If this is not the case, e.g., on broad
streets, a street is modeled as multiple parallel segments
representing different lanes. Note that this approach is not
suited for very short rage sensors such as NFC readers.
Readers and objects enter or leave the street network or
transit to a different segment only at a vertex. Such vertexes
may be junctions, where objects transit to another segment,
or doorways, were objects enter or leave a building.

IV. COVERAGE-AWARE QUERY INTERFACE

We want to allow applications to query for objects, and refer
to it as object query ). The query takes an object O;, and
the maximum acceptable search time ¢,,,,. It returns the
position pos(O;) of the detected object, and a value Cy,g
which is the average of the values C; € [0,100] denoting
the percentage of the covered search space for each segment
of the service area (cf. Section IV-A).

Q (Oi7 t’max) — (pOS(Oi)7 Ca'ug) (1)

When the object is not found, pos(O;) is nil. Then,
Cavg indicates the possibility of a false negative, i.e., the
probability that the object is in the service area but was not
found because of incomplete coverage.

Object Query:

A. Quality Metric

To assess the quality of the search result, the coverage metric
must consider the temporal aspect in addition to the spatial
aspect of sensing. This is in contrast to spatial coverage
metrics used for stationary phenomena [11].

Due to continuous movement of mobile objects, a single
reading at a certain point in time also covers a certain area
after and also before the reading time. Figure la shows
a tx-diagram, where the x-axis shows the one-dimensional
spatial position on a segment, while the t-axis represents
time. A reading acquired at position z,..q spatially covers
the surrounding up to a distance of 7getect at treqd, 1-€., it
covers the interval I = [Zycad — Fdetects Tread + Tdetect]- TO
derive the coverage of this reading at other points in time, we
consider a mobile object that is at the time of the reading just
outside / moving at maximum speed vV, qz0 (WOrst case). As
it passes through I, the covered area shrinks according to
Umazo- At ime to = tread + Tdetect/Vmazo the coverage of
the reading is zero. Similarly to the covered triangle after
treads @ reading also covers a triangle before the reading.



To clarify this, we consider a mobile object at x,..qq at time
t1 = tread — Tdetect/VUmazo- This object needs to move with
maximum speed v,,q40 to leave I before the reading occurs
and it would be detected.
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Figure 1. Coverage of a single reader

In general, a reading covers a thomboid area R. A point
P of the tx-plane is covered by R if P € R. Figure 1b
illustrates the coverage of multiple readings.

The first group shows the coverage of a reader moving
faster than v, 4., and acquiring three readings whose rhombi
overlap. In this case, additional past and future areas (dark
gray areas in Figure 1b) are covered. To understand why the
past gray area is covered, consider an object at position a.
Every possible trajectory from this location intersects with
a coverage rhombi, i.e., the mobile object is detected by the
reading of the rhombus. Analogous, the future gray area can
be explained. Any mobile object that reaches b must have
passed through at least one rthombus. This is illustrated by
the two maximum speed trajectories that lead to b.

The second group consist of two overlapping rhombi. In
this case, when a node is slower than vy, a mobile object
is fast enough to approach a reader, turn, and then withdraw
again from it before the reader senses again. Figure 1b
visualizes this with the trajectory s of a mobile object.
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Figure 2. Coverage of multiple readers

This principle can be generalized to the case of readings
from multiple readers. For instance, Figure 2a shows the
trajectory and the covered area of two readers within the
boundaries of a segment. For simplicity, the figure only
shows the coverage achieved by continuous reading.

Intuitively, two nodes a, b that move towards each other
cover the space between them and, as soon as they meet at
time %,,cet, it can be deduced that the space between them
is covered since no object can pass a reader undetected.

Furthermore, if these nodes move in opposite directions after
the meeting, it can be deduced that the space between them
is covered. Figure 2b shows the effect of a leak point, e.g.,
a crossing where mobile objects enter or leave a segment,
on the coverage.

In essence, the coverage principles discussed in this
section can be unified as follows. A point P of the tx-
plane is covered if at least one of the following conditions
hold. First, all valid trajectories (restricted by the maximum
object speed vy,q440) Of Objects from P onwards intersect at
least one coverage rhombus. Second, all valid trajectories of
objects leading to P intersect at least one coverage thombus.

B. Coverage Metrics

Based on these considerations, we propose two coverage
metrics for a segment: The current coverage for a given point
in time, and the average coverage during a time period.

Definition 1. The current coverage c(t) of a segment at a
specific point in time t is the ratio of covered segment and
segment length.

Definition 2. The cumulated coverage C during the time
period (tmin, tmaz) is the integral over c(t) normalized by
the length of this time span.

1 tmax
¢ tmaz - tmin / C(t) dt ( )

t=tmin
In essence, we evaluate C for a specific segment and time
period by cutting the polygons on the respective segment and
time period and computing their area. The sum of these areas
is divided by the the segment length and the time period.

V. ALGORITHMS FOR READER COORDINATION

In this section, we describe our approach to coordinate
mobile readers in order to resolve object queries. With this
approach we aim for two goals. First, we want to provide
query results with high coverage values to increase the
probability of discovering the wanted mobile object.

Second, we want to perform sensing as efficiently as
possible. In particular, we want to avoid unnecessary sensing
and communication operations that would not increase the
coverage, to save energy of the battery-powered nodes.

A straightforward approach would be to let nodes sense
continuously while on queried segments. On leaving the
segment or when the query period is over, they transmit their
readings to a central server. This server collects the readings
from all nodes, and computes their coverage. Basically,
such an isolated approach where nodes sense independently
achieves the highest coverage. However, it is likely to
produce redundant readings with high node density.

Our goal is to achieve the coverage of the isolated
approach, while minimizing the sensing. We propose to
reduce sensing in two ways. First, by selecting and coor-
dinating readers such that only essential readers participate



in sensing. For this purpose, we propose two algorithms.
The central coordination algorithm is based on a central
instance that coordinates sensing of mobile readers (cf.
Section V-A). The distributed coordination algorithm is
based on the distributed coordination of readers on a segment
(cf. Section V-B). To further reduce sensing, we propose
sensing strategies in Section V-C that allow, in contrast to
continuous sensing, to reduce the sampling rate for sensing.

A. Centralized Coordination Algorithm

The basic idea of this algorithm is to track the position and
the sensing state of mobile readers at a central instance.
The central instance selects and activates readers based on
their current state and the sensing state of their neighbors
on the segment. Given a set of reader trajectories, an offline
algorithm could decide for each of these, which parts are
redundant for sensing. However, due to uncontrollable node
movement, it is impossible to prevent all this redundancy
in a live algorithm, while assuring the maximum possible
coverage. In this section, we aim for a pessimistic algorithm
that focuses on maximizing the coverage, i.e., a reader
only deactivates sensing if it is within a covered area.
First, we present reader states and the corresponding state
transitions that occur at meeting points of nodes that allow
for identifying nodes in covered areas. Then, we present an
efficient update protocol that allows to collect the necessary
position information to detect meetings of nodes.

In the following, we assume that a position of a reader
on a specific segment is represented by a 1D coordinate.
We say position Py, is left of Pr and Pg is right of Pr, if
Pr, < Pr. We distinguish the following reader states.

o RL-active: The reader is sensing independently, i.e., it
does not span a covered area with another reader. This
is the initial state of each reader as it enters a segment.

o L-active: An L-active reader extends the left side of a
coverage polygon.

o R-active: An R-active reader extends the right side of
a coverage polygon.

« inactive: The reader is inactive.

State transitions occur at meetings of nodes based on
reader states. Table I shows all reader combinations at
meeting points, and their state transitions. The first column
shows the state of the reader from the left and the top row
shows the state of the reader from the right. The fields of
the table show the new states of the readers. The first state is
that of the reader from the left and the second state is that of
the reader from the right. Combinations of states that cannot
occur in a real scenario are marked accordingly.

In Figure 3a, nodes a and b are RL-active. When they
meet at (a,b), they change their states: a to R-active and b
to L-active. From the meeting point, these nodes span the
covered area between them. Figure 3b shows the case where
an RL-active node c from the left meets the L-active node
b. After meeting at (c, b), node c enters a covered area and

Table I
READER STATE TRANSITIONS

RL-active  L-active R-active inactive
RL-active  R-active inactive - -
L-active L-active
L-active - - R-active inactive
L-active L-active
R-active R-active inactive - -
inactive inactive
inactive - - R-active inactive

inactive inactive

transits to inactive, while b remains L-active. When c leaves
the covered area at (¢, a), it transits to R-active. At the same
time, node a is in a covered area and transits to inactive.
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Figure 3. Reader state transitions

Coordination reduces sensing of readers. Additionally,
reducing positioning and communication of position fixes
to the central server saves energy. To track reader states,
the server needs to be informed about their positions. Since
it only needs to know where and when nodes meet, their
position update frequency can be optimized accordingly.

The idea of this optimization is that nodes may deviate
from their predicted movement without updating as long as
they move within predefined border lines in the tx-plane to
direct neighbors. Assuming constant node speed, the server
sets the borders as bisecting lines of the predicted trajectories
of neighbors. In addition, segment boundaries are borders.

A node locally determines its positioning rate according to
a worst case prediction, i.e., it computes the time to reach a
border line at maximum speed v, 42 . NOte that sensing may
have stricter requirements on positioning (cf. Section V-C).

‘A

Figure 4. Positioning deactivation

Figure 4 shows four readers and their extrapolated trajec-



tories based on the current speed. Border lines are dashed.
A node further delays a position update until it reaches
the maximum speed line (dotted lines) of its neighbor. In
essence, a node may cross a border until the respective
neighbor reaches the border at maximum speed. For in-
stance, ¢ updates only when left of b’s maximum speed line.

On receiving an update, the server computes a new border
line and notifies the neighbors accordingly. If it detects a
meeting of neighbors, it updates their neighbor relations and
their state transitions. Note that inactive readers do not need
to synchronize with other inactive readers.

B. Distributed Coordination of Reading

Although the pessimistic centralized algorithm is effective,
it does not exploit energy efficient local communication
over WiFi, which is feasible since coordination only re-
quires communication between neighbor nodes. Therefore,
we present a distributed algorithm that is based on reader
cooperation in the area of a segment in an ad-hoc network.

In contrast to the centralized algorithm, we aim for an
optimistic algorithm where nodes locally decide whether
they need to sense or not based on local knowledge about
the predicted movement and coverage of neighbors. The
basic idea of the algorithm is that nodes manage a local
view of the node movement on their segment. To achieve
this, they broadcast their position and speed in the ad-
hoc network if their actual movement deviates from the
predicted by more than a threshold. Moreover, nodes notify
their neighbors when they enter or leave a segment. Direct
neighbors receive these updates and compose them to their
local view. To further distribute these updates, nodes include
the most recently received updates into their own update
messages. Receiving nodes update their local view of a
node’s trajectory if the received one is more up-to-date.

The basic idea of our approach is to use the predicted
trajectories to project the resulting coverage of a group of
nodes. If a node can extend their coverage it starts sensing.
Otherwise, it deactivates sensing to save energy. If an area
can be covered by multiple nodes, rules are required to select
the sensing node in order to avoid redundant readings or
coverage holes. Thus, we propose an absolute ordering of
nodes according to the node ID. In detail, the algorithm is
listed in Figure 5.

In the first step, the algorithm iterates over all nodes on
the segment and checks incrementally if they extend the
coverage. If so, they are added to the list of candidates.
Otherwise, they do not need to sense and sleepUntil is set
to infinity. Then, the algorithm computes for each candidate
the first intersection of its predicted trajectory with the
coverage polygon remain resulting from the set of candi-
dates without the node itself (coverage(C\ N)). If the node
is currently inside remain, the intersection I is the point of
the tx-plane until which the node can deactivate sensing, i.e.,
N.sleepUntil < I. Otherwise, the node needs to sense, and

Require: L ordered list of nodes
C «+ 0 // init set of candidate nodes
for all N € L do
if coverage(CU N) > coverage(C) then
C«+~CuUN
else
N.sleepUntil < oo
end if
end for
for all N € C do
Raytrajectory < N.get ProjectedMovement()
Polygonremain < coverage(C \ N)
Point I < remain. firstIntersection(trajectory)
if N.getPosition € remain then
N.sleepUntil < 1
else
N.senseUntil < I
end if
end for

Figure 5. Distributed Coordination Algorithm

1 is the point where it can stop sensing N.senseUntil < I.
This algorithm is executed on receiving an update message.

predicted coverage

. of nodes
order of nodes:

(a,b,c,def)

a b c de [

Figure 6. Distributed coordination based on predictions

Figure 6 shows an example. Although, nodes d and e
are interchangeable regarding coverage, node e is ruled out
due to the ordering of nodes. For the resulting nodes, the
algorithm computes the ranges of the trajectories where to
sense, e.g., a senses until meeting d.

Deactivating sensing allows for relaxing a node’s position-
ing interval. However, if it enters an uncovered area while
positioning is deactivated, coverage is lost. Pessimistically
we propose to compute the time period for deactivating
positioning as time for a mobile node to reach the coverage
boundaries with maximum speed v, q.n. A more optimistic
strategy is to assume a constant movement, where a node
continues to move at its current speed.

C. Efficient Sensing along Trajectories

In the previous sections, we showed how to determine for
each node spatial ranges of a segment where to sense.
The simplest approach to cover such a range is continuous
sensing while a node is within this range.

As Figure 7 shows, a reader can determine a non-
continuous but energy efficient sensing interval computed
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as the time for node and object to cover a distance of twice
Tdetect- HOWever, inaccurate speed predictions may lead to
coverage holes, i.e., the coverage of succeeding readings
may not overlap. Moreover, since reading is only successful
with probability pgetect, multiple readings may be needed to
actually detect a passing object.

Our goal is to detect mobile objects passing by a sensing
reader with a required probability. In essence, this allows
for trading of sensing quality, i.e., probability to detect a
passing object, and energy cost. This leads to the following
equation for computing the time interval between readings.

2Tdetect

3

t =
mae Credundant * (Umawo + ‘UlimitD

First, a user specifies the required redundancy c,equndant
of readings. With pgesect close to 1, no redundancy is needed
and, therefore, this value is set to 1. If pgetect = 0.9, a value
Credundant = 2 18 sufficient to detect any passing object with
a probability of 0.99. Second, a user specifies the speed
Vimit @ node does not exceed. Optimistically, this is the
current speed; pessimistically, it is set t0 Vpqpn-

VI. EXPERIMENTAL SETUP AND EVALUATION

This section presents the simulation model and the results
of the evaluation of our algorithms. We implemented the
algorithms for the network simulator ns-2. In the following
we distinguish the following implementations:

o Centralized: Pessimistic implementation based on the
central coordination algorithm (cf. Section V-A). A
central instance coordinates sensing of mobile nodes.

« Distributed: Optimistic implementation based on the
distributed coordination of nodes (cf. Section V-B),
where mobile nodes coordinate sensing in an ad-hoc
network. The central instance is only responsible for
managing the data read by mobile nodes.

« Isolated: Reference implementation where nodes in-
dependently sense while on the road network. The
Isolated approach presents the worst case for redundant
sensing, but also the best case for coverage. This is
basically the state of the art [15].

Our implementations use the 802.11 extension of ns-2 with
riz = 100m. Nodes and objects move at pedestrian speed
(between 0.7m/s and 1.8 m/s) according to the UDEL mo-
bility model [19] that is based on surveys from a number

of research areas and produces realistic urban traces of
pedestrians moving non-uniformly distributed on a street
graph. The underlying street graph is a nine block section of
Chicago consisting of 93 segments. The influence of node
density on our algorithms is evaluated in a wide range of
scenarios. The average number of objects at a time on the
road network is 150. Movement predictions are based on the
assumption of uniform movement at current speed along the
current road segment. The position uncertainty is 5 m.
Each edge of the street graph is a road segment. Sim-
ulations are performed five times and last for 30 minutes.
During that time, nodes try to cover every segment. Nodes
have an RFID reader as proximity sensor with 7getect = 5 m,
and they use GPRS for communication with the server. Node
energy consumption is computed according to Table II.

Table II
ENERGY MODEL

Component Energy [m]]
GPS [20]

Position Fix 75
RFID [21]

Read 80
802.11b at 1 Mbps (broadcast rate) [22]

Send (1000 Bit) 2

Receive (1000 Bit) 1
GPRS [23]

Send (1000 Bit) 80

Receive (1000 Bit) 40

A. Effectiveness of Algorithms

In this section, we evaluate the effectiveness in terms of
the achieved coverage (cf. Section IV-A). As a performance
metric, we compute the average coverage C,,4 achieved by
the mobile nodes per segment during a simulation run.

Figure 8 shows C,,4 depending on the average number of
nodes on the roads. In essence, all three approaches show
similarly increasing coverage. Due to redundancy in node
movement, Cg,4 scales less than linear with the number
of nodes. Isolated achieves the maximum coverage. While
Centralized achieves a coverage only slightly lower (about
1%), Distributed further reduces the coverage (at most 13%).
This is due to the optimistic design of Distributed that may
loose coverage when readers accelerate. However, when the
density is low, nodes are more likely to read independently
from other nodes and, therefore, the probability of optimistic
sensing deactivation is reduced. On the other side, with high
reader density, redundancy leads to more optimistic sensing
deactivations and, thus, to a higher loss.

Figure 9 shows Cg,y depending on vpeze with 203
readers. As expected, all three approaches behave similarly.
The maximum coverage is achieved for stationary objects.
With increasing vmaqzo, Cavg decreases rapidly. However, the
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decrease is limited since covered areas spanned by multiple
nodes are independent from v, ... The explanation for the
gap between the three approaches is analogous to Figure 8.

In Figure 10 we compare the overall number of objects,
the number of detected objects, and the number of detectable
objects. The overall number of objects is computed as the
sum of segments entered by objects during the simulation.
The number of detectable objects are those which cross at
least one coverage polygon. The number of detected objects
refers to the results of the three approaches. The average
number of nodes is 203. As expected, the overall number
is nearly constant at a level of about 5400. The detectable
number of objects depends on the number of nodes in the
network and, therefore, their coverage. The gap between
the actual number of detected objects by Isolated and the
number of detectable objects is due to objects that enter
or leave a segment within segment boundaries, e.g., at a
building entrance. However, the effect of these leak points
is limited to 6% in our simulations. Moreover, this figure
shows that Centralized and Distributed almost achieve to
detect as much objects as Isolated.

In Figure 11, Cyy4 is compared with the detection ratio
DR, i.e., the number of detected objects divided by the
overall number of detectable objects. Since Cy,4 is based on
a worst case mobility assumption for objects, its values are
a lower bound for D R. For readability reasons, and because
Distributed and Centralized show a similar behavior, we only
plot the results of Isolated. Both, Cyyg and DR similarly
depend on the average number of nodes. The higher Cy. g,
the higher is DR. One reason for the gap is that nodes and
objects are pedestrians that show effects of correlated group
movement. The gap decreases for larger numbers of nodes,
when node meetings are likely, and additional coverage is
achieved in terms of Coyyg.

B. Efficiency of Algorithms

Finally, we compare the efficiency in terms of energy
consumption (EC). EC is computed as the average energy a
node spends per second for positioning, communication, and
sensing (cf. Table II). Since Bluetooth discovery and RFID
reading consume roughly the same amount of energy, we

assume an RFID reader as proximity sensor in the following.

Figure 12 plots the EC depending on the average number
of nodes. As expected, Isolated’s EC is independent from the
number of nodes. In contrast, Centralized and Distributed
benefit from increasing node density by preventing unnec-
essary sensing. Savings are higher with increasing node
density, when redundancy of movement increases. Moreover,
we observe a large gap between Centralized and Distributed.
With 30 nodes on the roads, Centralized’s EC even exceeds
that of Isolated. One reason is the high power consumption
for communication with the server over GPRS. When the
node density is low, few redundant sensing are prevented,
and even outweighed by the additional communication cost.
The second reason for the gap are the design principles
of Centralized and Distributed. Centralized is pessimistic
and developed to achieve the maximum possible coverage.
Distributed is more optimistic, i.e., it may loose coverage.
It achieves EC savings of up to 63% compared to Isolated
at the cost of only 13% less coverage.

In Figure 13, we compare different sensing strategies
(cf. Section V-C). The average number of nodes is 203,
and 7getect = 15m. On the x-axis, from left to right, the
optimism of the strategies increases. Most pessimistic is
Umazn,C = 3. It assumes that the node speed is limited
t0 Umazn, and that the sensing redundancy needs to be set
to 3 to achieve the required coverage along a trajectory.
More optimistic iS v¢y,, ¢ = 3 since it assumes that a node
keeps its current speed vc,,.. Most optimistic iS Veyr, ¢ = 1
without redundancy. As expected, all approaches reduce the
EC for higher degrees of optimism (less aggressive sens-
ing). However, the differences between the strategies w.r.t.
absolute savings are small, since the cost for positioning
cannot be reduced. This suggests that increasing the success
probability only slightly increases the EC.

VII. CONCLUSIONS

In this paper, we introduced mechanisms for the automated
detection of mobile objects in urban areas. Our approach
utilizes mobile devices such as smartphones to track mobile
objects. We proposed a metric that captures the coverage,
and we presented a centralized and a distributed algorithm
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to coordinate readers such that redundant sensing is reduced,
i.e., energy consumption is reduced. Using simulations, we
showed that these algorithms achieve energy savings of up
to 63% while reducing coverage by only 13%.

In future work, we plan to investigate a self-tuning ap-
proach that automatically adjusts the coverage parameters
such that a certain quality of detection is achieved rather
than only reporting the achieved coverage. Furthermore, we
plan for a real-world evaluation based on Bluetooth.
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