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Abstract—This paper introduces mechanisms for the au-
tomated detection of mobile objects in urban areas. Widely
available devices such as mobile phones with integrated prox-
imity sensors such as RFID readers or Bluetooth cooperatively
perform sensing operations to discover mobile objects. In this
paper, we propose a coverage metric for assessing the complete-
ness of sensing that considers spatial and temporal aspects. To
maximize coverage while minimizing energy consumption of
mobile nodes, we propose both a centralized and a distributed
coordination algorithm for selecting nodes that need to sense.
Moreover, we present strategies that allow selected nodes to
perform efficient sense operations. By extensive simulations,
we show that distributed coordination achieves drastic energy
savings of up to 63%, while limiting the coverage loss to
13%. Moreover, we show that the centralized algorithm loses
less than 1% coverage compared to the maximum possible
coverage.

I. INTRODUCTION

The evolution and proliferation of mobile phones in recent

years promise to provide multi-sensor platforms for envi-

ronmental sensing. Today, phones have several integrated

sensors such as RFID-readers [1] and GPS [2], and external

sensors can be easily connected to the phones [3] using for

instance Bluetooth. At the same time, a growing number

of people is willing to contribute to so called community-

based projects, which for instance create detailed maps of the

environment (cf. OpenStreetMap [4]). Mainly, these trends

lead to a concentration of research on public urban sensing

[2], [5], which aims for environmental sensing with the

abundantly available mobile resources in urban areas.

In addition to generating maps of environmental condi-

tions such as noise [6] or air pollution [7], pervasive mobile

devices can be used to detect the proximity of mobile objects

[8] using proximity sensors based on Bluetooth or RFID

technology. Such a mobile sensor network of phones can

track mobile objects allowing for applications ranging from

lost-and-found scenarios to the tracking of objects such

as buses to estimate, for instance, accurate arrival times.

Another scenario is the collection of traffic information,

e.g., the number of cars on a street segment. Traffic control

systems could use this information to reroute traffic or

impose temporary speed limits.

The potential of public sensing for these tracking applica-

tions comes from the large number of people that cover large

urban areas while carrying their mobile phones. Such mobile

sensors can achieve a coverage beyond that of the same

number of stationary sensor nodes [9]. However, the use of

these mobile sensors introduces two main challenges. Due

to uncontrolled node mobility, no guarantees about coverage

and, therefore, completeness of the search are possible.

Therefore, the first challenge is to determine the quality

of tracking, i.e., the completeness in terms of coverage of

the search area. Second, sensing may not interfere with

normal operation of mobile nodes. In essence, this requires

efficiency in terms of energy consumption, i.e., sensing and

communication of mobile nodes needs to be limited. In our

previous works [10], [11], we have presented coordination

algorithms for the efficient sensing of stationary phenomena.

However, for mobile object tracking, coverage metrics need

to be redefined, and completely new coordination algorithms

need to be designed.

The main contribution of this paper are concepts and

algorithms for the coverage-aware automated tracking of

mobile objects in urban areas. Although coverage metrics

are available for wireless sensor networks and mobile sen-

sors moving along roads of urban areas, these metrics are

not applicable for the proposed scenario of mobile object

tracking. Therefore, our contribution comprises coverage

metrics that integrate spatial and temporal coverage to reflect

the requirements of tracking applications. Moreover, this

paper presents a centralized and a distributed algorithm

for coordinating sensing of mobile nodes to achieve the

maximum possible coverage, while minimizing the energy

consumption of nodes. Finally, using extensive simulations,

we show the effectiveness and efficiency of these algorithms.

In the following section we present related work (Section

II). Then we introduce our system model (Section III), be-

fore we discuss quality metrics (Section IV). Afterwards, we

present the algorithms (Section V) for coordinated sensing.

Then, we present the evaluation setup and results (Section

VI). Finally, we conclude this paper and give a brief outlook

on future work (Section VII).

II. RELATED WORK

In the research field of public sensing, the focus lies on

the mapping of environmental phenomena. Approaches such

as [3], [12] use instrumented mobile devices to collect

shared sensor data. While Rudman et al. [12] attach sensors

for monitoring air pollution to a tablet PC, MobGeoSen
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[3] relies on mobile phones with integrated sensors that

can be carried around by a large number of people. As

[13] shows, tracked mobile sensors allow for a fine-grained

mapping of environmental effects. Approaches such as [11],

[14] consider quality aspects of this mapping. In our previ-

ous work [10], [11], we presented distributed coordination

algorithms to efficiently achieve quality requirements for

mapping stationary phenomena. Similar to us, [15] and [8]

use instrumented mobile devices to find objects, and their

scoped query mechanisms complement our work in that they

allow to select regions for sensing. However, our paper is

the first to propose algorithms for the efficient detection of

mobile objects in public sensing.

In the field of sensor networks, coverage metrics [16] and

mechanisms [17] for tracking or detecting objects have been

actively researched. However, research in the field of sensor

networks focuses mainly on the autonomous operation in in-

accessible areas. Since these scenarios fundamentally differ

from our scenario of mobile sensors moving uncontrolled

in urban areas, available coverage metrics that assume sta-

tionary or controlled sensors moving in the plane cannot be

applied to our scenario. To the best of our knowledge, this

is the first work to propose algorithms for quality-aware and

energy-efficient detection of mobile objects in urban areas.

Our work is complemented by AnonySense [18], which

proposes a framework for preserving privacy of participating

users in urban sensing scenarios.

III. SYSTEM MODEL

Our system consists of a reader network, a central server,

and mobile objects. Readers form a network and coop-

eratively perform sensing operations to detect the mobile

objects. Next, we describe these components and the under-

lying assumptions.

A central server is associated to a specific geographic

region (service area). The reader network consists of mo-

bile nodes moving in the service area. Their movement

is uncontrollable but restricted to the street network. The

maximum node speed is vmaxn. Nodes have integrated prox-

imity sensors (RFID, Bluetooth, or ZigBee) for detecting

mobile objects. Moreover they have a GPS receiver, which

allows to derive trajectory information. For ad-hoc inter-

node communication, nodes have a wireless communication

interface, e.g., 802.11bg, with transmission range rtx. In

Section V-B we will show how the ad-hoc network is

used for the distributed detection of objects. In addition,

we assume that nodes have WWAN connectivity (GPRS

or UMTS). In particular, WWAN is used for transmitting

readings from nodes to the central server.

We assume the proximity sensors integrated in the mobile

nodes can identify mobile objects with a specific probability

pdetect if the object is within the maximum detection range

rdetect. In case of an RFID reader or Bluetooth device,

rdetect is several meters and documented in a sensor’s data

sheet. Finally, we assume a sensor to instantly report a

reading when queried.

Similarly to mobile nodes, mobile objects Oi move un-

controllable on the street network. Their speed is limited

to vmaxo. Each object has a unique identifier, for instance,

Bluetooth MAC address or ID of RFID tag, which is

reported by the proximity sensor of a mobile node.

The street network is modeled as a graph G. Edges

represent segments S of a street. Their weight denotes the

length of the respective segment. Its width is assumed to be

smaller than rdetect. If this is not the case, e.g., on broad

streets, a street is modeled as multiple parallel segments

representing different lanes. Note that this approach is not

suited for very short rage sensors such as NFC readers.

Readers and objects enter or leave the street network or

transit to a different segment only at a vertex. Such vertexes

may be junctions, where objects transit to another segment,

or doorways, were objects enter or leave a building.

IV. COVERAGE-AWARE QUERY INTERFACE

We want to allow applications to query for objects, and refer

to it as object query Q. The query takes an object Oi, and

the maximum acceptable search time tmax. It returns the

position pos(Oi) of the detected object, and a value Cavg

which is the average of the values Ci ∈ [0, 100] denoting

the percentage of the covered search space for each segment

of the service area (cf. Section IV-A).

Object Query: Q (Oi, tmax)→ (pos(Oi), Cavg) (1)

When the object is not found, pos(Oi) is nil. Then,

Cavg indicates the possibility of a false negative, i.e., the

probability that the object is in the service area but was not

found because of incomplete coverage.

A. Quality Metric

To assess the quality of the search result, the coverage metric

must consider the temporal aspect in addition to the spatial

aspect of sensing. This is in contrast to spatial coverage

metrics used for stationary phenomena [11].

Due to continuous movement of mobile objects, a single

reading at a certain point in time also covers a certain area

after and also before the reading time. Figure 1a shows

a tx-diagram, where the x-axis shows the one-dimensional

spatial position on a segment, while the t-axis represents

time. A reading acquired at position xread spatially covers

the surrounding up to a distance of rdetect at tread, i.e., it

covers the interval I = [xread − rdetect, xread + rdetect]. To

derive the coverage of this reading at other points in time, we

consider a mobile object that is at the time of the reading just

outside I moving at maximum speed vmaxo (worst case). As

it passes through I , the covered area shrinks according to

vmaxo. At time t2 = tread + rdetect/vmaxo the coverage of

the reading is zero. Similarly to the covered triangle after

tread, a reading also covers a triangle before the reading.



To clarify this, we consider a mobile object at xread at time

t1 = tread− rdetect/vmaxo. This object needs to move with

maximum speed vmaxo to leave I before the reading occurs

and it would be detected.

Figure 1. Coverage of a single reader

In general, a reading covers a rhomboid area R. A point

P of the tx-plane is covered by R if P ∈ R. Figure 1b

illustrates the coverage of multiple readings.

The first group shows the coverage of a reader moving

faster than vmaxo and acquiring three readings whose rhombi

overlap. In this case, additional past and future areas (dark

gray areas in Figure 1b) are covered. To understand why the

past gray area is covered, consider an object at position a.

Every possible trajectory from this location intersects with

a coverage rhombi, i.e., the mobile object is detected by the

reading of the rhombus. Analogous, the future gray area can

be explained. Any mobile object that reaches b must have

passed through at least one rhombus. This is illustrated by

the two maximum speed trajectories that lead to b.
The second group consist of two overlapping rhombi. In

this case, when a node is slower than vmaxo, a mobile object

is fast enough to approach a reader, turn, and then withdraw

again from it before the reader senses again. Figure 1b

visualizes this with the trajectory s of a mobile object.

Figure 2. Coverage of multiple readers

This principle can be generalized to the case of readings

from multiple readers. For instance, Figure 2a shows the

trajectory and the covered area of two readers within the

boundaries of a segment. For simplicity, the figure only

shows the coverage achieved by continuous reading.

Intuitively, two nodes a, b that move towards each other

cover the space between them and, as soon as they meet at

time tmeet, it can be deduced that the space between them

is covered since no object can pass a reader undetected.

Furthermore, if these nodes move in opposite directions after

the meeting, it can be deduced that the space between them

is covered. Figure 2b shows the effect of a leak point, e.g.,

a crossing where mobile objects enter or leave a segment,

on the coverage.

In essence, the coverage principles discussed in this

section can be unified as follows. A point P of the tx-

plane is covered if at least one of the following conditions

hold. First, all valid trajectories (restricted by the maximum

object speed vmaxo) of objects from P onwards intersect at

least one coverage rhombus. Second, all valid trajectories of

objects leading to P intersect at least one coverage rhombus.

B. Coverage Metrics

Based on these considerations, we propose two coverage

metrics for a segment: The current coverage for a given point

in time, and the average coverage during a time period.

Definition 1. The current coverage c(t) of a segment at a

specific point in time t is the ratio of covered segment and

segment length.

Definition 2. The cumulated coverage C during the time

period (tmin, tmax) is the integral over c(t) normalized by

the length of this time span.

C =
1

tmax − tmin

∫ tmax

t=tmin

c(t) · dt (2)

In essence, we evaluate C for a specific segment and time

period by cutting the polygons on the respective segment and

time period and computing their area. The sum of these areas

is divided by the the segment length and the time period.

V. ALGORITHMS FOR READER COORDINATION

In this section, we describe our approach to coordinate

mobile readers in order to resolve object queries. With this

approach we aim for two goals. First, we want to provide

query results with high coverage values to increase the

probability of discovering the wanted mobile object.

Second, we want to perform sensing as efficiently as

possible. In particular, we want to avoid unnecessary sensing

and communication operations that would not increase the

coverage, to save energy of the battery-powered nodes.

A straightforward approach would be to let nodes sense

continuously while on queried segments. On leaving the

segment or when the query period is over, they transmit their

readings to a central server. This server collects the readings

from all nodes, and computes their coverage. Basically,

such an isolated approach where nodes sense independently

achieves the highest coverage. However, it is likely to

produce redundant readings with high node density.

Our goal is to achieve the coverage of the isolated

approach, while minimizing the sensing. We propose to

reduce sensing in two ways. First, by selecting and coor-

dinating readers such that only essential readers participate



in sensing. For this purpose, we propose two algorithms.

The central coordination algorithm is based on a central

instance that coordinates sensing of mobile readers (cf.

Section V-A). The distributed coordination algorithm is

based on the distributed coordination of readers on a segment

(cf. Section V-B). To further reduce sensing, we propose

sensing strategies in Section V-C that allow, in contrast to

continuous sensing, to reduce the sampling rate for sensing.

A. Centralized Coordination Algorithm

The basic idea of this algorithm is to track the position and

the sensing state of mobile readers at a central instance.

The central instance selects and activates readers based on

their current state and the sensing state of their neighbors

on the segment. Given a set of reader trajectories, an offline

algorithm could decide for each of these, which parts are

redundant for sensing. However, due to uncontrollable node

movement, it is impossible to prevent all this redundancy

in a live algorithm, while assuring the maximum possible

coverage. In this section, we aim for a pessimistic algorithm

that focuses on maximizing the coverage, i.e., a reader

only deactivates sensing if it is within a covered area.

First, we present reader states and the corresponding state

transitions that occur at meeting points of nodes that allow

for identifying nodes in covered areas. Then, we present an

efficient update protocol that allows to collect the necessary

position information to detect meetings of nodes.

In the following, we assume that a position of a reader

on a specific segment is represented by a 1D coordinate.

We say position PL is left of PR and PR is right of PL, if

PL < PR. We distinguish the following reader states.

• RL-active: The reader is sensing independently, i.e., it

does not span a covered area with another reader. This

is the initial state of each reader as it enters a segment.

• L-active: An L-active reader extends the left side of a

coverage polygon.

• R-active: An R-active reader extends the right side of

a coverage polygon.

• inactive: The reader is inactive.

State transitions occur at meetings of nodes based on

reader states. Table I shows all reader combinations at

meeting points, and their state transitions. The first column

shows the state of the reader from the left and the top row

shows the state of the reader from the right. The fields of

the table show the new states of the readers. The first state is

that of the reader from the left and the second state is that of

the reader from the right. Combinations of states that cannot

occur in a real scenario are marked accordingly.

In Figure 3a, nodes a and b are RL-active. When they

meet at (a, b), they change their states: a to R-active and b
to L-active. From the meeting point, these nodes span the

covered area between them. Figure 3b shows the case where

an RL-active node c from the left meets the L-active node

b. After meeting at (c, b), node c enters a covered area and

Table I
READER STATE TRANSITIONS

RL-active L-active R-active inactive

RL-active R-active
L-active

inactive
L-active

- -

L-active - - R-active
L-active

inactive
L-active

R-active R-active
inactive

inactive
inactive

- -

inactive - - R-active
inactive

inactive
inactive

transits to inactive, while b remains L-active. When c leaves

the covered area at (c, a), it transits to R-active. At the same

time, node a is in a covered area and transits to inactive.

Figure 3. Reader state transitions

Coordination reduces sensing of readers. Additionally,

reducing positioning and communication of position fixes

to the central server saves energy. To track reader states,

the server needs to be informed about their positions. Since

it only needs to know where and when nodes meet, their

position update frequency can be optimized accordingly.

The idea of this optimization is that nodes may deviate

from their predicted movement without updating as long as

they move within predefined border lines in the tx-plane to

direct neighbors. Assuming constant node speed, the server

sets the borders as bisecting lines of the predicted trajectories

of neighbors. In addition, segment boundaries are borders.

A node locally determines its positioning rate according to

a worst case prediction, i.e., it computes the time to reach a

border line at maximum speed vmaxn. Note that sensing may

have stricter requirements on positioning (cf. Section V-C).

Figure 4. Positioning deactivation

Figure 4 shows four readers and their extrapolated trajec-



tories based on the current speed. Border lines are dashed.

A node further delays a position update until it reaches

the maximum speed line (dotted lines) of its neighbor. In

essence, a node may cross a border until the respective

neighbor reaches the border at maximum speed. For in-

stance, c updates only when left of b’s maximum speed line.

On receiving an update, the server computes a new border

line and notifies the neighbors accordingly. If it detects a

meeting of neighbors, it updates their neighbor relations and

their state transitions. Note that inactive readers do not need

to synchronize with other inactive readers.

B. Distributed Coordination of Reading

Although the pessimistic centralized algorithm is effective,

it does not exploit energy efficient local communication

over WiFi, which is feasible since coordination only re-

quires communication between neighbor nodes. Therefore,

we present a distributed algorithm that is based on reader

cooperation in the area of a segment in an ad-hoc network.

In contrast to the centralized algorithm, we aim for an

optimistic algorithm where nodes locally decide whether

they need to sense or not based on local knowledge about

the predicted movement and coverage of neighbors. The

basic idea of the algorithm is that nodes manage a local

view of the node movement on their segment. To achieve

this, they broadcast their position and speed in the ad-

hoc network if their actual movement deviates from the

predicted by more than a threshold. Moreover, nodes notify

their neighbors when they enter or leave a segment. Direct

neighbors receive these updates and compose them to their

local view. To further distribute these updates, nodes include

the most recently received updates into their own update

messages. Receiving nodes update their local view of a

node’s trajectory if the received one is more up-to-date.

The basic idea of our approach is to use the predicted

trajectories to project the resulting coverage of a group of

nodes. If a node can extend their coverage it starts sensing.

Otherwise, it deactivates sensing to save energy. If an area

can be covered by multiple nodes, rules are required to select

the sensing node in order to avoid redundant readings or

coverage holes. Thus, we propose an absolute ordering of

nodes according to the node ID. In detail, the algorithm is

listed in Figure 5.

In the first step, the algorithm iterates over all nodes on

the segment and checks incrementally if they extend the

coverage. If so, they are added to the list of candidates.

Otherwise, they do not need to sense and sleepUntil is set

to infinity. Then, the algorithm computes for each candidate

the first intersection of its predicted trajectory with the

coverage polygon remain resulting from the set of candi-

dates without the node itself (coverage(C\N)). If the node

is currently inside remain, the intersection I is the point of

the tx-plane until which the node can deactivate sensing, i.e.,

N.sleepUntil← I . Otherwise, the node needs to sense, and

Require: L ordered list of nodes
C← ∅ // init set of candidate nodes
for all N ∈ L do

if coverage(C ∪N) > coverage(C) then
C← C ∪N

else
N.sleepUntil←∞

end if
end for
for all N ∈ C do

Ray trajectory ← N.getProjectedMovement()
Polygon remain← coverage(C \N)
Point I ← remain.firstIntersection(trajectory)
if N.getPosition ∈ remain then

N.sleepUntil← I
else

N.senseUntil← I
end if

end for

Figure 5. Distributed Coordination Algorithm

I is the point where it can stop sensing N.senseUntil← I .

This algorithm is executed on receiving an update message.

Figure 6. Distributed coordination based on predictions

Figure 6 shows an example. Although, nodes d and e
are interchangeable regarding coverage, node e is ruled out

due to the ordering of nodes. For the resulting nodes, the

algorithm computes the ranges of the trajectories where to

sense, e.g., a senses until meeting d.

Deactivating sensing allows for relaxing a node’s position-

ing interval. However, if it enters an uncovered area while

positioning is deactivated, coverage is lost. Pessimistically

we propose to compute the time period for deactivating

positioning as time for a mobile node to reach the coverage

boundaries with maximum speed vmaxn. A more optimistic

strategy is to assume a constant movement, where a node

continues to move at its current speed.

C. Efficient Sensing along Trajectories

In the previous sections, we showed how to determine for

each node spatial ranges of a segment where to sense.

The simplest approach to cover such a range is continuous

sensing while a node is within this range.

As Figure 7 shows, a reader can determine a non-

continuous but energy efficient sensing interval computed



Figure 7. Discrete Sensing Interval

as the time for node and object to cover a distance of twice

rdetect. However, inaccurate speed predictions may lead to

coverage holes, i.e., the coverage of succeeding readings

may not overlap. Moreover, since reading is only successful

with probability pdetect, multiple readings may be needed to

actually detect a passing object.

Our goal is to detect mobile objects passing by a sensing

reader with a required probability. In essence, this allows

for trading of sensing quality, i.e., probability to detect a

passing object, and energy cost. This leads to the following

equation for computing the time interval between readings.

tmax =
2rdetect

credundant · (vmaxo + |vlimit|)
(3)

First, a user specifies the required redundancy credundant
of readings. With pdetect close to 1, no redundancy is needed

and, therefore, this value is set to 1. If pdetect = 0.9, a value

credundant = 2 is sufficient to detect any passing object with

a probability of 0.99. Second, a user specifies the speed

vlimit a node does not exceed. Optimistically, this is the

current speed; pessimistically, it is set to vmaxn.

VI. EXPERIMENTAL SETUP AND EVALUATION

This section presents the simulation model and the results

of the evaluation of our algorithms. We implemented the

algorithms for the network simulator ns-2. In the following

we distinguish the following implementations:

• Centralized: Pessimistic implementation based on the

central coordination algorithm (cf. Section V-A). A

central instance coordinates sensing of mobile nodes.

• Distributed: Optimistic implementation based on the

distributed coordination of nodes (cf. Section V-B),

where mobile nodes coordinate sensing in an ad-hoc

network. The central instance is only responsible for

managing the data read by mobile nodes.

• Isolated: Reference implementation where nodes in-

dependently sense while on the road network. The

Isolated approach presents the worst case for redundant

sensing, but also the best case for coverage. This is

basically the state of the art [15].

Our implementations use the 802.11 extension of ns-2 with

rtx = 100m. Nodes and objects move at pedestrian speed

(between 0.7m/s and 1.8m/s) according to the UDEL mo-

bility model [19] that is based on surveys from a number

of research areas and produces realistic urban traces of

pedestrians moving non-uniformly distributed on a street

graph. The underlying street graph is a nine block section of

Chicago consisting of 93 segments. The influence of node

density on our algorithms is evaluated in a wide range of

scenarios. The average number of objects at a time on the

road network is 150. Movement predictions are based on the

assumption of uniform movement at current speed along the

current road segment. The position uncertainty is 5m.

Each edge of the street graph is a road segment. Sim-

ulations are performed five times and last for 30 minutes.

During that time, nodes try to cover every segment. Nodes

have an RFID reader as proximity sensor with rdetect = 5m,

and they use GPRS for communication with the server. Node

energy consumption is computed according to Table II.

Table II
ENERGY MODEL

Component Energy [mJ]

GPS [20]

Position Fix 75

RFID [21]

Read 80

802.11b at 1 Mbps (broadcast rate) [22]

Send (1000 Bit) 2

Receive (1000 Bit) 1

GPRS [23]

Send (1000 Bit) 80

Receive (1000 Bit) 40

A. Effectiveness of Algorithms

In this section, we evaluate the effectiveness in terms of

the achieved coverage (cf. Section IV-A). As a performance

metric, we compute the average coverage Cavg achieved by

the mobile nodes per segment during a simulation run.

Figure 8 shows Cavg depending on the average number of

nodes on the roads. In essence, all three approaches show

similarly increasing coverage. Due to redundancy in node

movement, Cavg scales less than linear with the number

of nodes. Isolated achieves the maximum coverage. While

Centralized achieves a coverage only slightly lower (about

1%), Distributed further reduces the coverage (at most 13%).

This is due to the optimistic design of Distributed that may

loose coverage when readers accelerate. However, when the

density is low, nodes are more likely to read independently

from other nodes and, therefore, the probability of optimistic

sensing deactivation is reduced. On the other side, with high

reader density, redundancy leads to more optimistic sensing

deactivations and, thus, to a higher loss.

Figure 9 shows Cavg depending on vmaxo with 203

readers. As expected, all three approaches behave similarly.

The maximum coverage is achieved for stationary objects.

With increasing vmaxo, Cavg decreases rapidly. However, the
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decrease is limited since covered areas spanned by multiple

nodes are independent from vmaxo. The explanation for the

gap between the three approaches is analogous to Figure 8.

In Figure 10 we compare the overall number of objects,

the number of detected objects, and the number of detectable

objects. The overall number of objects is computed as the

sum of segments entered by objects during the simulation.

The number of detectable objects are those which cross at

least one coverage polygon. The number of detected objects

refers to the results of the three approaches. The average

number of nodes is 203. As expected, the overall number

is nearly constant at a level of about 5400. The detectable

number of objects depends on the number of nodes in the

network and, therefore, their coverage. The gap between

the actual number of detected objects by Isolated and the

number of detectable objects is due to objects that enter

or leave a segment within segment boundaries, e.g., at a

building entrance. However, the effect of these leak points

is limited to 6% in our simulations. Moreover, this figure

shows that Centralized and Distributed almost achieve to

detect as much objects as Isolated.

In Figure 11, Cavg is compared with the detection ratio

DR, i.e., the number of detected objects divided by the

overall number of detectable objects. Since Cavg is based on

a worst case mobility assumption for objects, its values are

a lower bound for DR. For readability reasons, and because

Distributed and Centralized show a similar behavior, we only

plot the results of Isolated. Both, Cavg and DR similarly

depend on the average number of nodes. The higher Cavg ,

the higher is DR. One reason for the gap is that nodes and

objects are pedestrians that show effects of correlated group

movement. The gap decreases for larger numbers of nodes,

when node meetings are likely, and additional coverage is

achieved in terms of Cavg .

B. Efficiency of Algorithms

Finally, we compare the efficiency in terms of energy

consumption (EC). EC is computed as the average energy a

node spends per second for positioning, communication, and

sensing (cf. Table II). Since Bluetooth discovery and RFID

reading consume roughly the same amount of energy, we

assume an RFID reader as proximity sensor in the following.

Figure 12 plots the EC depending on the average number

of nodes. As expected, Isolated’s EC is independent from the

number of nodes. In contrast, Centralized and Distributed

benefit from increasing node density by preventing unnec-

essary sensing. Savings are higher with increasing node

density, when redundancy of movement increases. Moreover,

we observe a large gap between Centralized and Distributed.

With 30 nodes on the roads, Centralized’s EC even exceeds

that of Isolated. One reason is the high power consumption

for communication with the server over GPRS. When the

node density is low, few redundant sensing are prevented,

and even outweighed by the additional communication cost.

The second reason for the gap are the design principles

of Centralized and Distributed. Centralized is pessimistic

and developed to achieve the maximum possible coverage.

Distributed is more optimistic, i.e., it may loose coverage.

It achieves EC savings of up to 63% compared to Isolated

at the cost of only 13% less coverage.

In Figure 13, we compare different sensing strategies

(cf. Section V-C). The average number of nodes is 203,

and rdetect = 15m. On the x-axis, from left to right, the

optimism of the strategies increases. Most pessimistic is

vmaxn, c = 3. It assumes that the node speed is limited

to vmaxn, and that the sensing redundancy needs to be set

to 3 to achieve the required coverage along a trajectory.

More optimistic is vcur, c = 3 since it assumes that a node

keeps its current speed vcur. Most optimistic is vcur, c = 1
without redundancy. As expected, all approaches reduce the

EC for higher degrees of optimism (less aggressive sens-

ing). However, the differences between the strategies w.r.t.

absolute savings are small, since the cost for positioning

cannot be reduced. This suggests that increasing the success

probability only slightly increases the EC.

VII. CONCLUSIONS

In this paper, we introduced mechanisms for the automated

detection of mobile objects in urban areas. Our approach

utilizes mobile devices such as smartphones to track mobile

objects. We proposed a metric that captures the coverage,

and we presented a centralized and a distributed algorithm
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to coordinate readers such that redundant sensing is reduced,

i.e., energy consumption is reduced. Using simulations, we

showed that these algorithms achieve energy savings of up

to 63% while reducing coverage by only 13%.

In future work, we plan to investigate a self-tuning ap-

proach that automatically adjusts the coverage parameters

such that a certain quality of detection is achieved rather

than only reporting the achieved coverage. Furthermore, we

plan for a real-world evaluation based on Bluetooth.
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