
A mobile data management architecture
for interoperability of resource and context data

Andreas Brodt∗, Oliver Schiller∗, Sailesh Sathish†, Bernhard Mitschang∗
∗ Universität Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany { brodt | schiller |mitschang}@ ipvs.uni-stuttgart.de

† Nokia Research Center, Visiokatu 1, 33720 Tampere, Finland, sailesh.sathish @ nokia.com

Abstract—Mobile devices have become general-purpose com-
puters that are equipped with sensors, constantly access the
internet, and almost always accompany the user. Consequently,
devices manage many different kinds of data about the user’s
life and context. There is considerable overlap in this data,
as different applications handle similar data domains. Ap-
plications often keep this data in separated data silos. Web
applications, which manage large amounts of personal data,
hardly share this data with other applications at all. This lack
of interoperability creates redundancy and impacts usability of
mobile devices. We present a data management architecture for
mobile devices to support interoperability between applications,
devices and web applications at the data management level.
We propose a central on-device repository for applications to
share resource and context data in an integrated, extensible
data model which uses semantic web technologies and supports
location data. A web browser interface shares data with web
applications, as controlled by a general security model.

I. INTRODUCTION

Mobile devices carry lots of different kinds of data, includ-
ing multimedia files, PIM (personal information management)
data, device profile data, location and map data, to name
a few. Also, they possess several sensors that allow them
to collect data about their environment, i.e. GPS receivers,
cameras or accelerometers. Moreover, devices can easily
access additional data from the web, or even from surround-
ing devices via a wireless ad-hoc network [1]. Different
applications access and utilize all this data in different ways
and for different purposes. While one application simply
manages certain resources, another application may use the
same resources as context information to adapt its behavior
to the current situation. This complies with Dey’s definition
for context [2] as “any information that can be used to
characterize the situation of an entity”. An example is a
calendar that simply manages meetings, while the telephony
application reads the same information to adapt the ringtone.

There is considerable overlap in the data domains of
different applications on a mobile device. As a large amount
of the data relates to several aspects of the user’s life, the same
data objects reoccur in different use cases. As an example,
Harry, a friend of the user, has an address book entry in
the user’s mobile device. He tried to call three times today.
Harry also sent 12 text messages and 34 e-mails, and he
participates in tomorrow’s bowling evening, which takes place

near Harry’s house. According to image annotations, Harry
is depicted on 23 photos, and his phone is currently visible in
the device neighborhood. Many different applications operate
on the same data domains, as every application deals with a
certain aspect of the user’s context. However, applications on
a mobile device typically keep their data in isolated data silos.
This causes redundant data management, software gaps, and
ultimately a bad user experience, as the potential of the data
is not exploited. What is needed is interoperability between
applications at the data management level.

The fact that mobile devices accompany the user nearly all
the time adds a special aspect to the general interoperability
requirement: interoperability of spatial data. In contrast to
most other data management scenarios, on a mobile device a
large share of the managed data possesses spatial relevance.
Even entities without direct spatial references, e.g. a phone
call or a text document, may be correlated with the user’s
position and occur in a spatial query, such as “where was I
when I missed this phone call?” More powerful reasoning
about the user’s location context is possible through spatial
interoperability at the data management level, as this creates
a general join criterion for most resources. And as everything
that carries a spatial reference can be drawn on a map using
the POI (Point of Interest) metaphor, spatial interoperability
provides the user an additional entry point to access the data.

Interoperability at the data management level is required
not only internally on one mobile device, but also across
devices. Mobile devices possess the ability to exchange data
spontaneously via wireless ad-hoc networking [1]. This way,
data may not only overlap between different applications, but
also between different devices. As an example, a meeting may
be scheduled in each participant’s device, and yet another
device might know the geographic location of meeting
room 3.436. Connecting co-located devices in a spontaneous
fashion results in an even better view on the user’s current
context, as more data is available. Applications which exploit
data from co-located devices typically must implement the
communication logic themselves in application code and
deal with low-level protocol details. A platform offering data
interoperability between devices would hide those details
and offer higher-level abstractions for applications to exploit
resource and context data from co-located devices easily.

To an increasing degree, web applications are used on
mobile devices, as devices are becoming more powerful and
mobile web browsers are reaching desktop class. Web appli-
cations require special attention in mobile data management
scenarios, as they handle large amounts of user data. Many
users describe their activities, keep track of friends, and
publish digital media via web applications. This content is a
rich source of context data. Very limited interoperability is
offered through proprietary service APIs and some mobile
software platforms provide wrappers to integrate data from
selected services. On the other hand, context data that is
gathered locally, most notably the user’s current GPS position,
cannot be provided by servers in the cloud, but must be
retrieved on the client side. The strict separation between
web applications and local applications makes interoperability
very difficult and prevents many potential benefits. E.g., if
the user books a flight online, the booking web site could
guess the departure location from the user’s current position
and her past flights, and the destination from the calendar.
Also, the web site could make the flight details appear in
the user’s calendar automatically—without the user needing
copy the flight data into the calendar manually.

In this paper we address interoperability at the data
management level of mobile devices. After introducing the
state of the art (Section II), we present a platform architecture
for interoperability between installed applications, co-located
devices, and web applications (Section III). Our approach
is based on a central data repository on mobile devices
which all applications use cooperatively. We discuss the data
model and access control and provide further details on the
implementation of the data management layer (Section IV).

II. STATE OF THE ART

A. Domain-specific APIs

Today, most software platforms for mobile devices provide
an API for central data domains, e.g. contacts or calendar.
These domain-specific APIs support managing data of the
same domain in the same data silo across applications. Using
the contacts API, e.g., a photo annotation app may offer a list
of known persons, so that the user does not need to re-enter
them. Or a public transport app may store a train connection
in the calendar and create a reminder via the calendar API.

Domain-specific APIs, however, do not solve the general
data interoperability problem. They are restricted to their
particular domain and designed for common use cases
there. Application requirements beyond that, e.g. additional
attributes, are not supported. If an application needs to store
additional data, it must do so in its own data silo. This
prevents other applications from accessing the data and
reintroduces redundancy. Furthermore, not all data domains
are covered by an API. The public transport application
may create a calendar entry about the train connection, but
without a map API, the map viewer will not be able to show
the geographic location of track 6, from where the train

leaves. Finally, as domain-specific APIs are nothing but front-
ends for domain-specific data silos, they can only provide
interoperability at application level. I.e. if an application
needs to interrelate data from different domains, it has to
query several APIs and combine the results in application
code. Compared to a join in the data management layer, this
is inefficient and requires more complicated application code.

B. Semantic web and semantic desktop

The Semantic Web [3] community has developed concepts
and languages, including RDF, RDF Schema and SPARQL, to
model structured data in a way that allows creating relations
between resources easily. These techniques are well-suited
to augment resources with context data and make them
searchable via these annotations. Semantic web technologies
are generic and require a domain-specific ontology to specify
resources and their relations.

The Semantic Desktop aimed at bringing Semantic Web
technologies to the desktop and integrating applications
through ontologies [4]. The Nepomuk project [5] developed
a large software stack and ontologies [6], [7] for the semantic
desktop. Nepomuk uses ”crawlers” to search a computer and
annotate files, e.g. to provide a more useful desktop search.
A peer-to-peer architecture facilitates sharing files and their
semantic data between users. As the semantic desktop focuses
on desktop computers, there is no emphasis on context data,
such as location or mobility. Also, as we outlined in [1], [8],
a mobile scenario requires wireless ad-hoc networking that
is robust towards frequent connects and disconnects rather
than structured peer-to-peer networks.

Lehikoinen et. al. [9] prototyped a framework for mobile
content management. It managed RDF-based ontologies on
top of a relational database on mobile devices. However, it
was too inefficient to be used on resource-constrained mobile
devices and never made it into production state.

C. Interoperability with web applications

There is currently a trend towards domain-specific APIs
for web applications. Basically, they simply replicate the
existing domain-specific device APIs inside the web browser
as a JavaScript interface. The W3C Geolocation API [10],
for instance, specifies an interface for web applications to
obtain the position of the user. The W3C Device APIs and
Policy Working Group [11] is in the process of defining
client-side APIs to enable interaction of web applications
with device services such as Calendar, Contacts, Camera.
As domain-specific on-device APIs, these browser APIs are
restricted to the common use cases of their particular domains.
As discussed above, interoperability with other domains or
further application requirements are impossible.

The discontinued W3C Delivery Context Client Interfaces
(DCCI) specification [12] attempts to standardize a generic
and domain-independent context provisioning interface for

Application
Mobile Device

Integrated Resource and Context Repository

Data Management Interface

Query Processor

Access Control

RDF Indexes Spatial IndexDynamic Data

Mobile
Device

Mobile
Device

Device
Neighbor-

hood

Web
Application

Application

Web Browser

Web Application Interface

Access Control

Domain Adaptor

Domain-Specific API

Access Control

Local Data
Source Adaptor

Inter-Device Adaptor

Inter-Device Interface

Access Control

D
at

a
 M

a
na

ge
m

e
n

t L
a y

e
r

D
a

ta
 P

ro
vi

si
o

ni
ng

 L
a

y e
r

A
pp

lic
a

tio
n

 L
a

ye
r

Figure 1. System architecture of our mobile data management platform
for interoperability of resource and context data

web applications. DCCI was used in scientific systems [1]
but never reached production state.

In addition, several interfaces provide client-side storage
inside the web browser. Web applications often store small
data items as Cookies in the web browser, e.g. session IDs.
Gears [13] extended this principle to a complete relational
database inside the web browser. This allows, e.g., a web
mail application to store e-mails locally, so they can be read
offline and only need to be downloaded once. Popular web
applications, including Google Mail and Google Docs, make
use of this. With the upcoming HTML5 standard several
specification were proposed to let web applications store data
on the client: [14] defines an indexed record store, [15] drafts
an SQL-based interface, [16] specifies a key-value store.
However, these interfaces do not provide interoperability, as
they strictly follow the same-origin policy, i.e., only the web
application which created the data may access it.

III. ARCHITECTURE

We developed a platform architecture to enable interop-
erability between local applications, web applications, and
co-located devices at the data management level of a mobile
device. It is based on a central repository which manages all
resource and context data in a single semantic data model.
As this raises security concerns, our platform provides a
powerful access control mechanism that is deeply integrated
into the system architecture and coupled with the data model.

A. System architecture

As depicted in Figure 1, the system architecture consists
of the Data Management Layer, the Data Provisioning Layer,
and the Application Layer. The Data Management Layer

hosts the Integrated Resource and Context Repository as
the storage back-end. The Data Provisioning Layer consists
of Domain Adaptors, which provide domain-specific APIs
to applications, local data sources (e.g. a GPS receiver
or an accelerometer), the Inter-Device Adaptor managing
wireless ad-hoc data-exchange with other co-located mobile
devices, and, most notably, the web browser. The web browser
provides a dedicated data interface for web applications.
The Application Layer incorporates the applications, which
ultimately consume the resource and context data (and may
also contribute). The web browser interface abolishes the data
separation between local applications and web-applications.
Furthermore, via the Inter-Device Adaptor, applications may
access data from other mobile devices transparently.

The Integrated Resource and Context Repository is the
crucial component of the platform. The repository achieves
interoperability between applications, co-located mobile
devices, and web applications by managing their data in
one central place. The data is modeled in RDF, which
facilitates establishing relations between resources, as well as
annotating and augmenting them with additional information.
The repository supports spatial data and is able to execute
spatial queries efficiently using a spatial index. In addition, it
possesses a small main-memory database for dynamic data,
e.g. the current GPS position. Such data is frequently updated
and thus inefficient to index persistently. The repository still
presents the dynamic data as part of a single consistent
data model. The repository is accessed through the Data
Management Interface. It accepts SPARQL queries, provided
the requestor possesses the respective access rights.

Context data from local data sources (sensors, etc.) is
brought to the repository by dedicated adaptors. These Local
Data Source Adaptors access the specific low-level API
of the data source (e.g. the driver of the GPS chipset)
and forward the data to the Data Management Interface.
Similarly, the Inter-Device Adaptor receives data shared by
co-located devices in an ad-hoc fashion and forwards it to
the Data Management Interface. It also monitors the device
neighborhood, performs access control for incoming requests,
and forwards them to the Data Management Interface.

Installed applications can access the Data Management
Interface directly to evaluate a SPARQL query. This gives
them full flexibility to read and write the entire repository
across all application domains, which fulfills our interop-
erability requirement completely. The repository performs
access control checks to enforce the access rights which
the application was granted. If an application only needs
data of a particular application domain, it can also use a
Domain Adaptor. The Domain Adaptors offer higher-level
programming abstractions through Domains-Specific APIs
which are limited to a particular application domain, e.g.
e-mail or calendar. The APIs are less flexible and do not
provide interoperability, yet they are easier to use and can,
to a certain degree, replace existing API implementations.

Internally, the Domain Adaptors translate their programming
abstractions to calls to the Data Management Interface. Yet,
as these calls are fairly restricted, domain-specific access
control can be performed in the Domain Adaptors, which is
much simpler and thus more efficient than access control of
the Integrated Resource and Context Repository.

B. Data model

To achieve the desired interoperability, the central require-
ments for the data model are flexibility, the ability to interlink
resources easily, and support for spatial data. Flexibility
is required so that all applications can map their specific
data model to the general one. Interoperability at the data
management level comes through relations between resources
of different application domains, which are impossible in
isolated data silos. Thus, it must be possible to relate
resources created by application A with other resources of
which application A is unaware. Also, other applications must
be able to annotate and augment application A’s resources
with additional data. The data model must be flexible enough
to support this. Finally, on a mobile device it must be possible
to annotate everything with location data. The data model
must support spatial data types and cater for efficient retrieval
of resources by their spatial references.

We use RDF for our data model, as it is very flexible and
directly supports relations as first-class objects. RDF models
everything as a number of (subject, predicate, object)-triples
which make a statement about the resource denoted by the
subject. In case of an attribute of a resource, e.g. the sender
of an e-mail, the predicate denotes the attribute name and
the object contains the attribute value, e.g. “john@doe.com”.
In case of a relation between two resources, the subject and
the object denote the resources and the predicate specifies
the type of relation that connects them, e.g. to model
that “Person 117” is an attendee of “Meeting 1432”. All
triples together make up one directed labeled graph. It is
easy for an application to create additional triples adding
further attributes or relations to a resource, which enables
interoperability at the data management level.

To express spatial features, we use typed literals of a self-
contained complex spatial data type [17]. Thus, we encode
the spatial reference of a resource in a single RDF statement,
with the object of the triple containing the spatial feature.

A further advantage of RDF is that it also covers the
metadata level, i.e. the class-membership of the resources
and the properties of these classes, as the defined in an
ontology. As the entire data model is a single graph of
resources from completely different application domains,
there is no structural grouping of resources as opposed to,
e.g., a table in the relational data model. Thus, it is important
that all resources explicitly model their class membership, so
that applications can even distinguish between them. Also,
pointing to the metadata level enables a resource to connect

to all resources of a class, which is useful, e.g., to model
access control at the data management level.

The concrete ontologies which finally express the resources
are to a large degree up to the applications to define. They
can easily do that by adding the triples to the repository
which define the required classes on the metadata level. Yet,
especially classes that are frequently used, such as PIM data,
should be standardized. The mobile device software platform
is likely to include vendor-specific tools, applications, and
APIs, such as the domain adaptors shown in Figure 1, which
center around a number of core classes. To achieve inter-
operability between devices of different vendors and device
software platforms, standardization efforts are required.

C. Access control

As interoperability is enabled at the data management
layer, access control must begin there as well. We use the
principle of role-based access control; applications requesting
resources are assigned one or more access roles that allow
certain operations on the resources. The access control model
is tightly coupled to the data model and to a large degree
evaluated in the Integrated Resource and Context Repository.
The RDF-based data model of our platform explicitly defines
all classes and their properties. This can be utilized to grant
access rights to an access role on the metadata level. A role
may be granted access to a class, specific properties of a class
or particular resources. Finally, the owner of a resource, i.e.
the application which created it, always has full access rights
on the resource. Access roles may be grouped hierarchically,
i.e. access roles may be members of higher level access
roles. This creates the flexibility to allow very selective and
fine-grained access roles and at the same time keep them
manageable by a reasonably simple graphical user interface.

To gain access rights, an application asks the data manage-
ment layer for access roles. This triggers a graphical dialog
in which the user may assign the desired access roles to the
application. An installed application typically does this once
at installation time. A web application may ask for access
roles via calls to the Web Application Interface. The granted
access roles for a web application may be remembered for a
certain time period, but will eventually expire—in the same
way that HTTP cookies expire. Also, if the last access role of
web application expires, the entire knowledge about the web
application, including its owned resources, may be removed
from the Integrated Resource and Context Repository. Co-
located devices may ask for access roles via the Inter-Device
Interface and the decision may be remembered for a certain
time.

Naturally, before an app, web application or device may
obtain any access roles, it must be authenticated. To au-
thenticate installed applications, most mobile device software
platforms require the application to carry a unique application
ID and a digital signature [18], [19]. The application ID is
used to provide platform security, e.g. to control access to

communication capabilities of the device. The repository
can directly use the application ID and assign access roles
to it. Web applications are uniquely identified by their
URI. However, to prevent man-in-the-middle attacks, web
applications must use HTTPS and authenticate themselves
using a trusted SSL certificate. If a web application fails
to authenticate, the web browser will not accept its request
for access roles. Devices connecting via the Inter-Device
Interface can be identified by their network device ID.

Generally, the Integrated Resource and Context Repository
evaluates the access rights of an application when a query is
sent to the Data Management Interface. As the access rights
are modeled together with the resource data, the query can be
rewritten to restrict the query result to the resource data for
which the respective access rights are present. The rewritten
query checks existence of an access role which connects
the application to the resource. For the most common case
of access control based on class-membership, this means
fetching the class of every resource and joining the class
with the access roles. As most queries likely check the class
of resources anyway, we consider this extra effort moderate.
By contrast, access control on specific properties of a class
requires more complicated rewrites which may require several
extra joins with the metadata level. Thus, access control on
specific properties should be used with care.

The Domain Adaptors for domain-specific APIs send
ordinary queries to the Data Management Interface. Yet,
they generate the queries from calls to defined programming
abstractions rather than letting the calling application define
the query freely. If the implementation of the Domain
Adaptor is trusted—we assume it is provided by the software
platform vendor—the query can be run as-is, if the application
possesses the rights to access the domain-specific API. Thus,
the Domain Adaptor checks whether the application is
allowed to access resources of the particular domain at all. If
this check succeeds, the repository does not need to perform
additional access control. Similarly, the Local Data Source
Adaptors are likely to be tightly coupled with the platform
software and thus may circumvent access control.

IV. THE DATA MANAGEMENT LAYER

The Data Management Layer is the crucial part of our
mobile data management platform. It abstracts from storage
and query processing details and provides an integrated view
on resource and context data originating from applications,
co-located devices, local data sources, and web applications.
It also performs access control, effectively creating a view on
the data which a particular application may access. The Data
Management Layer is accessed via the Data Management
Interface which passes the queries to the repository.

A. The Data Management Interface

The Data Management Interface provides several interac-
tion methods for applications and the Data Provisioning Layer.

Access Control

Dictionary
Value ↔ ID

RDF Indexes
SPO, SOP, PSO, POS, OSP, OPS

Query Front End
query parser, semantic analysis

Query Optimizer

Spatial Index
Geography → ID

Dynamic Data
ID → Data

Query Executor

S P O

13 18 87

13 24 27

...

Geography ID

Polygon(48...) 679

Point(61.4 ...) 87

... ...

Value ID

Meeting 1432 13

Point(61.4 ...) 87

... ...

ID Data

873 ...

915 ...

... ...

Figure 2. The architecture of the Integr. Resource and Context Repository

The most common one is the query/response interaction
method. It accepts a SPARQL query string and executes it
on the repository. It returns the query result or, in case
of an update, a success or error code. This interaction
method satisfies the requirements of most applications. Yet for
applications consuming dynamic data, most notably sensor-
based context data, query/response interaction is not favorable.
Therefore, the Data Management Interface also provides an
event-based interaction method for dynamic data. It allows
an application to subscribe to a dynamic data resource and
notifies the application whenever the resource changes. This
way, an application may, e.g., track the current GPS position
and is notified on every position update. Finally, it is not
optimal if the Local Data Source Adaptors must produce
a SPARQL Update string to indicate a change in a sensor
reading, for the repository to parse. For this purpose, the Data
Management Interface provides a binary interaction mode
which allows supplying updates to the repository as binary
data blocks. The binary interaction method may also be used
for backup, bulk-loading and synchronization purposes. It
bypasses the high-level query interfaces by supplying the
data in its internal representation. This is more efficient,
yet vulnerable to changes in the internals of the repository.
Thus, the binary interaction method should only be used by
software that is included in the mobile software platform.

B. The Integrated Resource and Context Repository

The Integrated Resource and Context Repository stores
and manages the data in the RDF-based data model of our
platform. Our preliminary implementation of the Integrated
Resource and Context Repository largely utilizes our native
RDF triple store with deeply integrated spatial query process-
ing [17], which is based on the open source version of the
RDF-3X triple store [20]. The central trick of RDF-3X (and
other triple stores) is that it maps all URIs and literals of the
RDF data to integer IDs for internal processing instead of
dealing with their string representations. This saves memory
and enables fast query processing. We adopt this principle
and use it throughout the entire repository, i.e. in the RDF
indexes, in spatial index and in the dynamic data.

As depicted in Figure 2, the repository consists of a
query front end, access control, a query optimizer, the
query operators, the dictionary, and data containers. The
data containers include the dynamic data, the RDF indexes
and the spatial index. The dictionary maps the internal integer
IDs to their external representation. Note that it is possible
to extend the repository by further data containers, e.g. a
full-text index, provided they support ID-based processing.

C. Evaluation

To show the validity of our approach, we measured the
query execution times of our repository prototype on a Nokia
N900 smart phone (600 MHz processor, 256 MB physical
RAM). We executed a typical application query in presence of
class-based access control, as discussed in Section III-C. We
generated artificial RDF data of 100 RDF classes, 200 access
roles and 300 application IDs, resulting in 5.1 million RDF
statements and a database file of 120 MB. We queried all
instances of different classes (resulting in different amounts
of resources) and retrieved different numbers of attributes
of each resource. This corresponds, e.g., to the e-mail
application loading all e-mails with a number of attributes.
All queries were executed in 0.01 to 0.18 seconds, which
is suitable for an interactive system. We believe this shows
that such a repository works in practice and is indeed able
to provide interoperability at the data management layer.

V. CONCLUSIONS

We addressed interoperability at the data management level
of mobile devices. There is considerable overlap in the data
which applications on a mobile device typically manage, as
different applications handle similar data domains. However,
a lot of this data is kept in separate data silos and is at best
accessible via domain-specific APIs. The same holds for web
applications, in which users keep large amounts of personal
data. This lack of interoperability creates data redundancy and
ultimately impacts the user experience of mobile devices. We
presented a mobile data management architecture to enable
interoperability between installed applications, co-located
devices, as well as web applications at the data management
level. Our approach is based on a central data repository on
mobile devices which all applications use cooperatively. The
data is stored and managed in an RDF-based data model
and powerful access control that is tightly coupled with the
data model regulates access to it. We achieved very good
performance of the repository on a mobile device, which
shows that our approach is feasible.

In future research we will work on the performance of
the repository on larger data sets than the ones used in
our evaluation. We expect large performance improvements
through specific query operators optimized for the particular
access patterns of our platform on flash memory. In addition
to that, we will address bulk synchronization with server-
based data to achieve better integration with “the cloud”.

REFERENCES

[1] A. Brodt and S. Sathish, “Together we are strong— towards
ad-hoc smart spaces,” in PERCOM, 2009.

[2] A. K. Dey, “Understanding and using context.” Personal and
Ubiquitous Computing, vol. 5, no. 1, 2001.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic
web,” Scientific American, vol. 285, no. 5, 2001.

[4] L. Sauermann, A. Bernardi, and A. Dengel, “Overview and
outlook on the semantic desktop,” in Workshop on The
Semantic Desktop at the ISWC, 2005.

[5] A. Bernardi, “FP6027705 NEPOMUK Project Synopsis,”
DFKI, Tech. Rep., 2008.

[6] L. Sauermann et. al., “Personal information model (pimo),”
OSCA, Recommendation, 2009. [Online]. Available: http:
//www.semanticdesktop.org/ontologies/2007/11/01/pimo/

[7] A. Mylka et. al., “Nepomuk information element ontology,”
OSCA Foundation, Tech. Rep., 2007. [Online]. Available:
http://www.semanticdesktop.org/ontologies/nie/

[8] A. Brodt, A. Wobser, and B. Mitschang, “Resource discovery
protocols for bluetooth-based ad-hoc smart spaces: Architec-
tural considerations and protocol evaluation,” in MDM, 2010.

[9] J. Lehikoinen et. al, Personal Content Experience: Managing
Digital Life in the Mobile Age. Wiley-Interscience, 2007.

[10] A. Popescu, “Geolocation API Specification,” W3C, Editor’s
Draft, September 2009. [Online]. Available: http://dev.w3.org/
geo/api/spec-source.html

[11] R. Berjon et. al., “W3C device apis and policy working group,”
2010. [Online]. Available: http://www.w3.org/2009/dap/

[12] K. Waters et. al., “Delivery Context: Client Interfaces (DCCI)
1.0,” W3C, Candidate Recommendation, 2007. [Online].
Available: http://www.w3.org/TR/2007/CR-DPF-20071221/

[13] Google Inc., “Gears API,” 2007. [Online]. Available:
http://code.google.com/intl/de-DE/apis/gears/

[14] N. Mehta et. al., “Indexed database api,” W3C, Working Draft,
2010. [Online]. Available: http://www.w3.org/TR/IndexedDB/

[15] I. Hickson, “Web sql database,” W3C, Editor’s Draft, 2010.
[Online]. Available: http://dev.w3.org/html5/webdatabase/

[16] ——, “Web storage,” W3C, Editor’s Draft, 2010. [Online].
Available: http://dev.w3.org/html5/webstorage/

[17] A. Brodt et. al., “Deep integration of spatial query processing
into native rdf triple stores,” in SIGSPATIAL. ACM, 2010.

[18] Google Inc., “Android developer’s guide, security and
permissions,” 2010. [Online]. Available: http://developer.
android.com/guide/topics/security/security.html

[19] Forum Nokia, “Application signing,” 2008. [Online]. Available:
http://wiki.forum.nokia.com/index.php/Application Signing

[20] T. Neumann and G. Weikum, “The RDF-3X engine for scalable
management of RDF data,” VLDB Journal, 2010.

