NETbalance: Reducing the Runtime of Network
Emulation using Live Migration

Andreas Grau, Klaus Herrmann, and Kurt Rothermel
Universitdt Stuttgart, Institute of Parallel and Distributed Systems (IPVS)
Universititsstr. 38, D-70569 Stuttgart, Germany
Email: {grau,herrmann,rothermel } @ipvs.uni-stuttgart.de
Telephone: +49 (711) 685-88236, Fax: —88424

Abstract—Network emulation is an efficient method for eval-
uating distributed applications and communication protocols by
combining the benefits of real world experiments and network
simulation. The process of network emulation involves the exe-
cution of connected instances of the software under test (called
virtual nodes) in a controlled environment. In previous work,
we introduced an approach to minimize the runtime of network
emulation experiments based on prior known average resource
requirements of virtual nodes.

In this paper, we introduce NETbalance, a novel approach
to runtime reduction for experiments with unknown or vary-
ing resource requirements. NETbalance migrates virtual nodes
during an experiment to distribute the load evenly across the
physical nodes, avoiding overloaded nodes and exploiting the idle
resources on underloaded nodes for speeding up the experiment
execution. We make the following contributions: First, we present
an emulation architecture for efficiently supporting live migration
of virtual nodes. Second, we propose a cost model for determining
the runtime reduction achieved through the migration. Third, we
introduce an algorithm for calculating placements that minimize
the experiment runtime. Our evaluations of the NETbalance
prototype show, that it is able to reduce the experiment runtime
by up to 70%.

Index Terms—network emulation; virtual time; live migration;
virtual node placement

I. INTRODUCTION

Performance evaluation is an integral part of the software
development process. In the field of distributed systems, there
are mainly three types of performance evaluation methodolo-
gies: network simulation [14], [6], [17], real-world testbeds
[3], and network emulation [11], [9], [1]. Network emulation,
which combines the benefits of network simulation and real-
world testbeds, allows for running reproducible experiments
for evaluating the performance of distributed applications
and communication protocols in user-defined networks. These
networks are modeled by connecting routers and hosts running
instances of the software under test (SuT). The parameters
of these network links are adjustable and include bandwidth,
delay, and loss rate. In our Network Emulation Testbed (NET),
the experiments are executed on a cluster of commodity PC-
nodes. To enable large-scale experiments, we run multiple
instances of the SuT (encapsulated in so-called virtual nodes)
on each of these PC-nodes (called physical nodes).

The CPU-load of a physical node directly depends on the
number of virtual nodes running on it. Overload of a physical
node may bias the results of an experiment, because, for

example, messages between virtual nodes experience addi-
tional, undesired delays. Virtual time [7], which decouples
the time experienced by the virtual nodes from the real time,
allows for avoiding such overload situations. Slowing down
the virtual time reduces the execution speed of an experiment
and, thus, reduces the load on the physical nodes. However,
this slowdown increases the runtime of an experiment, which
should be minimal for maximum testbed efficiency. Since
dedicated hardware (physical nodes and networks) is typically
used for network experiments, cost factors like bandwidth or
CPU usage are not an issue. Therefore, our goal is to minimize
the runtime of the experiments on the given hardware.

In order to reach this goal, we have developed NETplace
[8]. The basic idea is to calculate an initial placement of
virtual nodes onto physical nodes that minimizes the load of
the physical nodes and, therefore, minimizes the experiment
runtime. The NETplace algorithm assumes prior knowledge
of the average experiment load including the network and
CPU usage of virtual nodes. However, in experiments with
varying load this approach may lead to temporary suboptimal
placements and, thus, longer experiment runtimes.

In this paper, we present NETbalance, a extended approach
to minimizing the experiment runtime in scenarios with vary-
ing and unknown load. NETbalance monitors the load of the
virtual nodes to detect load changes and trigger the migration
of virtual nodes during the experiment runtime. This migration
allows for balancing the load between the physical nodes and,
thus, avoids a high load on single nodes, which is the main
cause of suboptimal experiment runtimes. A new placement is
only deployed if the resulting speed-up outweighs the cost for
the migrations. The contributions of this paper are as follows:

1) an emulation architecture to efficiently support migra-

tion of virtual nodes,

2) a migration cost model to determine the time required

for the migration of virtual nodes,

3) an algorithm to calculate a re-placement of virtual nodes,

which reduces the experiment runtime,

We built a prototype of NETbalance in our network em-
ulator. Our extensive evaluations show that NETbalance can
reduce the experiment runtime up to 70%.

The remainder of this paper is structured as follows. In
Section II, we introduce the system architecture of our network
emulator. The approach to calculate an optimized virtual node

(ICCCN'11), Maui, HI, USA, pp 1 - 6, 2011

Copyright IEEE 2011

In Proceedings of 20th International Conference on Computer Communications and Networks

http://dx.doi.org/10.1109/ICCCN.2011.6005793

Physical Node

{Virtual Machine:
guest operating system with || guest operating system
Virtual Routing with Virtual Routing

(Virtual Node) (Virtual Node || (Virtual Node)(Virtual Node)

< (Application Layer
j oftware
under Test < Transport Layer
(Network Layer

Network Emulation Layer (NETshaper)
ZANS

Virtual Machine: h

N
[Virtual Time Layer]

Fig. 1. TVEE Architecture

placement is discussed in Section III. In Section IV, we extend
our emulation architecture to efficiently support the migration
of virtual nodes and introduce a cost model to calculate
the resulting reconfiguration costs. The detailed evaluation in
Section V emphasizes the effectiveness and the efficiency of
NETbalance. In Section VI, we present related work before
we conclude the paper with a summary and a discussion of
future work in Section VII.

II. SYSTEM ARCHITECTURE

In order to support highly scalable network experiments
in NET, we have developed the Time Virtualized Emulation
Environment (TVEE) [9]. As shown in Figure 1, TVEE is
based on two building blocks: node virtualization and time
virtualization. Node virtualization [9] allows for executing
multiple virtual nodes running the Software under Test (SuT)
on a single physical node. Time virtualization [7] provides a
real-time-independent virtual time to the virtual nodes. The
quotient of real time and virtual time is called time dilation
factor T. Slowing down the clocks of the virtual nodes by 7
reduces the load of the physical nodes by the same factor.
A closed-loop controller [7] running on a central coordinator
adapts 7 to the load of the physical nodes. This adaption
maximizes the execution speed of an experiment without
overloading the physical nodes.

In order to provide virtual time transparently to the SuT,
we make use of the virtual machine (VM) abstraction [2].
For maximum efficiency, we run one VM on each CPU of
a physical node [8]. Virtual Routing [12], [15] allows for
creating virtual nodes [9] by partitioning the operating system
running inside the virtual machine. All virtual nodes running
in the same VM share a common operating system. This
approach minimizes the memory overhead per virtual node
and allows virtual nodes to communicate efficiently using ref-
erence passing. Using our network emulation tool NET shaper
[10], we are able to build arbitrary network topologies with
user-definable parameters (bandwidth, delay, loss rate). Since
the network emulation is located on the Data Link layer, our
emulation architecture supports evaluations on the Network,
Transport, and Application layer.

III. SYSTEM RECONFIGURATION

Running an experiment using NET follows the workflow
depicted in Figure 2. Based on the testbed specification

Software
under Test

Network

| Testbed
Topology

Specification

NETplace
Initial Node
Placement

Experiment
Execution

Node and Time
Virtualization

Experiment execution workflow

avg. datarates
avg. CPU usage

NETbalance

reconfiguration
actions

Fig. 2.

(number of physical nodes, CPUs per physical node, CPU
capacity), the network topology and the expected average
resource requirements of the SuT, NETplace calculates an
initial placement that minimizes the experiment runtime. As
a second step, we setup the network topology in the network
emulator and deploy the SuT. Finally, we execute the SuT on
the virtual nodes.

In this basic workflow, resource requirements of the SuT
deviating from the average may lead to temporary suboptimal
placements which leads to an extended experiment runtime.
NETbalance extends this workflow to minimize the experiment
runtime in scenarios with varying resource requirements. At
runtime, NETbalance detects changes in the resource re-
quirements of virtual nodes. These changes trigger the re-
calculation of the virtual nodes’ placement. We adopt the
concept of live migration [4] to transform the current place-
ment into the optimized placement by migrating virtual nodes
between virtual machines.

After changing the placement, the experiment runs with
an increased execution speed. However, this speed-up only
leads to a reduction in the runtime if it outweighs the time
required for migrating the virtual nodes. The time for which
the experiment can run with the increased speed after a recon-
figuration determines the overall speed-up. Our assumption
is that we can predict the load accurately within a certain
time period. We call this time period the prediction window.
Based on the prediction window and the migration costs, we
can determine if the migration of virtual nodes reduces the
experiment runtime. In the following, we discuss the prediction
window, the migration cost model, and the algorithm for
optimizing the placement in detail.

The research on load prediction shows, that the load of
a machine can be predicted up to 30s in advance [5]. As
reported by Yang et. al. [21] a very simple load predictor using
the last measured value as the prediction gives similar results
to more sophisticated approaches. In order to minimize the
computation effort, we apply this simple prediction schema.
Due to the usage of virtual time, the changes of a virtual
node’s load experience time dilation. Therefore, the prediction
window T}, is scaled by the time dilation factor 7, and we can
assume the load to be known for a real time window of T}, - 7.

The load of the virtual nodes is captured by a load mon-
itor running inside the VMs and periodically sent to the
coordinator with an interval equal to the prediction window.

Even for large scenarios with a thousand virtual nodes per
physical node, the amount of data is about 20KB' per phys-
ical node. Significant changes in the load of virtual nodes
trigger the calculation of a new placement ¢’. To calculate
@', the coordinator adapts the current placement ¢ to the
changed load. Using the festbed cost model [8] developed
for NETplace, we can calculate the time dilation factor for
the current placement 74 and the new placement 74 . For
the transition ¢ — ¢’, we need to migrate virtual nodes.
This migration requires reconfiguration costs 7., that can be
calculated using our migration cost model. This cost model
(cf. Section IV) includes the costs of transferring the virtual
node’s state between the VMs and of modifying the virtual
topology.

Since we can predict the load of the virtual nodes for the
time window T,, we limit the optimization to the time 7, with
T, < T),. After T, we abort the simulated annealing-based
algorithm used for minimizing the cost function x:

x =T, =To) -7 + T] = (T, = To) - 7 M

x represents the reduction of the experiment runtime in the
prediction window 7},. The runtime of the current placement
¢ is subtracted from the runtime of the new placement ¢,
taking into account the time 7. required for the reconfiguration
and the different time dilation factors. Since we need time
T, for calculating ¢’ and for executing the transformation
¢ — ¢, ¢ takes effect over the time window T, — T,. If
X is negative, then the transition to ¢’ will result in a speed-
up of the experiment and NETbalance configures the system
accordingly. If, however, x is positive, then ¢’ performs worse
than ¢ and we keep the configuration ¢. Thus, the experiment
runtime cannot increase through the optimization.

The value of T, determines the performance of NETbalance.
Increasing 7, allows more time for finding better placements.
At the same time, however, the time 7}, — T}, left for actu-
ally running the better configuration ¢’ gets smaller. In our
evaluation, we investigate in the optimal value of 7.

Small changes of a virtual node’s load may result in slightly
different optimal placements and, therefore in a potential for
oscillation. However, the gain of a new placement has to
exceed the reconfiguration costs; otherwise, it is discarded.
This effectively serves as a hysteresis, avoiding constant re-
configuration with minimal gain.

IV. LIVE MIGRATION OF VIRTUAL NODES

After calculating a new placement of virtual nodes, we
need to enforce the changes to the placement by migrating
virtual nodes. Each of these virtual nodes is migrated from a
virtual machine VM, to a virtual machine VM. We stop the
experiment before we transfer the state of a virtual node. The
incurred reconfiguration cost 7. is estimated using a migration
cost model that we introduce at the end of this section.

To ensure that the re-placement does not influence the
emulation results, the migration of virtual nodes must be

IScenario with 4 network links per virtual node

VMg VMgt
Appl. Layer [SuT]-%
Transport L. —>
Network L. Routing tables f—>
Data Link L. NETshaper jf—>
virtual layer 2 >
topology —>

Fig. 3. Migration of virtual node’s memory state

transparent to the SuT. Therefore, we stop the experiment
synchronously on the physical nodes which includes two
phases. First, by setting the time dilation factor to infinity, the
virtual clocks are stopped. This ensures that NETshaper will
not deliver any frames and that timed actions are not triggered,
e.g. in the protocol stack. In the second phase, we exclude the
processes of the virtual nodes from process scheduling.

After the experiment is stopped, we change the placement
of virtual nodes. For this, we adopt the concepts of the ZAP
system [16]. First, we create a snapshot of a virtual node
using check-pointing. Figure 3 shows the state of a virtual
node for each protocol layer. The Application layer state
contains the memory pages and open file descriptors of the
SuT, the Transport layer state contains the open sockets and
the state of the corresponding protocols, and the Network
layer state contains the IP addresses as well as the routing
tables. We extended the state of the Data Link layer by the
state of NETshaper, including buffered messages. The state
of the virtual node is then transferred to VMg and restored
thereafter. The network interfaces of the restored virtual nodes
are reattached to the virtual topology.

The SuT might have modified the file system or it might
have open file descriptors. Therefore, we need to transfer the
virtual node’s file system to VMgg. Due to the typical size of
a file system, copying all files introduces a large overhead. To
avoid this overhead, we store the file system of a virtual node
on a central server’ (see Figure 4). Typically most files of a
virtual node (including the system files of the operating system
and the libraries of the SuT) are read-only and shared among
virtual nodes. All virtual nodes use a common Copy-on-Write
file system to share these files. To minimize the overhead,
we are using hard links to make shared files available on all
virtual nodes. This approach saves a lot of disk space on the
file server and shared files need to be cached only once on the
file server and the virtual machines.

The caching effort to keep the entire file system in memory
is almost independent of the number of virtual nodes. Node-
specific files are only cached by the VM running the virtual
node. Buffering of write operations and caching of read
operations hide the latencies of the network-based file /0. Due
to the concept of the file server, the effort of synchronizing
the virtual nodes’ file system is limited to writing back the
modified files to the file server. The synchronization can run

2The central file server could be implemented by a cluster of file servers
in case of performance bottlenecks

wi T 1 Tjywet T LT

Fig. 4. File systems of the virtual nodes

in parallel to the migration and does not contribute to 7). since
the files are written back while the virtual nodes are suspended,
and we are assuming only small changes to the file system,
implying a fast synchronization and a negligible effect on the
node’s state size. In the case of larger changes, the state of
the virtual node grows. In our evaluation, we show the effect
of the state size on the performance of NETbalance.

The migration is completed by resuming the execution of all
virtual nodes and by restoring the time dilation factor. Since
we are using suspend/resume migration [13], the reconfigura-
tion time 7. is defined as follows:

Tr = Tsuspend + Tmigrate + Tchange—lopology + Tresume (2)

Tuspend and Tiequme are small, because we only need to
exclude or include the virtual nodes in the process scheduling.
The time for changing the virtual topology is short, too. The
dominating factor of 7. iS Tiyigrae, because it grows linearly
with the memory pages used by the SuT. The actual values
for Tsuspend, Tmigrate, Tchange-topologw and ﬂesume can be measured
based on a sample scenario. Better estimations can be learned
while the experiment is running.

The migrations of virtual nodes running in the same VM
are performed sequentially. However, since the migration of
a virtual node generates only load on VMg, and VMg, we
can migrate virtual nodes running on different VMs in parallel.
The reconfiguration costs are calculated for each VM based on
the migrations involving the VM. The VM with the maximum
value of 7). determines the overall reconfiguration costs.

V. EVALUATION

We have implemented our approach by extending OpenVZ’s
checkpoint/restore functionality [15] for capturing frames
which are queued in NETshaper during the migration of virtual
nodes. Additionally, we have extended NETshaper to capture
statistics of average link data rates, and we have implemented
a load monitor for sending the data rates and the CPU usage
of virtual nodes to the coordinator. Finally, we have developed
a coordinator to calculate the optimized placement and to
migrate the virtual nodes.

The evaluation of NETbalance is performed in two steps.
First, we ran a set of micro benchmarks to identify the costs of
migrations. Second, using a synthetic evaluation based on this
cost model, we evaluated the performance of NETbalance. The
results of the micro benchmarks are summarized in Table 1.
Here, we measured the costs for creating a snapshot of a
virtual node, for transferring the snapshot and for restoring it.
Multiplying these costs with the memory footprint of a SuT

Phase | Action | Time
suspend | suspend all virtual nodes | 6ms/vnode
snapshot virtual node’s state 4.6ms/MB
mierate state transfer (same phy. node) 13.1ms/MB
g state transfer (diff. phy. node) 15.0ms/MB
restore virtual node’s state 1.8ms/MB
change-topology ‘ reattach to virtual topology ‘ 200ms/vnode

resume ‘ resume all virtual nodes ‘ 3.5ms/vnode

Table 1. Costs for virtual node migration

gives the migration time of a virtual node. Additionally, we
measured the time for stopping and resuming an experiment
and the time required for modifying the emulated network
topology. Both linearly grow with the number of virtual nodes
running in a VM.

We evaluated NETbalance using four network topologies
[8]: (1) an Internet scenario based on a snapshot of the
Internet with 2,113 routers, (2) a Grid model with 1,600
nodes arranged in a regular square grid, (3) a Campus model
with 5,480 nodes modeling connected campus sites, and (4)
a Waxman model with 2,500 nodes connected according to a
Waxman distribution.

In order to show the potential of NETbalance, we emulate a
wired video sensor network with periodic load changes. Each
virtual node runs a data source sending a constant data stream
of 10Mbps to a sink. During each experiment, the node acting
as the sink changes 15 times which results in large changes
of the data flows between the virtual nodes. The routes to
reach the sinks are pre-calculated. We use an initial placement
optimized for the data flows to the first sink. If not otherwise
stated, the sink changes every 2min. We use a testbed with 8
physical nodes each with 8 CPUs, and the Grid topology has
a SuT allocating 10MB memory. The prediction window T},
is set to 10s, and the optimization time 7}, is Is.

We first show the effectiveness of NETbalance to calculate
an improved placement of virtual nodes. Then, we evaluate the
influence of the underlying network topology, the prediction
window T, the optimization time 77, the memory footprint
of the SuT, the data rates of the SuT, and the testbed size on
the experiment runtime. Each setup is executed 30 times with
and without migration of virtual nodes. Our evaluation metric
is the relative runtime which is defined as the experiment
runtime with NETbalance divided by the runtime without
using NETbalance.

Figure 5 shows the required time dilation factor 7 for
running the scenario with a Grid topology. The gray area
shows 7 without NETbalance. Since the placement is not
adapted to the changed sink, it becomes suboptimal after the
first sink change which results in an increased 7. The black line
in the figure shows 7 in the same scenario using NETbalance.
As soon as the sink changes, 7 rises. However, after the
deployment of an optimized placement, 7 goes back to the
original level. The different values of 7 are caused by the
location of the sink in the network.

Grid, 10MB memory, 10Mbps, T;=10s, T,=1s = 10MB memory, 10Mbps, T,=10s, 10s sink change = 10MB memory, 10Mbps, T,=1s
— — ‘ ; 2100 ‘2100 Grid —e— 1
lwithout node migration. =ooooes o]
. 70 with node migration E 90 . ’F: E 90 Internet ---o--- |
5 R R o e B S Campus - -
R e . g E 80 wonpus -
c -
o 70 o 70
£ R N S oo E £
< 60 S e £ 60 |= . &) LA &
< o Grid —e—_| &
s %0 Internet ---e--- | @ 50 e
2 40 Campus ---@---4 2 40
T 30 Waxman, ~%-y | T 3q
0 5 10 15 20 25 30 2 0.125 025 0.5 1 2 4 g 2 2 4 8 16 32 64
virtual time [min] optimization time T, [s (virtual time)] prediction window T, [s (virtual time)]
Fig. 5. Experiment speed over time Fig. 6. Optimization time vs. network topology Fig. 7. Prediction window vs. network topology
< Grid, 10Mbps, T =1s = Grid, 10MB memory, T =1s . Grid, 10MB memory, 10Mbps, T,=10s, T,=1s
S, S, X
2100 10MB —%— 1 2100 [Remm 1Mbps —%— 4 5100 F' 1CPU per node —x—
-§ 90 2. 25MB --&--- | E 90 ™ 2Mbps ---e--- | E 90 | 2CPUs pernode ---o---
S S . - 5Mbps ---&--- z 4CPUs per node ---&---
E 80 E 80 S 10Mbps -8 - = 80 [8CPUs per node &
c c € 70
© 70 @ 70 @
£ £ E 60
g % g % g 50
x
3 50 3 50 g 2
2 40 2 40 _g 0 P Y
% 30 1 1 1 1 1 % 30 1 % 20
= 2 4 8 16 %2 64 =2 4 16 32 64 4 8 16 32 64 128 256 512
prediction window T, [s (virtual time)] prediction window T, [s (virtual time)] number of testbed CPUs
Fig. 8. Prediction window vs. memory of the SuT Fig. 9. Prediction window vs. data rate Fig. 10. Migration benefit vs. testbed size

In Figure 6, we present the influence of the optimization
time T,. In contrast to the other evaluations, here, we change
the sink every 10s which is equal to the prediction window
T,. Even with a very short time of T}, = 0.125s, NETbalance
can reduce the experiment runtime by up to 48%. Larger op-
timization times (7, < 1s) only slightly decrease experiment
runtime. The reason is that the increased execution speed is
almost compensated by the shorter time T}, —T,, left for running
the experiment with the improved placement. Increasing 7,
further, reduces the gain of NETbalance, because the short
time T}, — T, enables only minimal improvements to the virtual
node placement. This graph can be generated online during the
experiment run, enabling us to learn the optimal value of T,
for a specific scenario.

Figure 7 shows the experiment runtime for prediction
windows T), between ls and 64s for the different network
topologies. For the Campus and the Grid scenario small values
of T}, are enough for a significant speed-up. This mainly comes
from the fact, that in these topologies small changes in the
placement are enough to reduce the required 7 significantly.
At the same time, these small changes introduce only small
reconfiguration costs which can be compensated even for
short 7T},. Regarding all topologies, a prediction window of
8s reduces the runtime between 27% and 55%.

Since the memory footprint of the SuT determines the
reconfiguration costs, we evaluated the required prediction
window for different footprint sizes. Figure 8 shows that in-
creasing the footprint sizes requires larger prediction windows
to outweigh the reconfiguration costs and, therefore, to reduce
the experiment runtime. As shown in the figure, even for
larger SuT with a 100MB of used memory pages, a prediction
window of T}, > 8s is sufficient for reducing the experiment

runtime.

In contrast to the memory footprint, higher data rates
between virtual nodes are beneficial for NETbalance (see
Figure 9). Higher data rates result in higher load of the
physical nodes and, therefore, a higher time dilation factor. In
contrast, the reconfiguration costs are unaffected. This results
in more time for calculating the placement and, also, allows for
migrating more virtual nodes because relative to the prediction
window the reconfiguration time becomes smaller.

Finally, we evaluate the experiment runtime for different
testbed sizes (see Figure 10). Here, we vary the total number
of CPUs from 4 to 512, distributed over physical nodes with
1, 2, 4, and 8 CPUs. For testbeds with up to 64 CPUs, the
size of the testbed has only marginal effects on the relative
experiment runtime where a runtime reduction between 50%
and 70% 1is achieved. In testbeds with more than 128 CPUs,
only a few virtual nodes are executed in each VM. Due to
this small number, the difference between the unoptimized
and the optimized placement becomes small, which limits the
performance of NETbalance.

VI. RELATED WORK

Up to now, there has been no network emulator that uses
the migration of virtual nodes to reduce the runtime of exper-
iments. Approaches from other areas using similar concepts
are investigated for their applicability to our problem in the
following.

The migration of virtual nodes is similar to task migration in
parallel computing. Here, load balancing [18], [20] is achieved
by migrating tasks from nodes with high load to nodes
with low load. Willebeek-LeMair and Reeves [20] investigate
several different algorithms (GM, SID, RID, HBM, DEM)

for minimizing the computation and communication effort of
identifying the highly loaded nodes. In contrast to our problem,
here, local information can be used to decide which task to
migrate, because the placement of one task does not influence
the execution costs of another task. Additionally, the migration
of tasks can be performed independently without the need to
suspend all other task in the system.

In the area of process migration and virtual machine mi-
gration, there exist several approaches for minimizing the
migration time. Techniques such as pre-copy [19] and demand-
migration [22] minimizes the time between suspending and
resuming a process. The idea is to transfer the memory state
before suspending or after resuming the process and, therefore,
to minimize the time a service (provided by the process) is
unaccessible. However, applied to network emulation, in both
approaches the state is transfered in parallel to the running
experiment and, therefore, will increase the CPU usage which
leads to a slower experiment execution. Additionally, the total
amount of transferred data is increased, since the memory
is transferred multiple times or memory pages need to be
explicitly requested from the source.

Therefore, none of the existing approaches can minimize
the runtime of experiments with unknown or varying load.

VII. CONCLUSION

In this paper, we introduced a novel emulation approach,
called NETbalance, for reducing the runtime of experiments
with unknown or dynamic resource requirements. The basic
idea of NETbalance is to migrate virtual nodes during the
experiment runtime to minimize the load of the maximum
loaded physical nodes and, thus, to minimize runtime of the
entire experiment. We presented an emulation architecture to
efficiently support live migration of virtual nodes. In order to
calculate the experiment runtime reduction achieved through
the migration, we proposed a migration cost model. Based on
the cost model, we developed an algorithm for calculating a
placement that minimizes the remaining experiment runtime.

We implemented NEThalance, and our evaluation of this
prototype shows that live migration can reduce the runtime
of network experiments by up to 70% for various network
topologies and load characteristics.

This represents a major improvement of emulation tech-
nology. The NETbalance concepts enable scientists to run
more experiments in less time, achieving statistically more
relevant results. Moreover, the effort of preparing experiments
is drastically decreased as prior knowledge about application
behavior is no longer needed.

In our future work, we will investigate means for further
reducing experiment runtime by creating snapshots of the
complete experiment. Setting up an experiment from such a
snapshot speeds up evaluations that require long initial setup
phases.

VIII. ACKNOWLEDGMENT

This work is partially funded by the Deutsche Forschungs-
gemeinschaft (German Research Foundation) under grant

DFG-GZ RO 1086/9-3. We thank Sebastian Bartmann for
helping with the implementation of the NETbalance prototype.

REFERENCES

[1] G. Apostolopoulos and C. Chasapis. V-eM: A Cluster of Virtual Ma-
chines for Robust, Detailed, and High-Performance Network Emulation.
Technical Report 371, 2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proceeding of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), 2003.

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,

and M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage

Services. ACM SIGCOMM Computer Communication Review, 33(3),

2003.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield. Live Migration of Virtual Machines. In Proceedings

of the 2nd Symposium on Networked Systems Design & Implementation

(NSDI'05), 2005.

[5] P. A. Dinda and D. R. O’Hallaron. Host load prediction using linear
models. Cluster Computing, 3, 2000.

[6] R. M. Fujimoto. Parallel Discrete Event Simulation. In Proceedings of

the 21st conf. on Winter simulation (WSC’89), 1989.

A. Grau, K. Herrmann, and K. Rothermel. Efficient and Scalable

Network Emulation Using Adaptive Virtual Time. In Proceedings

of 18th International Conference on Computer Communications and

Networks (ICCCN’09), 2009.

A. Grau, K. Herrmann, and K. Rothermel. NETplace: Efficient Runtime

Minimization of Network Emulation Experiments. In Proceedings of the

International Symposium on Performance Evaluation of Computer and

Telecomm. Systems (SPECTS’10), 2010.

A. Grau, S. Maier, K. Herrmann, and K. Rothermel. Time Jails: A Hy-

brid Approach to Scalable Network Emulation. In 22nd ACM/IEEE/SCS

Workshop on Principles of Advanced and Distributed Simulations

(PADS’08), 2008.

[10] D. Herrscher and K. Rothermel. A Dynamic Network Scenario Em-
ulation Tool. In Proceedings of the 11th International Conference on
Computer Communications and Networks (ICCCN’02), 2002.

[11] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,

K. Webb, and J. Lepreau. Large-scale virtualization in the Emulab

network testbed. In USENIX 2008 Annual Technical Conference on

Annual Technical Conference (ATC’08), 2008.

K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda, T. Sugawara, and

S. Chiba. Secure and Manageable Virtual Private Networks for End-

users. In Proceedings of the 28th Annual IEEE International Conference

on Local Computer Networks (LCN’03), 2003.

[13] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. In Pro-
ceedings of the Fourth IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA’02), Washington, DC, USA, 2002.

[14] J. Liu. Immersive Real-Time Large-Scale Network Simulation: A

Research Summary. Proceedings of the IEEE International Symposium

on Parallel and Distributed Processing (IPDPS’08), 2008.

OpenVZ. http://openvz.org, 2011.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Imple-

mentation of Zap: A System for Migrating Computing Environments.

SIGOPS Operating System Review, 36, 2002.

G. F. Riley. The Georgia Tech Network Simulator. In Proceedings

of the ACM SIGCOMM workshop on Models, methods and tools for

reproducible network research (MoMeTools’03). ACM, 2003.

[18] N. Shivaratri, P. Krueger, and M. Singhal. Load Distributing for Locally

Distributed Systems. Computer, 25(12), 2002.

M. M. Theimer, K. A. Lantz, and D. R. Cheriton. Preemptable Remote

Execution Facilities for the V-System. In Proceedings of the tenth ACM

symposium on Operating systems principles (SOSP’85), 1985.

M. Willebeek-LeMair and A. Reeves. Strategies for dynamic load

balancing on highly parallel computers. /EEE Transactions on Parallel

and Distributed Systems, 4(9), 2002.

[21] L. Yang, I. Foster, and J. M. Schopf. Homeostatic and tendency-based
CPU load predictions. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’03), 2003.

[22] E. Zayas. Attacking the Process Migration Bottleneck. In Proceedings
of the eleventh ACM Symposium on Operating systems principles (SOSP
’87), 1987.

[4

=

[7

—

[8

—

[9

—

[12]

[15]
[16]

[17]

[19]

[20]

