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ABSTRACT

Stream processing has evolved as a paradigm for efficiently
sharing and integrating a massive amount of data into ap-
plications. However, the integration of globally dispersed
sensor data imposes challenges in the effective utilization
of the IT infrastructure that forms the global sensor net-
work. Especially simulations require the integration of sen-
sor streams at widely differing spatial and temporal resolu-
tions. For current stream processing solutions it is necessary
to generate a separate data stream for each requested resolu-
tion. Therefore, these systems suffer from high redundancy
in data streams, wasting a significant amount of bandwidth
and limiting their scalability.

This paper presents a new approach to scalable distributed
stream processing of data which stems from globally dis-
persed sensor networks. The approach supports applica-
tions in establishing continuous queries for sensor data at
different resolutions and ensures efficient bandwidth usage
of the data distribution network. Unlike existing work in
the context of video stream processing which provides mul-
tiple resolutions by establishing separate channels for each
resolution, this paper presents a stream processing system
that can efficiently split/combine data streams in order to
decrease/increase their resolution without loss in data pre-
cision. In addition the system provides mechanisms for load
balancing of sensor data streams that allow efficient utiliza-
tion of the bandwidth of the global sensor network.
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1. INTRODUCTION

Today, sensors are deployed on a global scale in virtually
every area. HExamples are weather stations, satellites, and
sensors on airplanes that together capture the state of the
atmosphere. In order to support scalable access to this

huge amount of information by possibly many users and
applications, the information is often provided in an aggre-
gated form as human readable information. While this is
a valid choice for information purposes, further processing,
for example in simulation applications, requires a set of data
points provided at regular intervals without gaps. The re-
quirements for the resolution at which data points are pro-
vided can differ significantly between multiple applications.
For instance, a simulation might monitor a large area at
coarse resolution to detect emerging hurricanes. Once a hur-
ricane is detected, a higher resolution of data is required to
monitor the movement and the wind field of the hurricane
for the area in which the hurricane was detected.

Clearly, a stream processing solution should ensure that data
streams are distributed according to the respective requested
resolution. Otherwise, a significant amount of bandwidth
would be wasted by unnecessary transmissions of data points
on the path to the clients. However, once multiple applica-
tions, like hurricane and wind field monitoring, require the
processing of overlapping sensor streams at different resolu-
tions, stream processing systems also need to avoid redun-
dant transmissions of shared sensor data.

While most recent stream processing solutions (cf. [4, 5])
provide efficient solutions in sharing sensor streams with re-
spect to the same resolution, there is only limited support in
providing data streams at multiple resolutions. Other sys-
tems, especially for video streaming, would simply require
to generate separate data streams for each resolution.

In this paper we propose and evaluate a system for the effi-
cient distribution of sensor data, especially in the context of
real-time simulation applications that rely on sensor data in-
put. Queries to the system are indexed using the GBD-Tree
[17] to allow for efficient lookup and reuse of already estab-
lished data streams. The indexing is extended to provide
different resolutions to users and eliminate redundant data
streams. The extended indexing schema furthermore allows
to split and balance the network load induced by queries and
this way achieve a highly efficient load balancing. Our eval-
uations show that with the adaptation to multi-resolution
operation, the bandwidth required for load balancing can
be reduced by over 40%.

The remainder of the paper is structured as follows: first,
background information and related work to the presented
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approach is given in Section 2. Then, Section 3 describes the
underlying system and query model. In Section 4 the query
processing and overlay management is presented in detail.
Evaluations are shown in Section 5 and Section 6 concludes
the paper.

2. RELATED WORK

To exploit the advantages of in-network processing of data,
several distributed stream processing systems (DSPS) like
Borealis [1] have been proposed. However, its query inter-
face requires manual stream modeling and distribution of
operators to available nodes. Other approaches like IrisNet
[15] and HiF1i [12] focus on the special properties of sensor
data and provide data filtering and preprocessing close to
the sensors. Virtual sensors were introduced in the GSN
middleware [2] to allow easy provision of preprocessed sen-
sor data. Hourglass [22] provides robust so called circuits on
intermittent connections between nodes.

Although IrisNet, HiFi, GSN, and Hourglass all support
information source lookup and automatic routing of data
streams, they lack the reuse of streams and intuitive range
querying as required for global sensor data. An approach
to integrate the routing of data streams with an intuitive
query mechanism was presented in [4]. The reduction of
data rates using a network of adaptive filters has been ad-
dressed in [18]. However, the efficient provision of multiple
resolutions at the same time still cannot be provided.

SBON [19] introduces a layer between the DSPS and the
physical network to optimize placement for network usage.
The approach was improved towards optimal mapping of
operators with respect to the underlying network [21]. Al-
though operators might be placed on the same node, explicit
reuse of data streams is not supported by this approach.

Contrary to these DSPS, our approach is to exploit the sim-
ilarities in data streams by actively avoiding redundant data
transmission. Publish/subscribe [6, 7, 11] has emerged as a
generic powerful many-to-many communication paradigm.
It is applied for efficient decoupling of data sources and
subscribers to data streams mostly in event processing sys-
tems. More recent approaches also consider the delay and
bandwidth constraints of subscribers [23, 24]. All these ap-
proaches, however, accept a certain amount of false positives
to provide scalable management of highly dynamic subscrip-
tions. Unlike publish/subscribe, this new approach is able to
split and reunite data streams. This way, it can provide bet-
ter matching with very few false positives which is required
for the high bandwidth used by global sensing systems.

To handle huge amounts of data, especially in the context
of climate simulation, systems have been proposed to split
gridded data into multiple smaller chunks. DataCutter [5]
provides a network of filters to allow distributed filtering
and processing of data. However, it does not allow combi-
nation of streams. Therefore, new data streams that are not
a subset of existing streams have to be generated from the
source and introduce additional redundancy in data trans-
mission. Another system for climate simulation data is the
Earth System Grid-I [10]. It provides data access to archived
data rather than real-time data streams and is therefore not
suited for a globally distributed sensing system.

Scribe [9] and SplitStream [8] provides application layer mul-
ticast routing in peer-to-peer systems. Both are related to
this work as data is distributed from single sources to many
destinations. However, Scribe does not address the problem
of providing data at multiple resolutions to the clients. For
SplitStream, a suitable encoding is assumed that can be di-
vided to split the actual data stream into smaller chunks.
While this approach is well suited for the dissemination of
video streams where certain channels can be addressed, it
lacks support for range queries on gridded data.

3. SYSTEM AND QUERY MODEL

We consider stream processing in the context of a distributed
broker infrastructure. This infrastructure gathers and pre-
processes sensor information to provide a complete grid of
data points from all over the world. Applications can pose
continuous queries to the system to retrieve real-time data
streams from a specified location with a certain resolution.

For example, a weather forecast application might require
detailed data for a small region of interest. In addition, it
requires data of a large area to account for the global state
of the weather. Due to limitations in computational power,
only a reduced resolution of the data available is used for
the estimation of the future weather state. This reduced
resolution for global data is usually one order of magni-
tude coarser than the high resolution used for local data
which covers data points at a distance of a few kilometers
(e.g. [14]). Another example might be a particle simulation
which provides information about harmful substances in an
urban region in real-time. In contrast to the weather fore-
cast, such a simulation requires data with high resolution for
a smaller constrained region. A mixture of both scenarios
has to be considered for a flexible and versatile system as
described in the following sections.

Specific components of the system and their properties are
presented in Section 3.1. A detailed description of the un-
derlying query model is given in Section 3.2. Based on the
properties of the system components and the query model,
a problem statement is then provided in Section 3.3.

3.1 System Components

The Global Sensor Grid system described in this paper is
formed by a set of brokers as depicted in the upper part of
Figure 1. Each broker is responsible for collecting sensor
data of a certain type of sensor from a dedicated region.
However, one broker can be responsible for multiple sensor
types and regions. In other words, for each type of sensor
the entire world is divided into smaller spatial regions. Each
of the smaller regions is independently assigned to a certain
broker.

Using this sensor information and the information from the
boundary of the neighboring regions, each broker computes
a grid of data points for its region. The brokers cooperate to
deliver the sensor data to the clients by replicating data of
highly loaded regions. Requests, which can be posed to ar-
bitrary brokers, can then be distributed to multiple brokers,
avoiding the overload of a single broker.

The partition of the global area into regions and the mapping
of regions to the brokers provides a basic overlay topology.
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Figure 1: The network of brokers, each broker gath-
ers the sensor information for its assigned sensor
types and region. The clients in the lower part of
the picture pose their queries to any broker.

It consists of the connections from one broker to the brokers
managing the neighboring regions. This topology is used for
query routing and lookup of the broker which provides the
data for a certain query. Although this overlay is not opti-
mized to resemble the underlying network topology, brokers
typically reside topologically close to the sensor data sources
in the network.

3.2 Query Model

A query g is a tuple composed by its region R, and the set
of attributes A, of interest:

q= (RQ7AQ)

The query is processed by the broker network and then an-
swered with a data stream containing all data points covered
by the query. A data point d is thereby specified by a 2D
location information x4 and y4, an attribute id aidg and the
value of that attribute valy at a certain point in time tq4.
The internal representation of queries for further processing
is described in Section 4.1.

Besides geographical bounds of the area of interest, the query
region also contains information about the requested resolu-
tion. The query region of query ¢ is represented by a tuple

Rq = (xminy Tmazxs Ymin, Ymax, T€Szy, T@St).

A 2D coordinate representation is used to describe the phys-
ical space and the queried regions. Tmin and Tmqe describe
the lower and upper bound for the latitude of the queried
area. Ymin and Ymaz limit the longitude correspondingly.
The last two values res., and res; give the spatial and tem-
poral resolution of the query as a fraction of the maximum
available data. For example, if res; = 0.25 only every fourth
data update is sent to the client node.

Clearly, a query can be decomposed into multiple disjoint
subqueries of smaller size. The union of the respective sub-

regions forms the entire area of the original query. Pair-
wise intersections of subregions, however, are completely
empty. This property will later be used to divide queries
into smaller parts where certain subqueries are common to
multiple clients. The proposed system efficiently distributes
the load of such common subregions to avoid bottlenecks.

In addition to location and resolution information, a client
can also specify a set of attributes which should be deliv-
ered by the system. More formally, A, specifies the set
of attribute IDs which the user is interested in. The pre-
sented system also allows the user to specify a lower and
upper bound on each of the attributes. By restricting the
value of the attribute to a certain interval, similar to pub-
lish/subscribe, users can further constrain the volume of the
data stream generated. However, this approach focuses on
data distribution to applications which usually require the
full available spectrum for an attribute of interest. There-
fore, throughout the rest of the paper, we do not consider
additional filters for a specific attribute.

3.3 Problem Statement

The goal of the presented system is to provide as many
clients as possible with sensor data despite highly imbal-
anced query regions. Since each broker has only a limited
amount of bandwidth available for data distribution, the
load has to be distributed among brokers. The basic func-
tion of the presented system is therefore to establish repli-
cation data streams between brokers when necessary with
possibly low overhead.

This function is considered optimal if the total amount of
data delivered to client nodes is maximized without exceed-
ing the bandwidth locally available at every broker. For-
mally, let B be the set of brokers and let @); be the set
of queries to answer by broker i. The set Q = |JQ; con-

tains all queries of the whole system. |g| denotes the size
of a query q € @, i.e. the bandwidth required to serve
it. Additionally, let C; be the set of outgoing connections
for replication from broker i where |c| denotes the size of a
connection analogously to |g|. Finally, let a; be the total
bandwidth available at broker ¢. An optimal solution then
provides the maximum total query size without exceeding
the local bandwidth at each broker. This can be described
as follows:

maximize > g
q€Q
subject to Vbe B: > |c|+ > Ir| < ap
cely reEQy

The next section presents our approach to data stream man-
agement based on the given system model and optimization
goal.

4. DATA STREAM MANAGEMENT

Our approach for data stream management consists of two
major parts: query processing and load distribution. Query
processing starts by indexing the queries using an extended
version of the GBD-Tree [17]. A query is split in several
parts which refer to data of distinct geographical areas. For
each part of a query the index determines the brokers which
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Figure 2: Example for generation of DZ expressions
using spatial indexing.

can provide the requested data. The index is maintained
in a completely decentralized fashion. By contacting any
broker in the network it is possible to determine just from a
set of neighbors maintained at each broker how to direct the
query subsequently to the broker responsible for the data
streams. In order to support streams at multi-resolution
we have extended the index in a way that also covers the
resolution information in addition to the location specified
in the queries. Using this detailed information, the system
can adapt to high demand not only for specific regions but
also with the required resolution.

Since brokers have only limited bandwidth available, over-
load situation can occur at a broker. In the presence of an
overload situation the parts of the data streams which are
of high interest to many users are replicated to other appro-
priate brokers. Replicated brokers will help to respond to
requests and contribute to balance the load. The number
of replicas is thereby adapted according to the current load
situation.

In the following we present the approach in more detail.
Section 4.1 gives an overview how the basic index struc-
ture works. In Section 4.2 we present how this index is
extended to support multi-resolution data streams. Finally,
Section 4.4 shows how our approach balances the load on the
data streams and selects appropriate brokers for replication.

4.1 Query Indexing

To efficiently identify, for each part of a query, the brokers
responsible for streaming the requested data, we use a struc-
tured spatial index [13], specifically the GBD-Tree [17] (Gen-
eralized BD-Tree). The GBD-Tree was originally proposed
to index very large spatial databases with high dimensional
data. This index allows fast and efficient detection of areas
which are of relevance to multiple queries. Hereby each part

of a query is associated with a node in the GBD-Tree and
the respective subtree can be used to extract the information
of interest.

The GBD-tree ensures that the area associated with child
nodes is strictly contained in the area of any given parent.
Hence, it supports quick identification of reuse relationships
for the corresponding dissemination structures. Further-
more, the containment relationship releases the system from
dealing with the problems of managing overlapping queries.
Such overlap occurs when using an index like the R*-Tree [3]
which allows arbitrary intersections of MBRs. To track in-
tersections in an R*-Tree, all potential subtrees have to be
completely traversed which induces a high overhead. In ad-
dition, the large number of possible intersections leads to
ambiguity in the creation of dissemination structures.

Nodes in the GBD-tree are represented by DZ expressions.
These are generated in a recursive process as depicted in
Figure 2. DZ expressions are formed by a string of characters
0, 1, and *. An empty DZ expression (¢) represents the whole
space managed by the system. e covers all data available for
any given area. In other words, it represents a query covering
the entire globe at highest resolution of data points in space
and time for all types of sensor data in the system.

The dimensions of the space to be indexed are assumed to
be numbered from 1 to d. In this specific case, dimensions 1
and 2 represent the spatial dimensions x and y of the query
region. Additional dimensions can be used to represent at-
tribute ranges. However, to clarify the process of indexing,
we restrict ourselves to these two dimensions for now.

A query region is now indexed as follows: Starting at di-
mension with index 1, the first digit of the DZ expression
is determined depending on the extent of the region in the
direction of x. If the query region is located entirely in the
lower half of the dimension, a 0 is appended to the expres-
sion. Similarly, if the region is located entirely in the upper
half, a 1 is appended. The process is then continued in the
corresponding subspace for dimension 2. Depending on the
extent of the query in direction of y, a 0 or 1 is appended
to the expression. Alternating between the two dimensions,
the expression is extended as long as the query fits entirely
into the lower or upper half of the remaining range of x or
y, respectively. The final DZ expression is obtained when
the region can no longer be assigned to a single half in ei-
ther dimension which is denoted by *. A more compact
representation of multiple expressions can be obtained by
introducing asterisks as a placeholder for either 0 or 1 at
any given digit of the expression as depicted in Figure 2.

Based on their DZ expressions dz(q1) and dz(g2), two queries
¢1 and g2 can now easily be checked for containment. Let
1 and l2 be the length of the two respective expressions. If
l1 <3, the first [1 bits of the two expressions have to match
as follows to make sure ¢ contains g2: For each position
in the expression, either the character at that position of
dz(qq) is * or it is identical to that of dz(gz2). If the compact
representation is not used, an additional, test can be used to
speed up the check: If [1 > l2, g1 cannot contain g2, since a
longer expression always represents a smaller region as can
be seen from the construction process.



As stated earlier, additional dimensions can be integrated
into the index. Instead of alternating between dimensions
1 and 2, the digits in the DZ expression are derived in a
round robin fashion for all d dimensions. After processing
dimension d, the indexing continues again with dimension
1. The next section describes how we use this property to
integrate resolution information in the indexing scheme.

4.2 Supporting Multi-Resolution Mapping
While the previous section described the indexing procedure,
we now focus on the extensions needed to support multi-
dimensional queries. Without further extension to the index
the only way to provide sensor data at multiple resolutions
would be to index every data point separately. This, how-
ever, would come along with a huge overhead with respect
to the number of queries which need to be maintained as
well as the length of their representation. Consider we dou-
ble the resolution addressable by the system. The system
would now need to maintain four times as many queries as
well as an additional digit for representing each DZ expres-
sion. In general, the overhead would grow exponentially as
the system is scaled up to a higher resolution.

Instead, the approach taken in this paper incorporates the
resolution information directly into the index. This way,
the number of queries remains independent of the maximum
resolution provided by the system.

4.2.1 Index Extension

The extended index uses additional dimensions for space
and time of the resolution. More specifically, dimensions 3
and 4 correspond to the resolutions r4, and r; of the query.
By defining constraints on the intervals of these additional
attributes, the clients request a lower resolution of the re-
gion of interest. For instance, by constraining a query to
one quarter of the dimension representing the spatial reso-
lution, only every fourth data point is delivered to a client
in the resulting data stream. Furthermore, by combining
two distinct intervals of low resolution the total resolution
can be increased without requesting a completely new data
stream. If a client requested the lowest quarter of the tem-
poral dimension using one query it may later request the
second lowest quarter in another. The client can combine
the two resulting data streams very efficiently to get half of
the maximum possible temporal resolution. This allows to
serve a high resolution request of a user by providing two
data streams of lower resolution which provides higher flex-
ibility in managing data streams.

Note, however, that adding resolution information on ad-
ditional dimensions requires a mapping of data points. If
an additional dimension for resolution is added to the GBD-
tree without further adaptation, a DZ expression that covers
half of the spatial resolution would result in only covering
half of the queried area. The following example will illus-
trate this problem: Suppose we only have a single type of
sensors and only consider spatial resolution information in
a flat (2D) space. As a result, three dimensions would be
indexed with the GBD-Tree, one for each spatial dimension
and an additional for resolution. When evaluating a DZ ex-
pression, the query region is split in half with every digit
of the expression, according to the indexing mechanism de-
scribed in Section 4.1. Depending on whether the digit is 0

(0,1,2,3,4,5,6,7)
[0:1:7]
[0:2:7] [1:2:7]

[0:4:7] [2:4:7] [1:4:7] [3:4:7]
[0:8:7] [4:8:7] [2:8:7] [6:8:7] [1:8:7] [56:8:7] [3:8:7] [7:8:7]
(% y/ |

(0,4,2,6,1,5,3,7)

Figure 3: Example for the permutation of indices
between 0 and 7.

or 1, the lower or upper half of the region is selected by the
query. However, when evaluating the resolution dimension,
every second point in the region should be selected instead
of limiting the queried region.

To achieve the desired properties, the mapping of data points
to the additional dimensions needs to be adapted. A map-
ping has to be found which orders data points in a way that
selecting any contiguous block of the reordered data does not
limit the boundaries of the selected region. In order to dis-
tinguish between the two types of constraints and provide
an efficient processing mechanism, the mapping is applied
to blocks of data. Each of these blocks is reordered and the
constraints of the resolution dimensions are applied to all
blocks covered by a query.

Recall, that resolution and region constraints are indexed
round robin. We use the same maximum index depth k for
region and resolution constraints in our system and, hence,
the number of blocks is equal to the number of data points
per block. The complete range of points for a single dimen-
sion is divided into m = 2% blocks of m points. A total of
m? = 2% points per dimension can therefore be managed for
a given value of k. For each block, the respective data points
are permuted and mapped to the additional dimension.

As a result of this approach, only the subset which cor-
responds to the requested resolution is included in a query
response. An even distribution of data points over the whole
query area is ensured by permuting data point indices before
mapping them to the resolution dimension. The permuta-
tion scheme is described in the following section.

4.2.2  Permutation Scheme

The order required for a bottom up evaluation of data points
is provided by a recursive permutation of elements. An ex-
ample for the scheme is given in Figure 3. The basic idea
behind the permutation is that if a user requests one half of
the resolution dimension, every second data object should
be delivered.



To explain the generation of the permutation we define the
interval [l : s : u] as follows:

l:s:ul={n:l<n<uAn=k-s+1 with k,n € N}

In other words, [l : s : u] describes each s numbers start-
ing at [ and being smaller than u. With m being the size of
one block in our scheme, a complete block is therefore repre-
sented by [0 : 1 : m]. Following the basic idea, this interval
is split into two intervals [0 : 2 : m] and [1 : 2 : m]. In the
second step, the first interval is now split into [0 : 4 : m]
and [2 : 4 : m]. Similarly, the second interval is split into
[1:4:m]and [3:4:m]. For each of the subintervals,
the process is repeated k times in total. After step i, the
first interval always contains every 2'" index, starting at
0. Concatenating this interval and the second one results in
the doubled number of indices while still covering the area
of the original interval. This way, contiguous blocks of the
resolution dimension can be combined without the need for
further adaptation.

As a result of the splitting, the original interval is divided
into m intervals, each containing one single index. The final
permutation is obtained by resorting the indices in the order
of the intervals in which they are finally classified.

LEMMA 1. The permutation of blocks can be obtained at
linear computational cost, O(n), with respect to a given block
size n.

ProOOF. The permuted order of elements can be deter-
mined in a non recursive process: The binary representation
of the original index equals the binary representation of the
permuted position in reversed order. As we have to inverse
n elements, the computational cost is in O(n) assuming that
a bit sequence can be inverted at constant cost. [

By using this direct computation, the permutation of indices
can be done in a highly efficient manner. Consequently,
we do not take the computational effort for creating the
permutation into account throughout the rest of the paper.

4.3 Query Processing

A user query ¢ can be accepted by any broker, say b, of the
system. The broker first generates the corresponding DZ
expression dz(q) of the query. Afterwards, the broker checks
whether the queried area is available locally, i.e. which parts
of it are covered by the set of locally available regions L. The
available subqueries are added to the set of client queries C.
The part(s) of the query which cannot be answered locally
are forwarded towards the broker which is responsible for the
respective region. All regions in L and C are maintained in
a local GBD-Tree.

4.3.1 Local Processing

Initially, the set of locally available regions L, contains all
regions for which data is gathered at the local broker. Over
time, further regions are added to L as neighboring brokers
replicate certain regions for load-balancing. As a new query
is received by a broker, it checks the local availability of the
data for that query. A formal description of the function

serve is given in Algorithm 1. The function operates on the
local GBD-Tree that stores L.

As the tree provides a strict containment relation between
parent and child nodes, the availability of data for a partic-
ular query can be verified very efficiently. Each node in the
tree may have zero, one, or two children. The process starts
at the root node, which contains the largest possible region
and, therefore, also ¢. If the node is empty, the child node to
check next is chosen according to the first digit of dz(q). If
the digit is 0, lowChild is checked next, otherwise the search
continues on upChild. As long as the nodes are empty, i.e.
no query is stored in that node, this process continues. The
next node to check is always selected according to the next
digit of dz(q). Eventually, there is no additional digit left
to choose the next child node which means that the query
region is not entirely available locally.

If a node is nonempty during the process, the data is avail-
able and the process ends immediately. The query is in-
serted into the GBD-tree that maintains C similar to the
availability check in L. However, child nodes are created
where they do not yet exist. After the last digit of dz(q) has
been parsed, the query is inserted in the tree.

In case the entire query region is not available at the broker,
the tree is traversed further down to find available subre-
gions. Subregions are available if the node corresponding to
the new query has any child nodes. The new query is then
split in two subqueries and both are checked for availabil-
ity in the two corresponding subtrees. Eventually, a set of
DZ expressions @ is obtained which describes all fragments
of the new query that are not available at the local broker.

Formally, @ ={¢': ¢' ¢ LN ¢" < q}.

4.3.2  Query Routing

For each ¢ € Q, b forwards g to the neighbor target whose
area is geographically closest to the center of the area repre-
sented by ¢. The neighbor which receives the query performs
the same local query processing as described earlier. As the
process continues, the query is subsequently forwarded to-
wards the broker that initially provides the required data.
Eventually, if the data cannot be provided earlier, the query
arrives at that broker and is then served.

To determine which neighbor is closest to the target, each
broker maintains a list of regions adjacent to the locally
maintained region along with the broker responsible for each
of them. Depending on the type of sensor queried, the ac-
cording neighbors are selected as candidates for forwarding.
The information of the spatial extent of the query is then
used to determine the broker which is responsible for the
region closest to the query region. Algorithm 2 formally
describes the query routing. More advanced approaches to
this problem, like CANJ[20], exist. However, as most traffic
is caused the query results rather than queries, the focus of
this work is on the indexing and replication mechanisms.

The data for subregions which are locally available is directly
delivered to the client who posed the query to the system.
Eventually, each query part is forwarded to a broker which
has a replica of the data available or the broker responsible
for generating the data.



Algorithm 1 Local processing algorithm
Ensure: Q={¢ :¢ ¢ LAq <q}

1: function serve(inout Set Q, in Query q)

2: if not this.queryList.isEmpty() then //q € L

3:  C.add(q) // add to client requests

4: else if lowChild == null and upChild == null then
ey

5. Q.add(q)

6: else if dz(q).length() > this.level then // availability
not clear

7:if dz(q).getCharAt(level) == 0 then // decide on

further path

8: if lowChild == null then //q ¢ L

9: Q.add(q)

10: else // continue on child node

11: lowChild.serve(Q,q)

12: end if

13:  else

14:  if lowChild == null then //q ¢ L

15: Q.add(q)

16: else // continue on child node

17: upChild.serve(Q,q)

18: end if

19:  end if

20: else // query unavailable as a whole, check parts
21:  if lowChild == null then // lower half unavailable

22: Q.add(q.splitLow())

23:  else // continue on child node

24: lowChild.serve(Q,q.splitLow())

25:  end if

26:  if upChild == null then // upper half unavailable
27: Q.add(q.splitUp())

28:  else // continue on child node

29: upChild.serve(Q,q.splitUp())

30:  end if

31: end if

Algorithm 2 Query routing algorithm

Require: Q = {q:q ¢ L} set of query parts to forward

1: function forward(in Set Q)

2: Broker target = null

3: Float oldDistance = 0

4: Float newDistance = 0

5: for q € Q do // process all queries in set

6:  oldDistance = getDistance(regq,this)

7:  for n € getNeighbors(A,) do // select neighbors with
requested data

8: newDistance = getDistance(regq,n)

9: if newDistance < oldDistance then

10: oldDistance = newDistance

11: target = n

12: end if

13:  end for

14:  send(target,q)

15: end for

If many queries lie in the area of a single broker, the band-
width resources of this broker might be insufficient for serv-
ing all incoming queries. A replication of parts of the area
for which the broker is responsible therefore has to be estab-
lished. Another broker can then serve a number of queries
for the replicated region, thereby distributing the load to
more than one broker. Afterwards, the query is either for-
warded along the new outgoing data streams or answered
locally, if enough resources have been freed. The procedure
of choosing the region to replicate and selecting the broker
on which the replica should be established is described in
the next section.

4.4 Load Balancing

The load balancing mechanism of the presented approach is
directly integrated into the query processing. During query
processing, queries are eventually answered by a replicate
of the queried area before they are even forwarded to the
original source. This way, brokers can be effectively allevi-
ated from high query load on small regions managed by a
single broker. If a broker runs out of resources to answer
new queries, the replication mechanism establishes a replica
of a highly loaded region on a neighboring broker. By se-
lecting neighbors as nodes for replications we ensure that
replicas are used to answer a query before it is forwarded to
the original source.

When establishing a new replica for load-balancing, two
main factors have to be considered: which region is repli-
cated and on which node is the replica established. The
selection of the region to replicate is supported by the struc-
tured storage of queries in a GBD-tree. By maintaining only
a small amount of additional meta-data in the tree, a high
flexibility of the metrics for selecting a certain region can
be provided. In the following, the details of the replication
region selection mechanism are presented. Afterwards, the
selection of a node for the new replica for possibly high sys-
tem robustness is described.

4.4.1 Replication Region Selection

The selection of the region to replicate has significant influ-
ence on the performance of the load balancing. The intuition
behind our scheme is to replicate parts of the query with high
load. In this case, the load of an area is determined by the
amount of data that needs to be provided to clients divided
by the size of that particular area.

With the GBD-tree maintained at each broker, all regions
for which data is available at a broker can be efficiently
monitored. For each subregion of arbitrary size, load distri-
bution with respect to the number of clients and bandwidth
required to serve clients can be easily obtained. In each node
of the tree, the total query size for the entire subtree is up-
dated each time a query is added to or removed from the
tree.

The selection process checks for each node in the tree the
load of the corresponding covered queries by parsing the
local tree of client queries. Formally, the load of a region r
is defined as

load(r)= Y lal/Ir]

{a:qeCng<r}



A region r has potential overload if the total bandwidth re-
quired to serve queries in the corresponding subtree is larger
than the covered region, e.g. load(r) > 1. In other words, if
some or part of the data from a certain region has to be sent
out more than once, the region has a certain overload. A
broker can reduce the local load by only sending out a sin-
gle copy of the overloaded region to another broker, thereby
delegating the task of distributing the data.

If such an overloaded region is found in the local client query
tree, it is added to the list of candidates for replication. Fur-
ther regions are then checked until all candidates are found.
Finally, the list of candidates is sorted according to the over-
head detected to ensure that highly loaded regions are repli-
cated first. The search process for overloaded regions is given
in Algorithm 3.

Algorithm 3 Region candidate selection algorithm

1: function find(out Set R)
2: if not this.queryList.isEmpty() then // only replicate
requested data

3:  if lowChild != null or upChild != null then // po-
tential for reducing load

4 C.add(queryList)

5:  end if

6: else // check children

7.

8

if lowChild != null then

: lowChild.find(R)
9:  end if
10:  if upChild != null then
11: upChild.find(R)
12:  end if
13: end if

A replication request is sent to another broker for each of
the regions, starting at the one with the largest overhead.
If a replica is successfully established, the according client
queries are relocated to the newly established replica. As
soon as enough bandwidth has been freed by offloading queries
to the newly created replica, the client query which triggered
the replication is finally processed.

To avoid frequent reorganization of replicas, we restrict the
size of a region which is replicated to a certain minimum.
This is done by parsing the index tree only down to a max-
imum level thereby replicating a larger region even if not
the entire region is currently queried. The replicated region
therefore can also contain parts which are not highly loaded
as described above. However, any replicated region r still
satisfies load(r) > 1 as the load for other partial regions
is accordingly higher. Although this introduces additional
overhead for the replication of regions, the replicas can then
directly respond to requests in the proximity of a highly
loaded region.

The replicated region does not need to originate from a bro-
ker but can also be a replication itself. New replicas for
highly loaded subregions can therefore also be established
on more distant brokers as second or even higher level repli-
cas. This way, the system also efficiently prevents denial of
service attacks where many users query a small region on a
single broker.

4.4.2 Replication Node Selection

As described earlier, a new replica is established on a broker
which is responsible for a neighboring spatial region. During
query processing, a replica can therefore be used to answer
a query before the original, overloaded, broker needs to de-
liver any additional data. For establishing a new replica, the
most intuitive approach is to select the neighbor with the
highest amount of available bandwidth. That neighbor will
most probably be able to serve the replica without running
into an overload situation. Additionally, with this selection
strategy, collisions of replication requests can be avoided in
presence of multiple query hot spots in close proximity. As
the load is propagated to the surrounding regions of the hot
spot, two hot spot neighborhoods will eventually reach ad-
jacent brokers. In this case, the new replicas are established
in other directions rather than inside the neighborhood of
another hot spot as the load is already high there.

However, not all neighboring brokers are considered as can-
didate for establishing a new replica. Brokers, which already
provide data to the local broker are excluded from the can-
didates. If two neighboring brokers bidirectionally exchange
replicated data, the system would otherwise be busy repli-
cating data instead of serving queries. Similar to approaches
for application layer multicast, only neighbors that are re-
sponsible for a region which has a larger distance to the
original region are considered for hosting a replication. By
distributing the replicas away from the original query hot
spot, circular replication requests can be avoided and a di-
rected distribution of data is ensured.

4.4.3 Removal of Queries

When a client is no longer interested in the data of a query,
it sends a message to the brokers which serve the data. If
the broker only acts as a relay and does not have any other
outgoing connections to serve all or part of the affected area,
the cancel message is further propagated. All brokers that
provide parts of the no longer required area are informed
about the removal of the query. Additionally, relay brokers
notify the according providers if they are no longer required
as a relay if there is only a single outgoing query left. This
way, unnecessary relays can be removed from the data dis-
tribution network.

4.5 Properties

The presented combination of query routing and replication
strategy provides the desired properties for a global sensing
system: equal distribution of load among brokers with effi-
cient handling of queries. The balanced distribution of load
is ensured using the information obtained from the GBD-
tree which is in turn used to manage client queries. A bro-
ker replicates regions of high interest to a broker which is
responsible for a neighboring spatial region.

Together with the proposed query processing algorithm, the
replication strategy provides a high probability that a repli-
cate of the region of most interest will be contacted by the
query routing before putting additional load on the over-
loaded originating broker. As replicas can be established
over multiple levels, even very small query hot spot load can
be distributed over a large number of brokers. This way, all
system resources can be used to serve user queries which
greatly improves the scalability of the entire system. At the



same time, the system efficiently respond to attempted de-
nial of service attacks where many users query a small region
on a single broker.

A low overhead for the replication is ensured by the addi-
tional matching of resolutions of interest instead of replicat-
ing certain regions at the highest possible resolution. As
shown in Section 5, our approach can reduce the replication
overhead by more than 40%. Our proposed extensions to
the indexing provide an efficient way to identify the spatial
regions and the resolution of interest. This information is
then used by our replication and query processing algorithm
to provide multi-resolution query support in a global sensing
system.

4.5.1 Required Storage Space

The maintenance of the underlying index on the broker only
requires a small amount of storage. Three separate GBD-
Trees are used for each sensor type to store data for incom-
ing and outgoing data streams from and to other brokers as
well as client requests served. The number of connections
to and from other brokers is usually two orders of magni-
tude smaller than the number of client connections. As only
nonempty nodes are stored in the GBD-Tree, the space re-
quired for the indexing of replication data streams can be
neglected.

Fach node in the GBD-Tree stores a list of queries with their
corresponding DZ expressions and two pointers to its chil-
dren. Queries are represented by the lower and upper bound
on each of the four dimensions (latitude, longitude, spatial
resolution, and temporal resolution). To identify the client
(or corresponding source/destination broker, respectively) a
network address is stored for each query. The length of a
DZ expression corresponds to the level in the tree where it
is stored. Since DZ expressions are represented by binary
strings, they can be stored as a single integer. Therefore the
expressions only slightly increases the storage size required
for a query.

4.5.2  Query Processing Cost

Apart from the required storage, the extension of the index
also has influence on the query processing and the connec-
tions between brokers. As indexing is adjusted more pre-
cisely to the query regions, smaller fragments are replicated
between brokers. Therefore, the number of connections in-
creases with a constant factor compared to the approach
without further extension. However, the number of con-
nections can be reduced in exchange for higher bandwidth
usage. Overall, our approach outperforms the single resolu-
tion approach with respect to bandwidth usage when limited
to the same number of connections.

The proposed query processing only checks for a node in
the tree whether there is a query or not. Therefore, the
performance of the query processing mostly depends on the
number of subregions which comprise the entire data avail-
able at the broker. In other words, the time required for
query processing increases with the number of replications
that are hosted at a particular broker. The search for candi-
date regions for replication also depends on the total number
of distinct regions in the index rather than the number of

queries. Therefore, the approach scales well with the num-
ber of queries posed to the system.

Another scalability aspect is the number of brokers sup-
ported by our approach. As more brokers are integrated,
the spatial regions assigned to each broker become smaller.
The assignment of smaller areas to brokers leads to an ex-
ponential increase in the number of regions representing the
areas as they are also indexed for higher spatial and tem-
poral resolutions during the process. However, to support
larger numbers of brokers, the top levels of the GBD-Tree
index can also omit the resolution dimensions so that the
number of regions scales proportional to their size. With
this mechanism, the granularity of spatial and resolution in-
dexing can be balanced according to the requirements posed
to the system.

5. EVALUATION

The proposed system was implemented using the PeerSim
network simulator [16]. 16 brokers were simulated where
the entire area was equally distributed among all brokers.
Each broker has enough bandwidth resources to serve 25
times the entire region for which it is responsible. To show
the ability of the presented system to efficiently distribute
high query load in a small region among brokers, a Query
hot spot was modeled. Using a zipfian distribution for the
lower and upper bounds of the queries, we generated a set
of queries of varying size. Following the distribution, most
of the queries cover a small area around the hot spot, while
few queries still cover larger areas. The size of the hot spot
was modified by choosing different exponents for the zipfian
distribution. The center of the hot spot was placed in the
center of the overall area. Values for both, temporal and
spatial, resolutions were chosen from a uniform distribution.

Queries were posed to the system until it was unable to
serve any more requests, i.e. no suitable configuration could
be found to accommodate the new request. The focus of
the evaluation was to show the ability to distribute the load
among brokers in presence of query hot spots. The cost of
maintaining the replicas in terms of connections and mes-
sages that are needed to establish the connections has been
investigated. Our results show that indexing the resolution
information of queries can significantly reduce the overhead
required for replication. In addition, the maintenance cost
can be flexibly constrained. By limiting the indexing depth
of the GBD-tree the replicated regions can be extended in a
controllable way.

5.1 Required Connections and Messages
Figures 4 and 5 shows the average number of connections
per broker that have been established during the experi-
ment to maintain the replicas for a large and small hot spot
area, respectively. The numbers shown do not include con-
nections to clients but only the connections required for de-
livering data inside the broker network. The results clearly
show that a finer indexing of all dimensions requires far more
connections to be maintained. This is due to the fact, that
queries are split into smaller subqueries to achieve a better
approximation of the actually queried region.

In turn, the number of messages exchanged during the es-
tablishment of these connections is much higher for a larger
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Figure 4: Number of connections required w.r.t. in-
dex depth for a large hot spot.
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Figure 5: Number of connections required w.r.t. in-
dex depth for a small hot spot.
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Figure 6: Number of messages required w.r.t. index
depth for a large hot spot.
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Figure 7: Number of messages required w.r.t. index
depth for a small hot spot.
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Figure 8: Percentage of bandwidth required for the
replication w.r.t. index depth for a large hot spot.

indexing depth as depicted in Figures 6 and 7. The numbers
only include messages required for establishing, modifying,
and removing connections, not the delivery of payload. We
can also observe that the number of connections and mes-
sages is larger for smaller hot spot areas. This is due to the
fact that the smaller areas are matched more closely by our
replication algorithm.

5.2 Resource Consumption of Replication

As shown in Figure 8, the required overhead can be signifi-
cantly reduced by increasing the number of indexed dimen-
sions in case of large hot spot areas. This reduction can save
over 40% of the payload traffic compared to the pure spatial
indexing without resolution information. A similar gain can
also be achieved for small hot spots as shown in Figure 9.
However, the graph also indicates that the indexing depth
is an important factor for tuning the system. The resource
consumption for the replication mechanism can be greatly
reduced using a higher indexing depth.

5.3 Total Achievable Query Load

The cost of decreased overhead is not only the increased
number of connections and messages as described in the pre-
vious sections, but also in the stability of the system. Fig-
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Figure 9: Percentage of bandwidth required for the
replication w.r.t. index depth for a small hot spot.

1 T T T T T T
0.96 -
0.924+

T,

0.88 F1~

0.84 Fd=3

0.8 1 1 1 1 1
30% 40% 50% 60% 70% 80% 90% 100%

Figure 10: Maximum system load that can be served
w.r.t. index depth for a large hot spot.

1
0.96 &5 g =]
1 *
0.92

0.88 | S A
0.84

0.8
30% 40% 50% 60% 70% 80% 90% 100%

Figure 11: Maximum system load that can be served
w.r.t. index depth for a small hot spot.

ure 10 shows the maximum achievable load for the system
with varied indexing depth for the large hot spot scenario.
The graph shows how far the system could be loaded with
queries until no suitable distribution of data streams could
be found to answer the new query.

As the larger hot spot areas cover more than a single broker,
the resolution of conflicts for different replication requests
becomes difficult with many small partial queries. There-
fore, the results for a high indexing depth show a larger stan-
dard deviation indicating that the maximum load is slightly
lower for certain experiments. When only indexing one ad-
ditional dimension, the system can resolve the conflicts more
reliably and therefore serve more data in total for high in-
dexing depths.

For the smaller hot spot regions, as shown in Figure 11, this
effect does not occur since they are usually covered by a sin-
gle broker. In this case, the replications can be established
on any neighboring broker as they do not need to establish
replicas themselves. Figure 11 also indicates that adding
both spatial and temporal resolution to the index results in
a high achievable system load over a broad range of index-
ing depths. For only two indexed dimensions the replica-
tion overhead becomes too large when using a low indexing
depth. When adding only the spatial resolution dimension,
the replication overhead is significantly reduced. However,
as requests for low temporal and high spatial resolution in-
crease, the system cannot expand to its full potential. Over-
all, both graphs show that our approach can distribute the
load effectively among all broker in the system and therefore
provide a high total client load.

6. CONCLUSION AND FUTURE WORK

We have described a system for scalable and efficient dis-
tribution of grid-based sensor data. The system is capable
of providing data at multiple resolutions at the same time
without transmitting redundant data streams. To achieve
this, we extended the GBD-Tree to allow for the indexing
of resolution information. We also provided the required
mechanisms to allow efficient query processing while incor-
porating the resolution data. As a result, the bandwidth
available in the entire broker network can be used in a very
efficient fashion by the proposed system.

Our load distribution approach alleviates single brokers from
their load and thereby remove bottlenecks when query hot
spots occur. The proposed replication approach avoids high
overhead through full replication by only replicating data at
required resolution. The indexing based on the GBD-Tree
is also scalable to a high number of brokers as each broker
can locally generate the DZ expression for a query and there
is no need for a centralized organization.

In the future, we want to further improve and extend the
region selection algorithm to anticipate moving hot spots.
Such moving hot spots might occur if many users moni-
tor the environment of environmental phenomena like hurri-
canes, for example. To achieve further improvements in effi-
ciency, the system will also be extended using adapted com-
pression techniques. In addition, the discovery and manage-
ment of neighboring nodes will be improved by integrating
more advanced structured overlay approaches.
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