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ABSTRACT

Pervasive computing and business process modeling are increas-
ingly joining forces, as mobile human users shall be seamlessly
integrated into business processes. In respective scenarios, humans
use mobile devices and wireless technology to interact with work-
flows running in a powerful back-end infrastructure. However, the
frequent interaction between humans and workflows causes a high
communication overhead and, thus, high energy consumption on
mobile devices. This impacts the usability and efficiency of the
business process due to rapidly drained batteries and the resulting
short life-times of the devices and applications. We present an ap-
proach based on a minimum-cut algorithm for reducing costly data
transmissions during workflow execution by distributing parts of a
workflow to the users’ devices. Our motivation is to reduce the en-
ergy consumption on the mobile devices and, thus, avoid draining
batteries in the field. We prove that our algorithm finds the optimal
solution for a given network and workflow, decreasing the energy
consumed on mobile devices by 32-37% compared to an approach
where the entire workflow is executed in the infrastructure. Thus,
in typical domains like logistics and health care, one third of the
energy can be saved. This either means that devices have to be
charged less frequently, leading to less distraction in the business
process, or that mobile device specifications can be lowered. Sig-
nificant cost reductions result in both cases.

Categories and Subject Descriptors

D.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.4 [Information Systems Applications]: Office Automa-
tion—Workflow Management

General Terms

Algorithms, performance
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1. INTRODUCTION

By using workflows, organizations are able to automate and op-
timize their business processes [1]. Workflows are a way of or-
chestrating services in order to implement the programming-in-the-
large paradigm. They define a set of activities that call services,
and they define constraints on the execution order of these activ-
ities. While services are often provided by software components,
human-centric application scenarios such as pervasive healthcare
and logistics require extensive human interaction to execute a work-
flow.

Driven by the advances in the area of pervasive computing [2],
humans are no longer tied to their desk. They can use mobile de-
vices to interact with workflows virtually anywhere. While this
enables unobtrusive interactions with the workflow system, mo-
bile devices have a constrained battery lifetime such that the energy
consumption is a critical point for their usability. High energy con-
sumption causes batteries to be drained fast, disrupting the business
process and leaving users unable to continue their work. This ren-
ders the process less efficient and, thus, incurs higher costs. Alter-
natively, devices could be fitted with larger batteries to avoid such
disruptions. However, this also incurs higher costs. Therefore, pre-
serving energy is an important goal with respect to seamless work-
flow execution and cost reduction.

Today’s workflow systems are usually deployed in a back-end
infrastructure, such that the workflows need to communicate with
mobile humans over a wireless medium. Due to this deployment
scenario, extensive data transmission between user devices and work-
flows running in the infrastructure is required for each interaction
with a mobile user. Consequently, this results in high energy costs
since sending and receiving data are highly energy-intensive oper-
ations with current wireless communication technologies such as
GPRS, UMTS or WiFi [3].

In order to reduce these energy costs, we propose an algorithm
for distributing fragments of workflows from the infrastructure to
mobile user devices. Distributing workflows to mobile devices
avoids transmissions of large volumes of data since this data is
processed locally. Our algorithm constructs a cost graph that is
based on the workflow model and takes two sources of energy into
account: the data communication costs and the costs of service ex-
ecution on the mobile device. We partition the cost graph using a
minimum cut algorithm such that the workflow execution causes
minimum energy consumption. Each partition of the cost graph
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contains the workflow activities to be executed either in the in-
frastructure or on the mobile devices. Our evaluations show that
this approach achieves average energy savings of 37% for GPRS
and 32% for UMTS communication compared to the centralized
infrastructure-based approach. Existing work in the area of work-
flow distribution [4, 5] only focuses on infrastructure nodes, but
does not consider the impact of workflow execution on the energy
budget of mobile devices.

The rest of the paper is structured as follows. In Section 2, we
present an application scenario for workflow distribution. Section 3
discusses the related work. We then present our system model and
give a formal description of the optimization problem underlying
our approach in Section 4. In Section 5, we present the algorithm
for solving the optimization problem, and we present a proof for the
optimality of this algorithm. The evaluation results are discussed
in Section 6. Finally, we conclude the paper in Section 7 and give
an outlook on future work.

2. APPLICATION SCENARIO

The application scenario depicted in Figure 1 models a quality
assurance workflow for car shipment management (logistics do-
main). In this scenario, we consider a big harbor where ships de-
liver large numbers of cars. The cars go through a series of treat-
ments that involve e.g. fitting radios, maintenance, and cleaning
activities. Cars may be parked for certain periods of time and re-
trieved for additional treatments or onward shipment. During this
whole process, cars may be damaged. Therefore, the personnel
that is handling the cars (handling drivers) needs to check them
regularly for damages. Based on the results of these checks, cars
may be sent back to the manufacturer, they may be sent to a repair
station, or insurance cases may have to be filed. Since the handling
drivers are no experts in detecting and evaluating damages, this is
done by taking photos of the car and sending these photos to some
image recognition service that is trained to detect specific kinds of
damages.

First, an available worker is chosen by the workflow from a
database using the Worker Service. The chosen worker gets in-
structions (Notify Worker) and interacts with the workflow by tak-
ing pictures of a car and submitting them to a diagnosis service. If
the service detects a problem with the car, the worker is instructed
to take further steps to fix the problem. For example, this can be an
instruction manual or video.

In our example, the mobile device has to transmit 4 MB of data
and receives 1 MB. Assuming that the workflow is executed in
the infrastructure, this drains about 140J via UMTS and even 189]
(150J+397J) via GPRS (shown in the figure) [3] of energy from the
mobile device. We can save a significant amount of energy by exe-
cuting the workflow (including the diagnosis service) on the users’
mobile device, since data transmission dominates service execution
in terms of energy usage. For the implementation of the diagnosis
service on a mobile device, several approaches such as Neuronal
Networks or Markov models are feasible. These models can be
trained online and enable real-time recognition on mobile devices
[6]. Executing the shaded area of the workflow on the mobile de-
vice costs only 22J (20J for executing the diagnosis service on the
mobile device and 2J for small data transmissions) as opposed to
the 189] consumed with an infrastructure-based service. We save
167J. Saving this amount of energy for every car the worker han-
dles has a strong impact on the battery lifetime of his device.
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Figure 1: Example workflow with annotated energy costs

Our assumption is that off-the-shelf smartphone technology will
be used for applications like the one investigated here. The per-
formance and the form factor of these devices is adequate. Using
off-the-shelf phones has several advantages:

e They are generally cheaper than special-purpose devices that
have been designed for a very small market segment.

e They are constantly improved, removing the necessity to ex-
plicitly invest in costly redesigns.

e They offer a very flexible hardware platform with different
communication devices and sensors.

e They offer additional communication functionality and ap-
plications that can support the general work process and en-
able integration.

e They are available in arbitrary numbers such that scaling the
system up is not a problem in terms of the hardware.

Of course, precautions in terms of security have to be taken. But
these can be implemented in software.

Typical smartphones have a battery capacity of about 17000J
and the typical energy consumption of smartphone users is between
144J and 3600J per hour with a median of about 850J [7]. Hence,
centralized workflow execution would drain the overall energy of a
mobile device heavily in our scenario.

3. RELATED WORK

The task of workflow distribution has been studied in previous
research within the workflow community. Each approach is heavily
influenced by the class of performance gain to be achieved. Bauer
and Dadam [4] propose an algorithm to reduce the network load
produced by the workflow system. For this purpose, they have de-
fined a probabilistic model that reflects the communication costs for
workflow execution. By means of variable server assignments they
create relations between activities which are used to select a suit-
able server in the infrastructure and distribute the workflow. Son
et al. [5] propose an algorithm to distribute a workflow among in-
frastructure nodes to minimize communication cost in the network.
Their approach is based on multi-level graph partitioning that con-
siders different types of wired networks (e.g. LAN, WAN). How-
ever, their approach assumes equal costs for communication be-
tween hosts in the same wired network. In contrast, we assume the
amount of data to be exchanged over the wireless channel to have
a big impact on the energy drained on mobile devices. Hiesinger



et al. [8] present an approach to minimize the interaction time ex-
perienced by humans during workflow execution. For this purpose,
they propose a list-scheduling algorithm to assign workflow activ-
ities to different network domains such that the time required for
the workflow execution is reduced. However, none of the existing
work in the area of workflow distribution focuses on distributing a
workflow between infrastructure and mobile nodes in order to save
energy.

Workflow distribution requires mechanisms to enforce a decen-
tralized workflow execution model. Baresi et al. [9] use graph
partitioning rules to transform a centralized workflow model into a
set of distributed fragments that run on different devices. The par-
titioning rules operate on an abstract graph representation of BPEL
[10] to create a set of cooperating workflows. However, while this
enables the creation of valid workflow fragments, the selection of
these fragment has to be done manually by a workflow designer.
Our approach supports a workflow designer to find the best frag-
ments to be executed on mobile devices in terms of energy con-
sumption. The results of our distribution algorithm can be used
to apply the rules of Baresi et al. for cutting the workflow into
fragments. Therefore, both approaches complement each other for
creating a decentralized energy-efficient workflow executuion en-
vironment.

MAUI [11] is a system for offloading code from a mobile device
to an infrastructure in order to save energy. This is sensible if the
energy required for executing the code exceeds the energy needed
to transfer its state. However, MAUI works on a fine-grained level
of individual functions. A workflow is a coarse-grained orches-
tration of large pieces of code (services). Thus, MAUI may be
used orthogonally to our solution on the level of individual ser-
vices. AIDE [12] is a distributed platform to offload application
code from mobile devices to nearby powerful computers. For this
purpose, the execution history of the application is monitored to
create a fully connected graph of the application’s interaction be-
haviour. The graph is then partitioned using a modified version of a
minimum-cut algorithm, which considers the resource limitations
on the mobile device such as the memory available for executing
the application. For making distribution decisions it is assumed
that applications can be freely migrated among different devices.
In contrast, workflows often depend on services that are bound to a
specific device, while other services are generally available on all
devices. We explicitly deal with these restrictions in our approach
for the distribution of a workflow. Furthermore, we have devised
an approach for workflow distribution among an arbitrary number
of devices, while AIDE can only divide an application into exactly
two partitions.

We conclude that workflow distribution in a heterogeneous en-
vironment for mobile and infrastructure-based devices is of major
importance to conserve scarce resources on mobile devices. Exist-
ing approaches deal with workflow distribution and energy conser-
vation under different assumptions and, thus, are not applicable to
our problem.

4. SYSTEM MODEL AND PROBLEM DE-
SCRIPTION

In this section, we describe our system model in a formal way.
Our goal is to distribute a workflow among the infrastructure and
the mobile devices. Hence, we first propose a suitable network
model. Then, we describe our workflow model. We conclude this

section by describing the optimization problem we solve.

4.1 Network Model

The network consists of a set of mobile devices D = {d1, da, ...},
where each device corresponds to a human user who participates in
the execution of the workflow. Furthermore, the network consist of
an abstraction of the back-end infrastructure in f. We abstract from
the concrete implementation of this infrastructure since it does not
influence the energy consumption of mobile devices. For example,
the infrastructure may be a standalone server, a server cluster or
even a distributed network of servers. The set of all hosts is de-
noted as H = D U {inf}. Thus, the term host may refer to both,
infrastructure or mobile device. We assume a communication sys-
tem between hosts, e.g. cellular communication (UMTS, GPRS) or
WiFi via access points, such that each pair of hosts can communi-
cate.

4.2 Workflow model

A workflow is a directed acyclic graph W = (A, s, F, p,0.4,0p).
A denotes the set of activities in the workflow. The functionality of
an activity is defined by means of the function A : A — S. This
function binds an activity a € A to a required service A(a) € S,
where S denotes the set of all services used by the workflow. S
consists of 3 disjoint subsets Sinf, Shuman and Smov that repre-
sent different service classes. Each service s € Siy s is a compu-
tational task executed by piece of software, which is only available
in the infrastructure, e.g., due to a large database which needs to be
accessed. These kind of services are called infrastructure services.
In contrast to this, each service s € Shuman represents a task that
is to be performed by a human user (e.g., repairing a car). We refer
to these services as human service. A human service corresponds
to a mobile device which is used by the human to retrieve and send
the information relevant for his task. Each services s € Sp,0, can
be either executed in the infrastructure or on the mobile device. An
example of such a movable service is the diagnosis service from our
application scenario in Section 2. The decision where to execute a
movable service (on the mobile device or on the infrastructure) de-
pends on the outcome of our workflow distribution algorithm.

The control flow of W is specified by means of the relation
F C A x A. The control flow defines the logical order of ac-
tivities for the execution of the workflow. We refer to activities that
model conditional or parallel behavior as structural activities. A
conditional and parallel split is modeled as an activity with more
than one outgoing control flow link. The set of outgoing control
flow links of an activity a € A is denoted as Fi,. For a given
control flow link f = (a4, a;), ps is the probability that a; will
be executed after the completion of a;. This value can be derived
from execution traces of the respective workflow. For a conditional
split, the workflow is executed following only a single alternative,
i.e. the conditions |Fu| > 1and } ;. p(f) = 1.0 hold. For a
parallel split, all outgoing branches are executed in parallel, i.e. the
conditions |Fy| > 1 and Vf € Fy, : py = 1 hold. The latter also
holds for all other links originating from a non-structural activity.

The data flow of W is described by the two relations Laa C
A x Aand Las C A x S. Each (a;,a;) € Laa denotes a data
link between two activities a;,a; € A and each (a,s) € Las de-
notes a data link between an activity a and its associated service
s = A(a). Over each of the data links a certain amount of data is
communicated. The amount of the data that needs to be transferred
for a service call (a,s) € Las is denoted as §s(a, s). We assume
that 65 (a, s) covers the input as well as the output of the respective



service call. Similarly, 6.4 (a;, a;) specifies the amount of data that
has to be exchanged between two activities (a;, a;) € Laa. We as-
sume that both 6 4 and 5 are available to our workflow distribution
algorithm and can be either obtained by a workflow designer being
an expert in the application domain or by analysis from histories of
past execution traces of workflow instances.

4.3 Problem Description

Our goal is to find a distribution of a workflow that minimizes
the energy consumption for the workflow execution on the mobile
devices. More formally, a possible workflow distribution can be
described by a function p; : A — H that maps each activity in the
workflow to a host that shall execute it. At the same time, we have
to decide for the host where to execute a movable service. Formally,
this is expressed by a second mapping function pi2 @ Symov — H.
Among all possible mappings, we are interested in the most energy-
efficient mappings p7 and p3, i.e., the mappings that minimize the
sum of the drained energy of all mobile devices d € D.

The total energy cost for workflow execution under the given
mappings p1 and po is denoted as Etotar (i1, p2). The cost is the
sum of the energy consumed for executing movable services on
the mobile devices as well as the energy spent for wireless com-
munication. In the following, we refer to the energy required to
transmit k bytes as E7 (k). In our evaluation, we will use existing
energy models to compute Er (k) for specific wireless communica-
tion technologies, e.g., GPRS. The energy required for executing a
movable service s is given by Ex (s). In the following, we describe
the cost model to determine the total energy cost for a workflow ex-
ecution.

First, let us consider the energy cost E' (s) for executing a mov-
able service s € Smov. E'x(s) is defined as:

E/ (S) _ Ex(s), if ,ug(s) eD
X 0, otherwise

Each movable service s € Sy.00, may be executed on a mobile
device or in the infrastructure. If s resides on a mobile device,
energy has to be spent for its execution. Otherwise, if s is executed
in the infrastructure, no energy is consumed on the mobile devices.

Second, we have to consider the energy costs for remote ser-
vice calls. For each data link (a,s) € Lag the consumed energy
E’r(a, s) can be calculated as follows:

if (u1(a) € DA (s € Sing V
Er(0s(a,s)), s € Smov Apa(s) =inf) V
pi(a) = inf A (s € ShumanV
5 € Smov N p2(s) € D))
0, otherwise

Er(a,s) =

We have to spend energy costs, whenever the activity a resides
on a host which is different from the host where its required service
A(a) is executed. As a consequence, data needs to be transferred
over the wireless medium. This may be true for different cases. If a
workflow activity is assigned to a mobile device and the service can
be found in the infrastructure (because it is an infrastructure service
or a movable service running in the infrastructure), network com-
munication is required. In the other case, whenever the activity is
assigned to the infrastructure and the service resides on the mobile
device (because it is an human service or a movable service exe-
cuted on the mobile device), the data needs to be transferred over
the network. We have no transmission costs only if the activity a
and the service s are either running both on the same mobile device
or both in the infrastructure.

Third, we have to consider the communication costs for the trans-
mission of data among worfklow activities. For each such data link
(ai,aj) € Laa the consumed energy E7(a;i,a;) is defined in the
following manner:

Eh(ana)) {ETwA(ai, a)), if m(a) # p(ay)
0, otherwise

We only have to pay the energy costs in case the communicating
activities do not reside on the same host. Then, the required data
must be sent over the wireless medium from the preceding to the
succeeding activity. In contrast to this, activities which are assigned
to the same host do not produce any energy costs for communica-
tion.

The total energy required for the execution of a workflow under
the given mappings p1 and po is then defined as:

Etotal(ﬂly ,U2) - Z ES{ (S) + Z E’}(aﬂ 8)
VsE€Smouvable V(a,s)ELas
+ Y. Er(a,a)

V(a;,aj)€Laa

All sources of energy consumption are covered in this equation. In
the following, we present our algorithm that minimizes this func-
tion by finding an optimal workflow distribution. In Section 5.3,
we show that this algorithm minimizes both, the sum of energy
consumption over all devices and the energy consumed individu-
ally on each device. Both optimization goals are equivalent in our
case.

S. DISTRIBUTION ALGORITHM

Our approach for energy-efficient workflow distribution is di-
vided into two steps. First, based on the network and workflow
model we construct a cost graph, which models the energy costs
for the workflow execution on the network hosts. The nodes of the
cost graph are the activities in A and the hosts in H. Its edges are
annotated with weights representing the energy costs resulting from
data communication or from the execution of services on the mo-
bile devices. Second, we use this cost graph as input to a minimum
cut graph partitioning algorithm. The algorithm partitions the cost
graph into |H| subgraphs, where each subgraph contains exactly
one host and zero or more activities. The set of activities contained
in the subgraph represents the fragment of the workflow that is to
be executed on the particular host contained in the subgraph. Since
we apply a minimum cut approach to partition the workflow, we
guarantee that the energy costs for the resulting placement are min-
imized. In the following, we describe each of the steps involved in
more detail, and we prove the optimality of the approach.

5.1 Cost Graph Construction

The cost graph G = (V, E) consists of a set of nodes V' and a
set of weighted edges E. The graph is constructed using Algorithm
1. Initially, we create a node in V' for each host of the network and
each activity of the workflow, i.e. V"= A U H (line 2). Then, the
set of weighted edges F is determined, where an edge is created for
each data link in the workflow (Laa and Las). The weight w as-
sociated with an edge (u, v, w) € E represents the energy costs of
a hypothetical placement, where the source node u and target node
v of the edge are assigned to different partitions (which represent
different hosts).

Weighted edges are created in the following manner. First, we
handle the case of activity-to-activity communication and create an



Algorithm 1 Cost Graph Construction

1: //Let G = (V, E) be the cost graph to be constructed

2: V:=AUH

3: for all (a;,a;) € Laa do
E = FEU{(ai,a;, Er(©a(ai,a;)))}

end for

: for all (a,s) € Las do

if s € Shuman corresponding to device d; then
E :=EU{(di,a, Er(©s(a,s)))}

else if s € S;,, s then

10: E := EU{(a,inf, Er(©s(a,s)))}

11:  elseif Er(Os(a,s)) > Ex(s) then

LNk

12: //service communication costs dominate - call service lo-
cally

13: E :=EU{(a,inf,Ex(s))}

14:  else

15: //service execution costs dominate - call service remotely

16: E :=EU{(a,inf, Er(©s(a,s)))}

17:  endif

18: end for

edge between any two different activities a;,a; € A that share
a data dependency (lines 3-5). The edge (ai,a;) is weighted by
the amount of energy required to transmit the data © 4 (a;, a;) be-
tween the activities. Then, we distinguish between several cases
for the invocation of service s by activity a. If the service is pro-
vided by a human, we introduce an edge weighted by the costs of
transmitting the data © 5(a, s) between the activity and the mobile
device corresponding to the human service s (lines 7-8). If the ser-
vice runs in the infrastructure and is not available on the mobile
device, we add an edge weighted with the costs of transmitting the
data Og(a, s) between the activity and the service s (lines 9-10).
Finally, in case of a movable service, we have to compare the en-
ergy required to transmit the input/output data of the service to the
infrastructure with the energy required for local service execution
(Er(©s(a,s)) > Ex(s(a))). The rationale is that a necessary
criterion for running the service on the mobile device is that the
service execution costs are lower than the communication costs. In
case the service communication costs dominate the execution costs,
the service s should always be executed where the corresponding
activity a is placed (either infrastructure or mobile device). Hence,
we must only consider the service execution costs if a is placed on
a mobile device. Thus, we create an edge between a and the in-
frastructure node inf which is weighted by the service execution
cost Ex (s) (line 13). However, in case the service communication
costs dominate, we create an edge between the activity and the in-
frastructure weighted by the communication costs (line 16).

As an example, Figure 2 shows the cost-graph constructed for
the workflow in Figure 1. The nodes of the graph are the set of the
activities, the infrastructure (denoted as in f), and the single device
used by the human service (called di). Data flow links are simply
mapped to edges in the graph with corresponding weights (Algo-
rithm 1, lines 3-5), in the same way as the data flow links between
activities and the user (Algorithm 1, lines 9-10). Since the execu-
tion of the *worker service” on a mobile device causes more energy
costs (10J) than the costs for the required data transmission (2J), an
edge between the ’determine worker’ activity and the infrastructure
is created (Algorithm 1, lines 14-16). As the execution costs for
the diagnosis service are smaller than the cost of transmitting its
input/output, both the diagnosis service and the *diagnose picture’
activity should be executed at the same host. If the ’diagnose pic-

Minimum Cut
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Figure 2: Cost graph created from the example workflow
shown in Figure 1

ture’ activity is executed on the mobile device, we have to consider
the execution costs of 20J. Hence, we have to create an edge with
weight 20J (Algorithm 1, lines 11-13).

5.2 Workflow Distribution

For the purpose of workflow distribution, we compute a parti-
tioning of the cost graph that assigns each activity to a host d and,
thus, represents the desired mapping p1. Based on the activity
mapping, we can also derive the assignment of movable services
to hosts for the mapping pi2.

We use the minimum cut algorithm [13, 14] to determine the
partitioning that minimizes the consumed energy. A minimum cut
creates exactly two partitions C' and V' \ C of the graph. Partition
C contains the host d and zero or more activities from the set CN A
assigned to it, and partition V' \ C contains all remaining hosts H \
{d} and activities (V'\ C') N A. The sum of the weights of all edges
between different partitions represents the energy consumed by the
mapping. Consequently, our goal is to determine the partitioning
that minimizes the sum of the weights of all edges which are cut
through the partitioning.

The minimum cut is defined as follows: Given the cost graph
G = (V, E), the minimum s — ¢ cut of G is a partition (C, V' \ C)
suchthats € C,t € V' \ C and

w
(u,v,w)€EE:uecCAveV\C

is minimal among all possible partitions C' C V. Several ap-
proaches have been proposed to find the minimum s — ¢ cut with
polynomial time complexity [13, 14].

To solve our problem, we have to extend this algorithm to pro-
duce |H| partitions instead of two. For this purpose, we propose
Algorithm 2 that takes an iterative approach to compute the parti-
tion C' with the activities for each mobile device d;. In each itera-
tion, we find what we call a minimum s — 7" cut for mobile device
d;, i.e., a minimum cut that separates node d; and all remaining
hosts in the set 7' = H \ {d;}. For this purpose, we modify the
cost graph and merge all ¢ € T into a new node ¢’ such that all
(u,v,w) € E with v € T are replaced by (u,t’,w) (line 4). The
idea is to create a new virtual node in the graph that represents all
other hosts except for d;. Thus, we can return to the two-partition
cut problem and execute the minimum s — ¢’ cut to find the solution
to our extended minimum s— 7" cut problem (line 5). After this par-
titioning step, we place all activities which are part of d;’s partition
on d; (lines 6-9). We follow this approach for each mobile device.
Afterwards, there may remain activities which have not been as-
signed to any mobile device. These activities are then assigned to



Algorithm 2 Workflow Distribution

: //Let G = (V, E) be the contructed cost graph
: Vimp =V
: foralld; € D do
t' := merge(H \ {d:})
(C,V\ C) = calculate MinimumCut(d;,t')
foralla e CNAdo
p(a) = d;
Vimp := Vimp \ {a}
end for
: end for
: // assign remaining activities to infrastructure

SORIIUE LN =

—
—

12: foralla € Vi N A do

13: pi(a) :=inf

14: end for

15: for all (a, s) € Las with s € Sp00 do

16:  if pi(a) € DA Er(Os(a,s)) > Ex(s) then
17: p2(s) = pa(a)

18:  else

19: u2(s) :=inf

20:  endif

21: end for

the infrastructure (lines 12-14). Thus, we have created H partitions
of the cost graph and we have found the desired mapping function
p1 that creates an optimal mapping as we prove below. Based on
this mapping, we can determine the placement of the movable ser-
vices in S0, on the hosts in H (lines 15-20). A movable service is
placed on a mobile device only if its calling activity is also placed
on the same device and the service execution costs are lower than
the communication costs (lines 16-17). In all other cases, the ser-
vice is executed in the infrastructure (line 19). Thus, we have found
the required mapping for p2 and completed the workflow distribu-
tion.

For the cost graph in Figure 2, we execute the minimum-cut
algorithm once, since only one mobile device is part of the sce-
nario. The resulting cut is indicated as a dashed line. Three activ-
ities and the movable ’Diagnose Picture’ service are executed on
the mobile device dy, resulting in (1 + 20 + 1)J = 22.J of con-
sumed energy. Thus, we can achieve significant energy savings of
(1439 + 150)J — 22J = 168J compared to the approach where
the entire workflow is run in the infrastructure.

5.3 Optimality Discussion and Proof

In order to find the distribution of the workflow with minimal en-
ergy consumption, we calculate the minimum cut for each mobile
device separately as explained in Section 5.2. Since each single cut
is optimal, the overall system is also optimal if there are no con-
flicts, i.e. if there are no overlapping cuts. An overlap of two (or
more) cuts (shaded area in Figure 3) means that at least one activity
(residing in the overlapping region of both cuts) is claimed by two
(d; or dj) or more devices to render the energy usage of each of
those mobile devices minimal.

Of course, an optimal solution could still be found under these
conditions simply by placing the activity that is requested by d; and
d; on either one of the two such that it produces the lowest cost.
However, if the overlap becomes complex, i.e. if more activities
fall into overlap regions, this simple extension of the optimal cut
algorithm would not suffice to create an optimal overall solution.
Therefore, it suffices to show that our algorithm never produces
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Figure 3: Two overlapping cuts

overlapping cuts to prove its optimality.

We show that there is no activity that is member of two cuts, i.e.
Vdi,dj € D,d; ;é dj : C(dl) N C(dj) = (Z), where C(dl) = {a S
Alpi(a) = d;} is the set of activities which are placed on device
d; € D based on our algorithm.

Assume there are two overlapping cuts C'(d;), C'(d;) as shown
in Figure 3 with C(d;) N C(d;) # 0. Let ¢;2 and ¢;2 denote the
overlapping part and c;; and c;1 the non-overlapping part of cuts
C(d;) and C'(d;), respectively. Let w(c) be the sum of weights (i.e.
the cost) of a cut c. Then, w(ci1) +w(ei2) and w(cjr) +w(cj2) are
the costs of the minimum cuts for d; and d; respectively. Note that
there must be at least one activity in the overlapping area (shaded).

Since the cut ¢;1¢;2 was chosen as minimum cut between d; and
d;/IS, we must have w(c;i1) + w(ci2) < w(ein) + w(cjz2), ie. in
particular w(ci2) < w(cj2). If w(ciz) = w(cj2), we can easily
construct non-overlapping cuts for both d; and d; with minimum
costs (actually w(ci2) = w(c;2) cannot happen if we assume non-
zero execution costs for services, since the overlapping cut contains
at least one activity). If w(ci2) < w(cj2), ¢j1ci2 would be a cut
with less costs for d; which contradicts the premise. Hence, there
can be no overlapping cuts, which proves the optimality of our ap-
proach.

6. EVALUATION

In this section, we present our evaluation methodology and dis-
cuss the evaluation results. The goal of our evaluation is to give
insight into the efficiency of our approach for a wide spectrum of
different application scenarios. As there are no openly available
data sets for real workflows, we rely on simulation and generate a
large variety of different workflows for our evaluation.

The creation of the workflows is based on a grammar with rules
to create sequential, conditional and parallel workflow structures.
We apply the grammar to compose random workflow models from
these partial structures, such that the number of activities per ran-
dom workflow model ranges from 6 to 33. The varying size of
workflows allows us to evaluate business processes of different
complexity. The data flow defined by Og is generated randomly
according to a uniform distribution with a maximum of 5 MB per
data link to allow for a variety of communication patterns. The val-
ues for © 4 are implicitly defined by ©g to guarantee a consistent
data flow in the workflow. That is, all data received by an activity
is sent via its outgoing data flow links to other activities. Each ac-
tivity is randomly assigned to either a human, a movable service or
an infrastructure service. This assignment follows a uniform distri-
bution. In order to assess the quality of our approach, we evaluate
the energy savings per device and assume that a single human is
interacting with the workflow using a single device.
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Figure 4: CDF for Absolute Energy Costs

We leverage on existing energy models from the area of perva-
sive computing to determine the costs related to data communi-
cation and service execution. We assume that the communication
is done via a wide area wireless network since such networks are
globally available and provide a maximum degree of mobility for
users. Therefore, we studied the energy costs for wireless commu-
nication over GPRS and UMTS based on the energy models pro-
posed by Balasubramanian et al. [3]. We derive the drained energy
based on the size of the data to be transmitted. We also assume a
maximum tail time in between successive wireless connections due
to the execution of time-consuming human services.

Cuervo et al. determined the energy cost for executing a given
piece of code based on profiling [11]. We employ their model to de-
rive the service execution costs. This allows a workflow designer
to predict the typical energy usage of services running on a mobile
device. In our experiments, we assume that the execution of a ser-
vice on the mobile device consumes a random amount of energy
that is drawn from a uniform distribution with a minimum of 20J
and maximum of 150J.

In our evaluation, we compare the energy consumption of two
different deployment scenarios. The distributed placement is de-
termined according to our distribution algorithm presented in Sec-
tion 5. In contrast, the centralized placement refers to the classi-
cal deployment scenario where the entire workflow is executed in
the infrastructure. We ran 10000 different simulation experiments
and measured in each experiment the required energy to execute
the workflow with our distributed approach and with the central-
ized approach. Figure 4 shows the cumulative distribution func-
tion for the absolute energy costs, i.e., the fraction of all workflows
which fall below a given energy budget. For communication over
UMTS, 80% of all workflows consume less than 530J in case of
our distributed approach. In contrast, only 29% of the workflows
fall below this limit in case of a centralized deployment. The fig-
ures also demonstrates that 95% of all workflows do not exceed
energy costs of 640J for our distributed approach, while the cen-
tralized approach requires energy up to 990J for the same fraction
of workflows. We can also observe higher energy costs for both
approaches when GPRS is used, since transmitting larger chunks
of data consumes more energy due to the more limited bandwidth.
For communication over GPRS, our approach guarantees that 80%
of all workflows consume less or equal than 640J. However, only
23% of the workflows can meet the same energy constraints for the
centralized execution.
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Figure 5: CDF for Relative Energy Costs

Figure 5 shows the relative energy costs of our approach, mea-
sured as the fraction of energy consumed by the centralized ap-
proach. The figure depicts the cumulative distribution function,
showing the fraction of workflows which remain below the given
relative energy costs. While the performance for both GPRS and
UMTS is similar, we can again observe slightly higher energy sav-
ings for GPRS-based scenarios due to the reasons explained above.
In the best 10% of the cases, we have to spend less than 34% for
GPRS and 40% for UMTS of the centralized energy consumption.
Most of the workflows consume between 40% and 70% of the cen-
tralized energy consumption, depending on the degree of human
interaction involved. On average, the workflow execution requires
63% of the centralized energy consumption for GPRS and 68% for
UMTS. This represents a large improvement in energy usage, ex-
tending the lifetime of mobile devices significantly and reducing
the costs of the underlying business processes.

7. CONCLUSIONS AND OUTLOOK

Mobility-enabled business processes become more and more wide-
spread, and this trend will gain momentum as the device technol-
ogy and the applications become more mature. This allows for
porting complex workflow-based business applications to the mo-
bile world. However, energy consumption will always be a major
concern in such applications as battery capacity only grows slowly
compared to computational power and network capacity.

‘We have proposed an approach for distributing workflows among
a set of mobile and infrastructure-based hosts in order to mini-
mize the energy drained on mobile devices. We have developed a
cost graph that represents the energy consumed by the execution of
workflows. Based on this cost graph, we have presented an optimal
minimum-cut-based algorithm for the energy-efficient placement
of workflow activities.

Our evaluation shows that our algorithm saves on average 37% of
the energy for GPRS and 32% for UMTS over a purely infrastructure-
based approach. In application domains that are heavily workflow-
driven (like logistics and health care) this represents a significant
energy saving that allows for longer operation between two recharge
cycles and thus for less distractions in the daily routine of the in-
volved personnel. In scenarios where the available battery capaci-
ties already ensure distraction-free processes, our approach allows
for downgrading to cheaper technology with less capacity. Both
routes lead to significant monetary savings in areas where mobile
devices are indispensable tools.

Thus, our work represents an important step toward the cost-
efficient and seamless integration of business processes and per-



vasive computing, enabling much more flexible workflow-driven Philadelphia, PA, USA: Society for Industrial and Applied
applications that involve mobile users. Mathematics, 1997, pp. 324-333.

In our future work, we will investigate how the online prediction
of data volumes for a concrete workflow instance can improve en-
ergy savings even further by providing more accurate knowledge.
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