
Efficient and Distributed Rule Placement in Heavy
Constraint-Driven Event Systems

Björn Schilling, Boris Koldehofe, and Kurt Rothermel
Institute of Parallel and Distributed Systems

Universitätsstr. 38, Stuttgart, Germany
schilling, koldehofe, rothermel@ipvs.uni-stuttgart.de

Abstract—Complex Event Processing (CEP) is of increasing
importance in many industrial applications to integrate a huge
number of events in a scalable manner. A core challenge towards
scalable CEP is to efficiently distribute the rules which define
how correlations between events can be detected within an
event processing network. Although significant progress has been
made recently, there remains a fundamental gap in supporting
requirements that emerge from deploying CEP over heteroge-
neous and independent processing environments. Heterogeneity
typically imposes many constraints on the placement of rules,
which increases the complexity of the underlying optimization
problem and cannot be handled efficiently by existing solutions.

In this paper we examine the distributed placement, migration
and optimization of rules in the context of the constraint opti-
mization problem to minimize network usage. We propose and
evaluate a placement algorithm that efficiently finds valid solu-
tions in scenarios where the solution space is heavily restricted by
constraints. The algorithm operates in a decentralized way and is
adaptive to dynamic changes of processing nodes, rules, and load
characteristics of the event processing network. The proposed
rule migration policies resolve invalid placements quickly and
thus ensure high availability. The evaluations show that the
proposed algorithm is able to efficiently find near optimum
solutions within heavy constraint-driven network conditions.

Index Terms—Heterogeneous Systems and Networks, Dis-
tributed Complex Event Processing, Optimization, Placement

I. INTRODUCTION

Sensor devices, web services, business processes or other
event sources are creating enormous and increasing numbers
of event messages every day. Complex Event Processing (CEP)
detects situations based on these events by correlating event
messages and thus composes higher value information (cf. [5],
[2], [11]). This correlation process is described by CEP users
as a set of correlation rules. Many classical event processing
solutions, which detect situations on a single engine, are reach-
ing their limits as both the computation and communication
costs are increasing alongside. As a result, a significant amount
of research has been conducted in the field of distributed CEP.
Here, the detection of a situation is performed by multiple
nodes (and engines) within the network. The distribution of
event correlation enables scalable applications and can also
result in a more efficient CEP: for example by moving the
functionality closer to the sources, the network usage of detect-
ing situations can be improved. Furthermore, by distributing
the same functionality among several nodes, CEP applications
become more available and reliable.

The distribution of multiple rules within the network of
correlation engines (further referred to as CEP system) raises
the question of placement. Consider a large power grid, where
several participants (e.g. energy producers, brokers, customers
- further referred to as domains) are producing, trading or
consuming energy. In this scenario, a set of rules is defined to
detect energy load violations, regulate energy consumption or
steering the energy flow. The challenge is to find a placement
of the rules, such that CEP is efficient in respect to the
applications optimization goals, such as network usage.

The placement problem in event processing systems has
been tackled by many researchers recently (cf. [6], [11], [12]).
However, so far, distributed CEP is characterized by relying
on a homogeneous system, where all nodes have the same
capabilities and no restrictions are imposed on the placement.
Handling the placement problem in heterogeneous systems,
where it is often not possible to place rules on certain nodes
due to constraints, is not considered in existing work. As
a result, todays placement solutions are not applicable in
scenarios with many constraints.

Certainly, such constraints are of high relevance for real
world deployments. CEP may comprise several heterogeneous
CEP systems hosted with differing configurations at various
domains (cf. [3]). As a consequence, the placement of rules
is often restricted to a small subset of nodes, that have the
corresponding capabilities and permissions. Moreover, CEP
systems require a high level of decentralization since a node
that gains global knowledge might be a security and scalability
problem in heterogeneous networks. Furthermore, placement
has to be adaptive, due to the dynamic behavior of CEP
applications that stems from load variations, changes in the
availability of correlation nodes as well as to changes in the
rule deployment.

In this paper, we present a distributed solution to find and
optimize valid placements in constraint-heavy distributed CEP
systems, that has been implemented and tested within the
DHEP framework [4]. Our optimization goal is to minimize
the network usage of the running system. Our placement &
optimization algorithm reacts dynamically on changes. As a
result, the system can adapt autonomously to its environment.
Our evaluations show that the algorithm finds near optimal
placements even in very restrictive scenarios.

The rest of this paper is structured as follows. In Section
II, we detail the challenges of placement in heterogeneous

schillbn
Textfeld
Published in Proceedings of the 13th International Conference on High Performance and Communications (HPCC), September 2-4, 2011, Banff, Canada.
© IEEE 2011
http://dx.doi.org/10.1109/HPCC.2011.53

CEP systems by means of the energy & utility example before
presenting the system model and formal problem statement. In
Section III related work is discussed. We present our approach
in Section IV, which will be evaluated in Section V. Finally,
we will have an outlook and conclusion in Section VI.

II. PROBLEM DESCRIPTION

A. Motivation

Constraints and Resources: The high number of collabora-
tions among business partners in todays world results in a co-
operative nature of the involved companies business processes.
As an effect, the processing and execution of business events is
performed in heterogeneous environments, where nodes have
different characteristics, resources, domains and processing
capabilities. This imposes two main challenges that need to
be tackled by placement solutions: a constraint-based handling
of the functionality as well as the inclusion of resource
usage. We exemplary show this with an energy and utilities
scenario. Here, various energy providers and brokers as well
as network hosts make use of event processing technology
to enhance the efficiency of large power grids(c.f. Figure 1).
They do so by exchanging information about energy provision
and consumption within the system. The event processing is
typically organized hierarchically among several substations,
where information is processed and reacted on with the help
of correlation engines. Smart meters are placed in consumers
households and act as event sources and processing nodes at
the same time: they emit events about current consumption on
the one hand but also to steer energy consumption within the
household on the other (e.g. based on energy prices).

Fig. 1. Participants in an energy network

It can be seen, that different situations are detected at
various domains (e.g. Broker, Consumer) within a very large
system. Thus, event correlation is favored to be deployed in
a distributed way. However, multiple constraints increase the
complexity of the placement process:

(i) Heterogeneous Engines: The functionality needed at
different levels within the power grid is of different com-
plexity: while low-footprint event processing is sufficient in
some places (e.g. filtering at power meters), major substations
require more expressive processing capabilities. Therefore,
different kinds of processing engines are installed within a
large power grid (e.g. small engines at power meters, large

powerful engines at substations). As a result, rules are not
able to be processed at every node.

(ii) Domain Restrictions: Due to many participants in a large
scale power grid (e.g. different energy providers), security be-
comes a major issue (e.g. confidentiality). Domain restrictions
preclude the placement of rules on many nodes.

(iii) Heterogeneous Resources: The nodes within the net-
work have differing resources. While energy providers are
likely to possess large scaled dedicated servers with high-
end computing capabilities, small power meter units at the
customer are equipped with less memory and cpu power.

A placement algorithm which targets at finding solutions for
this constraint-heavy scenario must be able to deal with these
restrictions. This fact makes most placement algorithms used
in CEP systems inappropriate, as they typically try to find the
best placement (concerning a specific optimization goal) in the
whole search space (cf. [12], [6], [16]), e.g. by introducing a
latency space. However, constraint heavy applications typically
require the search space to be pruned to a small subset of
allowed placements. Consequently, a placement algorithm has
to be able to search for solutions in the (most likely) small
subset of the available nodes, depending on the given rule
restrictions. Furthermore, since the solution space usually is
very small, the algorithm should be complete, such that it can
be guaranteed to find a solution if there exists one.

Moreover, most current placement algorithms do not con-
sider the actual resource usage of rules on the nodes. However,
the presence of a wide range of different machines with
different capabilities, processing power or memory makes the
introduction of resource usage necessary (cf. [4]). Nodes can
be overloaded when their rules are causing a lot of computa-
tional effort, resulting in falsified and unreliable results. To the
best of our knowledge, no algorithm exists that both considers
constraints and resource consumption at the same time.

Dynamics: Despite handling constraints and resource re-
quirements, an placement algorithm has to respect the dynamic
behavior of CEP in heterogeneous environments:

(i) Rule Set: Although adding new rules is the typical
example for dynamic behavior in CEP systems it is, in fact,
rather uncommon. The reason is that CEP systems are usually
not changed frequently in terms of rules. Once established, the
set of rules is meant to run for a longer period and is going
to report specific situations whenever they occur. Changes to
the rule set often result from changes in the business logic of
a company, for example when use cases are added or changed
within a software. However, whenever a new rule is added, a
quick deployment is desired.

(ii) Network: Resource overload on a node comes into
account more often. It is usually a consequence of changing
event rates, which result in a higher resource consumption of
the affected rule(s). Once the available resources at a node get
scarce, migration of one or more rules is necessary. Since rule
sets are often based on real world events, the event rates are
heavily dependent on uncontrollable sources and can therefore
often not be predicted reliably.

As a consequence of the discussed dynamics we have to

be able to react on changing conditions properly: i) solutions
have to be found quickly to minimize the time a system is in
an invalid state, i.e. a node is overloaded, or a rule restriction
is not fulfilled. ii) due to changes in the system (which do not
lead to an invalid state) a rather good solution may turn into
a bad one over time. Consequently, the system needs to adapt
itself in order to enhance the deployment during runtime.

B. System Model

We consider a set of interconnected and cooperating corre-
lation nodes N = {n1, n2, ...} that are connected via a P2P
network and together host a user-specified CEP application.
A CEP application is defined by a set of interdependent rules
denoted by R and event streams E. Each rule r ∈ R operates
on a set of incoming event streams ein(r) ∈ E and creates
outgoing event streams eout(r). A simple example of a typical
CEP rule in our energy grid scenario is shown in Listing
1. Here, powerConsumption events from different households
are aggregated and an AggregatedPowerConsumption event is
forwarded for further processing.

rule AggregateCurrentConsumption
WHEN SEQ(pc1, pc2 : PowerConsumption)
IF pc1.meter 6= pc2.meter
RESTRICT engine.type = amit
EMIT AggregatedPowerConsumption

(amount = pc1.amount+pc2.amount)
Listing 1. Example of a Simple Aggregation Rule

Both rules and nodes are dynamic: users may add, change and
remove rules and nodes may join and leave the CEP system
during runtime.

Rules can depend on each other. In particular, the outgoing
event stream of a rule, eout(ri), can serve as input to another
rule, ein(rj). Sticking with the given example, the Aggre-
gatedPowerConsumption events are used in another rule that
determines energy overload within a sub network of the power
grid. These interdependencies are described in a (directed,
acyclic) rule graph G = (R,E), where we create an edge
ei,j = (ri, rj) ∈ E for every event stream between rules.

The set of nodes N can be heterogeneous with respect to the
components and resources it provides. Resources, for example
CPU or memory, are finite on every node and consumed by the
rules placed on it. A component is defined as a non-resource
attribute of a node that might be required by a rule: for
example a specific CEP engine, or membership in a domain.
Every node nj has p components χ(nj) = {cj,1, .., cj,p} and
q resources γ(nj) = {gj,1, .., gj,q}. An exceptional case of
nodes are the sources and targets of events, that are not part
of the processing network (i.e. they have no engine equipped
and are therefore not capable of correlating events).
Rules can have different requirements with respect to resources
and components. Every rule ri has k component requirements
α(ri) = {ai,1, ..., ai,k} (which we call constraints in the fol-
lowing) and m resource requirements β(ri) = [bi,1, ..., bi,m].
Additionally, we define the resource usage of an event stream
ei,j as δ(ei,j) = [di,j,1, ..., di,j,s]. The distinction between
resource usage of event streams and nodes is necessary, since

the resource usage is heavily dependent on the incoming and
outgoing event rates (cf. [4]).

Domain B

Domain A

n1 n2

n3

n4

r r

r

r

Rule Set 1

r r

r r

Rule Set 2

Components:

engine = amit

domain = B

Resources:

memory = 4GB

Constraints:

engine = amit

domain = A

Res. Req.:
memory = 300MB

Fig. 2. Elements of the System Model

Within this system, we now try to find a valid placement
of rules on nodes with respect to constraints and resource
requirements (cf. Figure 2). Therefore, we define the boolean
matching function µ(a, c) : α × χ → {true, false}, which
return true if the constraint ai,k) is included in the set of
components χ(nj). A valid placement for a rule is given, if
all constraints are fulfilled, i.e. ∀a∀c : µ(a, c) = true.

C. Problem Statement

Based on the given system model, we first formalize the
general placement problem in distributed heterogeneous event
processing networks (DHEP) and then state the optimization
problem of minimizing network usage.

Definition 1 (The placement problem in DHEP): Given an
event processing network N consisting of j nodes n and a
set of i rules r ∈ R that form a rule graph G = (R,E), find
a placement P with the mapping function π(r) = n, which
assigns a rule to a node, such that:

∀r : µ(α(r), χ(π(r))) (1)

∀n,∀c :
∑

π(r)=n

(bc) +
∑

π(ri)=n∨π(rj)=n

(di,j,c) ≤ gc (2)

whereas δ(ei,j) = 0, if π(ri) = π(rj)
Condition 1 ensures, that the constraints of the placed rules are
fulfilled. Condition 2 ensures that the resource usages of the
rules and event streams do not exceed the node and network
resources. This means, that for all rules placed on a node n and
all resources c the sum of these rules’ resource requirements
as well as the incoming and outgoing event streams of these
rules is less or equal to the number of provided resources.

The formulated placement problem can be seen as a con-
straint satisfaction problem (CSP), where the rules constitute
variables and the rule requirements are constraints that have
to be matched by the machines. Based on this CSP, we can
formulate the constraint optimization problem of minimizing
network usage. Network usage is the bandwidth-delay product,
which denotes the load that is on the network at a certain point
in time. Hence, we formally define the network usage σ of an
event stream as

σ(ei,j) = delay(π(ri), π(rj))× dataRate(π(ri), π(rj)) (3)

Fig. 3. Reduction to Bin Packing

Furthermore, we define the placement cost φ of a rule on
a node as the sum of network usage of its incoming event
streams, i.e. its incoming edges in the rule graph:

φ(r, n) =
∑
ei∈ein

σ(ei) (4)

With Equation 3 and 4, we define our goal:
Definition 2 (Minimizing Network Usage in DHEP):

Given a cost function φ that determines the placement cost
of a rule r on a node n. If P = {P1, ..., Pk} is the set of all
possible placements solving the placement problem in DHEP
(c.f. Definition 1) and πPi

(r) = n is the assignent of rule r
to node n done by Pi, Pi ∈ P is optimal iff for all Pj ∈ P :∑

Rules

(
φ(r, n)πPi

(r)=n

)
≤
∑
Rules

(
φ(r, n)πPj

(r)=n

)
(5)

Note that by modeling also sources and targets in the rule
graph and including only the incoming event streams, every
edge is considered exactly once. Hence, a placement is optimal
if it has the lowest placement costs in total. As a result, the
communication load generated by the rule graph is minimized.
Furthermore we would like to stress that the definition of our
cost function could be easily extended with the resource usage
of the nodes, as it is demonstrated in [4]. That means, we
would not only consider the event traffic in the network, but
also within the nodes. This would change the optimization
goal to minimizing system usage.

Theorem 2.1: The placement problem in heterogeneous
systems is NP-hard.

Proof sketch: Figure 3 illustrates how the problem can be
reduced to Bin Packing. Here, nodes are mapped to bins, while
rules are mapped to the values that going to be packed in the
bins. The size of the bins is chosen by the free node resources,
while the rules’ resource consumption determines the values.
Hence, if we could find an algorithm that solves the placement
problem in deterministic polynomial time, the algorithm would
also give a solution to pack the bins. �

III. RELATED WORK

Placement in DCEP: With the increasing importance of
distributed CEP, researchers have also tackled the placement of
CEP functionality within a distributed CEP network. However,
the existing solutions are unable to deal with heavy constraint

settings, where only a small subset of nodes is appropriate
for the placement of each rule. For example, [12] or [6]
describe systems that enable distributed event composition
where migration of rules is supported. However, the systems
do not include any constraint respective behavior. Basically,
placement is not restricted to a subset of nodes and also
resource usage is no explicit variable. Other approaches, like
[13] and [16] solve the multi-operator placement problem by
means of spring relaxation techniques. A latency space is
created in order to efficiently search for the best placement
within the search space. However, it is not possible to restrict
the search space based on constraints other than latency.

However, the CEP community has identified the need for
placement algorithms that can handle rule restrictions. This is
first mentioned in [7], where the authors present a description
language where users can attach restrictions to rule definitions.

(Distributed) Constraint Optimization: Algorithms that do
handle placement problems in high constraint settings can be
found within the constraint optimization community where a
lot of research has been done in the last decades (c.f. [8], [10]).
This resulted in many distributed algorithms, that try to be both
efficient in terms of completeness and speed (c.f. [9], [17]).
However, these algorithms are designed for static problems,
making it unefficent to deploy them in a dynamically changing
distributed system like ours. For example, Branch-and-Bound
optimizations [15], [14] have found a major consideration in
the field of DCOP. While these methods are able to provide
quality guarantees, they are mostly slow as their backtracking
based algorithm relies on synchronous communication. Also,
they are not able to optimize previous solutions. Instead, when
changes to the system are made, the algorithms start all over
again to find a new solution, which makes them unacceptable
for our problem.

IV. APPROACH

Finding a close to optimal solution to the placement problem
is expected to take significant processing time. This can lead to
long phases in which the CEP system is inactive and events are
unavailable. In order to ensure a high availability of the CEP
system, our approach makes combined use of two algorithms.
While the system is in an invalid state the algorithm aims to
determine a valid initial placement for which all constraints
are satisfied and no node suffers from overload. Here, we make
use of heuristics that aim towards finding a valid solution early,
yet still favor a better network utilization to get already good
solutions considering our optimization goal. Once the initial
solution is deployed, an optimization phase is started which
aims at minimizing the network utilization.

During runtime, all correlation nodes operate without central
coordination. Continuously, a node checks for all of its rules
whether the constraints are satisfied. To ensure the availability
of the system during optimization, we perform logical mi-
grations: Every node creates an update list where it stores
potential migrations for the rule it wants to get optimized.
Actual changes to the system are made in a commit phase,
where updates with respect to a rule deployment are executed.

The commit phase is entered, when the optimization algorithm
has stopped. During the commit phase, every node that is
participating in the running optimization deploys the new rules
that are assigned to it.

Before presenting the details of the initial placement algo-
rithm and the optimization phase in Section IV-B and IV-C, we
first concentrate in Section IV-A on the common parts shared
by the two algorithms.

A. Algorithm Basics

Our placement algorithm needs to react to the dynamics
which stem from inserting new rules into the system or
changing event rates. We therefore make use of a monitoring
component at the node. If the changes result in an invalid
placement, the affected node initiates a reconfiguration (i.e.
initial placement). This may trigger subsequent migrations of
correlation rules, if necessary, to find a valid placement. If the
placement stays valid, the continuously running optimization
algorithm will eventually search for new configurations that
would result in a better cost. During this process, nodes go
into a busy state while searching for alternative placements
to prevent inconsistencies caused by parallelism. The generic
course of action performed by a placement algorithm is char-
acterized briefly in Algorithm 1. Both the initial placement
Algorithm 1 Generic Placement Algorithm

procedure MONITORCONSISTENCY
while true do

if (invalidState) then
RECONFIGURE(r)

end if
ENTEROPTIMIZATIONSTATE()

end while
end procedure

Algorithm 2 Standard Routine of Placement Algorithms
procedure FINDPLACEMENT(r)

IDENTIFY VALID CANDIDATE NODES(r)
RECEIVE CALCULATED DEPLOYMENT COSTS()
CHOOSE TARGET NODE()
MIGRATE(r)

end procedure

and the optimization of a rule run through several typical steps
when they are started. The steps are sketched in procedure
FindPlacement in Algorithm 2. After the placement algorithms
are started for a rule, we define our solution space by searching
for nodes that fulfill the constraints, i.e. are in principle capable
of hosting the rule. Then, each node checks whether it has
enough free resources to deploy the rule and locally calculates
the placement costs based on the expected network utilization
(c.f. Section II-B). The result is sent back to the requesting
node. Finally, among the replies a new node is chosen and
the rule is migrated. Note that after migrating a rule, other
subsequent migrations might be necessary to reach a valid
state. Thus, we always perform these steps logically: the
running system is only affected in the commit phase, where
the changes are accepted and finally deployed on the nodes.

Hence, optimization can run in parallel and is not continuously
interrupting the CEP process.

Each of these typical steps will now be described in detail.
However, although both the initial placement and the opti-
mization algorithm follow this concept, they differ after the
identification of valid candidate nodes. Therefore, we describe
both mechanisms separately in Section IV-B and IV-C.

Identifying candidate Nodes: Candidate nodes are potential
targets for a rule that needs to be migrated. Determining
candidate nodes requires to deal with two difficulties: i)
candidates must be determined fast and at low communication
cost even though there is no central knowledge; ii) due to
the presence of constraints the number of candidate nodes is
typically restricted to a small subset of all available nodes.
To overcome these difficulties, our candidate selection uses a
content-based publish/subscribe middleware that is deployed
as part of the CEP system (cf. [1]). Target nodes are de-
termined by publishing the rule by means of its constraints.
The key is, that each node subscribes to the constraints it is
capable to suffice (cf. Figure 4). Currently, we specify the
needed engine type, domain and connections to database as
constraints.

The course of finding candidate nodes is depicted in Fig-
ure 4. When a rule must be placed within the system, the
initiating node (n4) publishes a deployment request with the
rule’s constraints. Publish/subscribe delivers the message to
all subscribers: the nodes that can potentially deploy the rule.
The deployment request contains two pieces of information:
the rule and an identifier. The rule is essential for the cost
calculation, the id is needed for handling parallelism in the
system, since multiple requests can occur simultaneously.

Pub/Sub

System

n1

n2

n3

Constraints:

A

Constraints:

B

Constraints:

A,B

(i)

Pub/Sub

System

n1

n2

n3

(ii)

n4
publish(r)

Constraints:

A

response

response

Fig. 4. Subscribing to Rule Constraints

B. Initial Placement

After receiving a placement request, every node first checks
whether it can deploy the rule. Therefore, a node compares
the estimated rule requirements with its own free resources.
Basically there are two options: i) the node can deploy the
rule; ii) the node cannot deploy the rule unless one or more
rules are migrated. If the node can deploy the rule he sends
an answer containing the cost for the rule deployment(i.e. the
network utilization it would cause). However, when migration
of other rules is necessary, the operation of placing a rule
becomes complex. The reason is that these migrated rules
might cause high overall costs on other nodes themselves after
moving them, hence compensating for a good placement of the
originally placed rule. Furthermore, the migrated rules might
cause even more migrations subsequently.

n1

n2

n3

placementRequest(r,0)
n4

not enough

resources!

note enough

resources!

ok!

result(cost)

(a) Priority0: Only Nodes with free Resources reply

n1

n2

n3

placementRequest(r,1)
n4

ok!

no rule to

migrate!

result(cost)

ignore

request

(b) Priority1: Nodes with easy migratable rules reply

n1

n2

n3

placementRequest(r,2)
n4

ok!

ok!

result(cost)

ok!
result(cost)

result(cost)

(c) Priority2: All nodes reply

Fig. 5. Requesting Placements with the 3-Way Heuristic

As a result, we use a 3-way heuristic which i) aims at re-
ducing the number of migrations ii) is able to find placements
with low costs and iii) guarantees to find a solution if there
exists one. In our approach every request is associated with
a priority. The larger the priority value the more nodes will
answer a placement request. The algorithm uses three priority
levels, and its behavior is sketched in Figure 5.

At priority level 0, only nodes that can directly deploy
the rule reply to the deployment request, i.e. they fulfill all
constraints and have sufficient resources. The reply contains
the result of the cost function. In our example, the requesting
node n1 waits for the results, and choses the node which
results in the best placement cost, i.e. the lowest network
utilization value. If no node can be found that can directly
place the rule, the request message is assigned priority level
1. Now, every node replies that can deploy the rule after
migrating one or multiple other rules whose migration cost are
below the cost of the rule. The migration cost is used in order
to prevent rules from migrating that require a lot of migration
effort. With this cost, we are able to order rules based on their
migration effort. It is a fixed value assigned to each rule when
it is defined and is typically defined by the amount of state
information that has to be transferred in a migration process.
Finally, priority level 2 is assigned to a request message if
priority level 0 and priority level 1 messages did not succeed
in finding a valid placement. Any node receiving a request
message of priority 2 is answering the request, even if the
migration cost of the already deployed rules is higher than that
of the new rule. If there is no valid placement after priority 2
is reached, an error is sent to the node initiating the migration.

Replies to a deployment request are sorted by the initiator
according to the deployment cost. For example, in Figure 5 the
initial placement leads to a result list of n2, n4, n3. Based on
the result list, the requesting node sends a placement request
to place the rule to the best node in the list. The recursive
component of the algorithm comes into account at this point:
if the node receiving the placement request can not deploy the
rule without migrating one of its other rules (i.e. priority level
1 or higher), the placement process is initiated again. This
procedure is depicted in Figure 6. In (a) Node n2 is chosen to
deploy rule rn. However it is forced to migrate rules in order
to do so. Therefore it creates a migration list containing the
rules ordered by the migration cost. The node then tries to
migrate rules based on the list, here r1 and r2. For both rules,
a new placement procedure is initiated by n2 subsequently in

(b). If a placement fails, the next node in the result list is
chosen (cf. r2 in (b) and (c)). As can be seen in (c), node n3
may also be forced to migrate one of its rules in order to find a
valid placement. After a better valid placement is found, and
the algorithm finally terminates, the nodes can update their
state and deploy the new rules(d).

Backtracking: If a placement attempt failed and an error
message is sent to the node initiating the placement request,
the changes made during the placement attempt have to be
revoked. Therefore, he sends a rollback message to every
node participating in the placement attempt. The nodes can be
identified by a tracepath-list held on the nodes. The rollback
mechanism equates backtracking, i.e. jumping back to a valid
state if an entered path does not lead to a solution.

Termination: To ensure termination of our algorithm, we
have to avoid infinite cycles, which might occur in priority
level 2, as well as deadlocks, which might occur when two
independent placement algorithms are running in parallel. To
avoid cycles, we add a rulePath variable to the placement
request message. Every node receiving the request updates this
variable by adding its own id. A cycle can now be detected
whenever an identical sub-path in the rulePath is repeated.
If a cycle is detected, we backtrack the request to the last
valid state before entering the cycle. To avoid deadlocks,
the requester waits for a random time until requesting again
whenever a requested node is busy. If the node is still blocked,
it has to cancel its running request if it has a lower id than
the new request.

Properties: In this Section we discuss and prove properties
of the algorithm. Lemma 4.1 states, that the algorithm is
complete. Lemma 4.2 states, that the algorithm terminates fast
if there exists a node that allows a valid placement and has
enough resources available.

Lemma 4.1 (Completeness): Assume a stable system and
the existence of a solution to the the placement problem in
DHEP (c.f. Section II-C), where network conditions, nodes
and rules do not change. The initial placement algorithm will
eventually find a solution.
Proof sketch: Given the worst case in which finding a solution
takes several migration steps. The placement algorithm will
initiate a placement request at priority 2 and start backtracking
over all possible placements. In particular it will find any
existing solution. �

Lemma 4.2 (Fast termination): Assume a stable system
state. If there exists both an invalid rule placement and a node

with enough free resources to satisfy the constraints of this
rule. A valid placement for the rule is found after the first
iteration step.
Proof sketch: In the first iteration step, an event is published
at priority level 0. The event contains the required resource
types (as attributes). In a stable state all correlation nodes have
subscribed to their resource types they are able to provide.
Consequently, any node capable of satisfying the constraints
of the invalidated rule will respond to the event and eventually
deploy the rule. �

Further remark: If such a node does not exist, the algorithm
will always need more than one iteration step, since (multiple)
migrations are done. The time spent on finding a solution is
heavily dependent on the length of the search path, and there-
fore on the number of migrations done. While the different
priority levels are used to keep the search path as short as
possible, the highest priority results in a lot of communication.
Yet it is required for completeness, as any node is eventually
considered in the placement process.

C. Optimization Phase

The previously presented initial placement task is solving
the placement problem in heterogeneous environments, as it
guarantees to find a valid placement if such exists. To find
a near optimal solution, we optimize this initial placement
in the optimization phase described in the following. On
a time constant basis, every node tries to find alternative
placements for rules, calculates the cost difference of the new
placement and decides whether a migration should be initiated
(as depicted in Figure 6).

Relating to the challenges stated in Section II-A, the algo-
rithm for minimizing the network latency in a heterogeneous
event processing system needs to fulfill a couple of major
properties: i) decentralized coordination, and ii) avoid to be
stuck in local minima.

Decentralized coordination prevents us from maintaining
global knowledge and forces us to make decisions based
on local knowledge. This is especially problematic when we
determine the next rule that should be optimized, which should
ideally be the worst placed rule in the system. To always
choose the best result may lead to suboptimal solutions. The
reason is, that the solution is found greedily, without being
able to get back. As a consequence, the algorithm will run
into a local minimum and may miss better solutions.

We overcome this issue by letting the nodes optimize
their rules independently based on their local knowledge and
applying techniques of simulated annealing. Our optimization
algorithm is listed in Algorithm 3. After entering the opti-
mization phase, every node periodically starts the optimization
algorithm. At first, it chooses the worst placed rule that has not
been optimized so far, i.e. the rule with the best optimization
potential based on the node’s local knowledge. It does so by
comparing the cost of each rule with a best known system
cost parameter that is distributed within the system during
the optimization process. Thereafter, a migration probability

Algorithm 3 Pseudocode for the Optimization Algorithm
procedure INITLSA()

r ← CHOOSE RULE FROM NODE()
if SEARCHALTERNATIVEPLACEMENTS(r) then

diff ← CALCULATECOSTDIFF()
if MIGRATIONPROBAB(r) ≥ RAND[0; 1] then

if diff < 0 or e−
diff
T (n) ≥ RAND(0..1) then

UPDATENODES()
elseDISCARD()
end if

end if
end if

end procedure

is calculated which is determined by means of the current
placement and the improvement potential (c.f. Section 4.1).
The migration possibility increases with the improvement
potential. This value is used to add fuzziness in the process of
choosing the next rule that is going to be optimized. After a
rule has been selected, placement options are searched and the
best replying node is selected. The node is selected if either:
i) the new placement cost is lower or ii) a randomly calculated
number is higher than an acceptance function.

It can be seen, that the basic principle of optimizing
a current solution based on simulated annealing techniques
shares similarities to a distributed greedy optimization: i) every
node has limited knowledge that is based upon the tracePath
of a placement request; ii) after predefined intervals, every
node tries to find alternative placements for any of its rules.
However, there exist some differences which are motivated
by the major requirements to coordinate the optimization
decentrally as well as avoiding local minima.

Properties: The presented algorithm allows to find near best
solutions decentrally by adopting techniques from simulated
annealing in a decentralized network and avoiding to get stuck
in local minima. In the following, we present the algorithms
properties and discuss their correctness informally.

Property 4.1 (Improvement potential): The optimization
favors rules with a higher potential to improve the placement.

Discussion: as in classic simulated annealing, our optimization
algorithm does not always migrate the rule(s) when finding an
alternative solution. Instead, there exists a certain migration
probability P which is determined by means of the achieved
improvement and the best possible improvement ∆max. The
best possible improvement describes the maximum difference
between all rule’s worst and best placement. The migration
probability increases, when the achieved improvement is closer
to the best possible improvement. Formally, the probability is
defined as:

P (r) =
φ(r, ncurrent)− φ(r, nnew)

∆max
(6)

However, in a distributed system ∆max is unlikely to be
known, since each node would have to know every possible
placement. Thus, ∆max is estimated locally. It is determined

n2

n3

n4

n1

startPlacement(rn)

  n2

r4,r5

r6

r1,r2,r3

Migrationlist:

r1,r2,rn,r3

(a)

n2

n3

n4

r1
r4,r5

r6

r1,r2,rn,r3

Migrationlist:

r1,r2,rn,r3

1. startPlacement(r1)

  r3r4

2. startPlacement(r2)

  r4r3 r1 true

r2

false

(b)

n2

n3

n4

n1
r1,r4,r5

r6

r2,rn,r3

Migrationlist:

rn,r3
startPlacement(r2)

  n4n3

r2

true

r4 true

Migrationlist:

r4,r1,r2,r5
(i)

(ii)

true

(c)

n2

n3

n4

n1

update

r1,r2,r5

r4,r6

rn,r3

Migrationlist:

r1,r2,rn,r3

(d)
Fig. 6. Cost Calculation during Placement

by the maximum cost difference of all locally known rule
costs. During the optimization process, various rule requests
and replies reach the nodes and the values of ∆max on
each node adjust. In resource sparse systems, where many
migrations are performed, the nodes finally have almost equal
values for their local ∆max. With that, a similar behavior like
in the original simulated annealing algorithm is achieved, and
the rules with the highest improvement potential are more
likely to be chosen.

Property 4.2 (local minima): The optimization algorithm
can avoid getting stuck in local minima, given a non-zero
temperature value.
Discussion: as in classic simulated annealing, our optimization
algorithm accepts a worse placement with a certain probability.
This is done in order to be able to jump out of local minima,
that would hinder a greedy algorithm from improving further.
Therefore, we introduce an acceptance function that gives
the algorithm a chance to accept worse placements too (c.f.
Algorithm 3). The probability to accept a worse placement
is dependent on two factors: the difference diff between the
new solution and the current solution, as well as temperature
value T , which is calculated by a temperature function. The
probability to accept a worse placement increases with a
higher T and a small diff. During the optimization process,
the temperature function constantly reduces T to ensure the
termination of the optimization process. Therefore, as long as
T is non-zero, the algorithm may accept worse solutions and
can escape local minima.

Property 4.3 (Termination): The optimization algorithm
running at each node terminates, when one of two conditions
is met: i) an optimization run has been started for each (local)
rule or ii) a user-defined termination criteria is fulfilled.
Discussion: While the first condition ensures, that an opti-
mization run is finished after every rule has been considered,
the second condition is introduced in order to compensate a
probably long and unwanted runtime. Because no heuristic is
used to find quick solutions (as with the initial placement),
it can occur that the chosen path in the solution tree is
long. To overcome this problem, it is possible to add a user-
defined termination criteria, which may for example stop the
optimization run after a certain time or when the temperature
value is below a certain threshold. Furthermore, the same
mechanisms to avoid deadlocks and cycles are applied as
in the initial placement algorithm (c.f. Section IV-B). After

termination, the commit phase is started and the optimization
results are deployed (if changes should be made). Note, that
the optimization algorithm runs periodically, and there does
not exist a final termination.

V. EVALUATION

We implemented the presented approach within the DHEP
framework [4] which enables complex event processing among
heterogeneous nodes equipped with a variety of different
event processing engines. Furthermore, it is possible to define
restrictions on rules that need to be respected during the
placement process. For example, rules can be restricted to
run only in a specific domain, or require access to a specific
database. As a consequence, there exist various rules that
cannot be deployed on some of the nodes, but on others.
On this basis we implemented the presented energy utility
scenario from Section II-A. Here, powerConsumption events
serve as the input of the CEP system. These events are filtered
by (typically cheap and fast) different filter rules and aggre-
gated by aggregation rules to AggregatedPowerConsumption
events. Furthermore, more expensive sequence rules are used
to calculate overload and underload situations. To all rules
constraints were assigned concerning required engine types,
domains and the connection to some specific database. At the
same time, all our nodes are located in a domain, provide at
least one engine, and may be equipped with a certain database.

For evaluation purposes, the presented setup was changed
in size by adding additional rules and nodes. Furthermore,
by increasing or reducing the number of existing domains or
engines, the restrictiveness of a scenario could be changed.

Before discussing our evaluations in detail, we describe how
the placement optimization is behaving during runtime. We
show this by means of two variants of our approach: one with
a greedy behavior (further mentioned as greedy algorithm) and
one with a decreasing temperature value (further mentioned as
simulated annealing-based algorithm). A greedy algorithm is
achieved by only accepting better solutions, i.e. the tempera-
ture value is always 0. We compared to a centralized simulated
annealing algorithm which makes use of its global knowledge
to get better result with a higher probability.

We measured the overall placement quality after every
optimization step by aggregating the cost of all placed rules
(cf. Figure 7). Based on the result of the initial placement
algorithm, the three techniques find improvements over time.

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 10 20 30 40 50 60 70 80

P
la

ce
m

en
t Q

ua
lit

y

Found Solutions

Greedy
SA-based

Centralized
Optimum

Fig. 7. Optimization Improvements over Time

In order to compare the solution’s quality, we used a small
scenario (28 rules placed on 12 nodes) to be able to compute
the optimal solution. It can be seen, that the greedy optimiza-
tion gets better continuously while the other optimizations also
accept worse solutions with a certain probability. However, the
greedy algorithm found a worse placement, while the others
eventually get close to the optimum.

During long running applications, the behavior showed by
Figure 7 is recurring: If the system changes the current place-
ment gets worse (or even invalid). Consequently, the sytem
will be adapted and a new placement is calculated/optimized.

A. Comparing different constraint levels

We evaluated the differences of the algorithm variants under
varying different scenarios. We measured both the achieved
quality and the caused traffic in terms of messages sent. For
every scenario, we created multiple rule sets with varying
constraints and deployed them on a network of 15 nodes.
Exemplary we list the result of three evaluated variants in
Table 1. Scenario 1 is a restrictive one. In average, about 2-3
nodes are possible placements for each rule in this scenario
(~18%). In scenario 2 about 5 nodes can be used to place a
rule (~35%). Finally, we created a constraint heavy scenario
where only 1-2 nodes were able to place a rule (~10%).

Constraints: high medium very high

Algorithm Quality Msgs Quality Msgs Quality Msgs

Initial 997 9.2 877 13.1 1055 3.8
Greedy 923.8 17.2 777.8 29.8 1024.1 19.1
SA-based 867.4 24.8 769.6 34.5 1006.7 23.2
Optimum 789 - 721 - 949 -
Random 1158.3 9.2 1178.4 13.1 1219.3 13.1

Table 1. Optimization Results at different Scenarios

Table 1 lists the achieved algorithm quality and the mes-
sages sent for each migration in the different scenarios. That
means, for migrating a rule during the initial placement, an
average of 9.2 messages had been sent in scenario 1. It can be
observed, that reducing the constraints of a scenario leads to a
different result of the algorithms: On the one had, the overall
quality that can be achieved is better, since there are more
possibilities to find a better placement. On the other hand,
this leads to a higher number of messages that are processed
during the optimization process.

We can derive some important results. First, all optimiza-
tions resulted in more efficient placements. In our experiments
we could reach a relative (to the optimium) improvement of

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500 600

Q
ua

lit
y

Inserted Rules

random, not opt.
initial placement

optimized greedily
optimized

(a) Comparison in large Scenarios

 6600

 6800

 7000

 7200

 7400

 7600

 7800

 8000

 480 485 490 495 500 505 510 515 520 525

Q
ua

lit
y

Inserted Rules

initial placement
optimized greedily

optimized

(b) Late Stages

Fig. 8. Quality under growing rule sets

60-85% depending on the scenario. In scenario 2, the relative
improvement was even more distinct than in scenario 1.
However, as expected the initial placement’s runtime (331ms
in average) is significantly lower than for the subsequent
optimization phase (9.5s for SA-based). Hence, the differ-
entiation between the two algorithms is of high importance
for the availability of the system. Second, the optimization
algorithms achieve good results, compared to the best possible
placement. In scenario 2 we were able to reach a result of
6.3% worse than the calculated optimal solution. Third, the
more restrictive the scenarios are, the more they profit from
our distributed simulated annealing algorithm: less messages
are processed and the quality improvement is more promising.
In scenarios that have less constraints like scenario 2, it
is reasonable to favor a greedy algorithm. Here, the small
difference between the optimization results does not justify
the number of messages sent. The reason is, that the solution
space in these scenarios is more flat, and therefore many local
minima that are found by the greedy optimization are not much
worse than the global optimum.

Finally, it is important to state that the traffic caused by
our algorithm is negligible. Even in worst case scenarios,
where many nodes are involved in the placement process, we
processed in average 35 messages for migrating a rule. In
a system, which processes hundreds and thousands of event
messages per second, the communication overhead of the
placement algorithm is marginal.

B. Insertion of rules in large Scenarios

In our second evaluation, we created a network of 250
heterogeneous nodes. In this network, we continuously added
rules, such that the system had to adapt itself on a constant
basis. The rule input was created beforehand, to be able
to reproduce the evaluation. Each rule had a randomized
constraint. However, it was guaranteed that at least 10 different
nodes exist matching this constraint(at least 4%). We added
rules until our system was not able to place the next rule.

Figure 8(a) shows the achieved results of all algorithm
variants. Several outcomes are apparent: First, as expected,
the algorithms perform way better than a randomized rule
deployment. Second, in the early and mid stages, where the
system resources are sufficient, the difference between an
optimized placement and an initial placement based on our
3-way heuristic is insignificant. Because there are enough free
resources to place each rule directly on a good node without
having to migrate other rules. Differences occur, as soon as

 0

 5

 10

 15

 20

 25

 80 85 90 95 100

Im
pr

ov
em

en
t i

n
%

Average Resource Utilization

fast
mediocre

slow
greedy

(a) Improvement of initial Solution

 0

 50

 100

 150

 200

 250

 80 85 90 95 100

of

 M
ig

ra
tio

ns

Average Resource Utilization

fast
mediocre

slow
greedy

(b) Migrations per Optimization

Fig. 9. Behavior in restrictive Scenarios

some good nodes resources are used up and migrations might
be needed to achieve a valid placement. This behavior can
be seen in the late stages of the experiment, as depicted in
Figure 8(b). Based on our experiment, the use of the SA-
based algorithm promises the best solution, however seems to
be most efficient at scenarios where resources get scarce.

C. Concerning high Resource Requirements

In this evaluation we compare the behavior of our algorithm
based on three different temperature values: One fast con-
verging temperature value, causing the algorithm to behave
greedily soon; one slow converging temperature, allowing
the algorithm to avoid local minima for a longer time; and
one mediocre temperature in between. We compare the three
algorithms with the greedy algorithm under a changing amount
of available resources. By reducing the available resources,
the overall resource utilization is increasing. This means, we
increase the restrictiveness of the scenario stepwise, hence
reducing the solution space of the placement problem and
making it more difficult to find a valid placement.

Figure 9(a) shows the quality improvement achieved by
all four optimization strategies relative to the scenario re-
strictiveness. Figure 9(b) shows the number of migrations
needed during optimization to find the results relative to the
restrictiveness of the scenario. In the depicted evaluation, the
last valid placement could be found at an average resource
usage of 97%. There were no valid solutions after reducing
the resources even further.

Remarkably, it can be observed that finding valid solutions
for highly restrictive scenarios (i.e. where almost all resources
are consumed), results in more migrations (and therefore in
a higher runtime). The reason is, that for optimizing the
placement of a rule, it is more likely that another rule has to be
migrated subsequently. Hence, the optimization under extreme
resource requirements (>95%) resulted in a high number
of migrations. This is especially true with slow converging
temperature values, where additional migrations are performed
due to accepting worse placements with a higher probability.
This behavior can also be observed on other scenarios. As
a consequence, we conclude: i) independent of the resource
conditions on the nodes there exists a tradeoff between the
effort one is willing to put into optimizing the solution, and
the quality of the result he will get; ii) Under extreme condi-
tions, where the whole systems suffers from extreme resource
consumptions, our optimization strategies may require many
migrations to eventually find valid solutions. This will highly

increase the runtime of the algorithms. Here, we propose to
prefer a greedy optimization to keep the runtime acceptable.
However, we believe that these extreme conditions are rather
unusual and should not happen regularly.

VI. CONCLUSION

This paper has addressed the placement of rules in heteroge-
neous event processing systems where it is important to cope
efficiently with many constraints. The algorithm can adapt to
dynamics that stem from load variations as well as to changes
in the rule deployment. The analysis and evaluations show
that the approach is particular beneficial in heavy constraint
settings. Here, it finds near optimal placements with low
cost by efficiently restricting the search space of possible
placements. Furthermore, the separation in two phases – the
initial placement phase and the subsequent optimization phase
– contributes to a fast operation of the event processing
which is crucial in the practical operation of event processing
networks. In our evaluations this was true until we reached at
an average resource consumption of ~95%. Future work will
concentrate on the selection of the temperature function and a
more efficient use of publish/subscribe to significantly reduce
the communication cost in low constraint scenarios.

ACKNOWLEDGEMENT

This work has been supported by the Baden-Württemberg
Stiftung as part of the ”CEP in the Large” project.

REFERENCES

[1] A. Tariq et al. Dynamic publish/subscribe to meet subscriber-defined
delay and bandwidth constraints. In Proc of the Int. Conf. on Parallel
Computing (EURO-PAR), 2010.

[2] A. Adi and O. Etzion. Amit - the situation manager. The VLDB Journal,
13(2), 2004.

[3] B. Schilling et al. Event correlation in heterogeneous environments.
Information Technology, 5, 2009.

[4] B. Schilling et al. Distributed heterogeneous event processing: Enhanc-
ing scalability and interoperability of cep in an industrial context. In
Proc. of the 4th Int. Conf. on Distributed Event-Based Systems, 2010.

[5] S. Chakravarthy and D. Mishra. Snoop: an expressive event specification
language for active databases. Data Knowl. Eng., 14(1), 1994.

[6] E. Fidler. PADRES: A Distributed Content-Based Publish/Subscribe
System. PhD thesis, University of Toronto, 2006.

[7] G. Koch et al. Cordies: Expressive event correlation in distributed
systems. In Proc. of Conf. on Distributed Event-Based Systems, 2010.

[8] F. Glover and M. Laguna. Tabu search. Kluwer Academic, 1997.
[9] K. Krishna et al. Distributed simulated annealing algorithms for job

shop scheduling. Systems, Man and Cybernetics, IEEE Transactions,
25:1102–1109, 1995.

[10] S. Kirkpatrick, C. G. Jr, and M. Vecchi. Optimization by simulated
annealing. SCIENCE, 220:671–680, 1983.

[11] G. Li and H.-A. Jacobsen. Composite subscriptions in content-based
publish/subscribe systems. In Proc of the Int. Middleware Conf., 2005.

[12] P. Pietzuch et al. A framework for event composition in distributed
systems. In Proc. of the 4th Int. Conf. on Middleware (MW’03), 2003.

[13] P. Pietzuch et al. Network-aware operator placement for stream-
processing systems. In Proc. of the Conf. on Data Engineering, 2006.

[14] P.J. Modi et al. Adopt: asynchronous distributed constraint optimization
with quality guarantees. Artif. Intell., 2005.

[15] R. Ezzahir et al. Dynamic backtracking for distributed constraint
optimization. In Proc. of EVAI, 2008.

[16] S. Rizou et al. Solving the multi-operator placement problem in large-
scale operator networks. In Proc. of 19th Int. Conf. on Comp. Comm.
Networks, 2010.

[17] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review. Autonomous Agents and MA Systems, 3(2), 2000.

