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Abstract—Many application classes such as monitoring ap-
plications, involve processing a massive amount of data from
a possibly huge number of data sources. Complex Event
Processing (CEP) has evolved as the paradigm of choice to
determine meaningful situations (complex events) by perform-
ing stepwise correlation over event streams. To keep up with
the high scalability demands of growing input streams, recent
approaches distribute event correlation over several correlation
nodes. However, already a failure of a single correlation node
impacts the correctness of the final correlation result. In this
paper, we illustrate the importance of a strong reliability
semantics for CEP in the context of a monitoring application
in a distributed production environment. Strong reliability
ensures each complex event is detected and delivered exactly
once to each application entity, and cannot be guaranteed by
the naive application of established replication principles. We
present a replication scheme which ensures strong reliability
in an asynchronous system model and can be applied to an
arbitrary distributed CEP system. The algorithm tolerates f
simultaneous failures by introducing f additional replicas for
each correlation node. We prove correctness as well as evaluate
the overhead introduced by the algorithm. Results show, that
the overhead scales linearly with the number of deployed
replicas and the node failure rate.

Keywords-failure recovery; replication; reliability; complex
event processing; monitoring

I. INTRODUCTION

Monitoring applications, e. g. in the domain of real-time
production monitoring, have to process huge amounts of
information and send alerts or trigger some action if some-
thing noteworthy happens. Usually, information is provided
in a steady stream of separate events which are detected by
several sensors. One part of a monitoring application’s task is
to send alerts if some important information is filtered from
the event stream, as for example when the production rate
for an assembled part changes significantly. Additionally, the
application can detect and infer more complex situations
from the information provided by different sensors, for
example how a limited storage space should be utilized in
order to keep production cost low. This way, alerts can be
sent to the facility’s management and appropriate actions
can be taken.

Using a CEP system, detected situations can again be
combined to derive even more complex situations, intro-

ducing new levels of abstraction. Therefore, larger streams
of information can be used by different applications with
different information needs. Distributed CEP systems [1]-
[4] promise significant improvement over the traditional
centralized approaches (e. g. [5]-[7]) in terms of scalability.
Nevertheless, in the field of monitoring systems not only
scalable but also reliable systems are needed.

However, up to now providing reliability has not received
a lot of attention in the area of distributed CEP. In detail,
applications are usually required to be available and provide
correct results even if network nodes fail, as they may be
responsible for huge amounts of money within a company
or an extremely valuable asset in the field of surveillance.
Even a single event that was not received by the user but
did occur (false negative) or that was received but did
not occur (false positive) can result in huge unnecessary
cost or damage. If duplicate events are not filtered during
intermediate processing, false positives can arise. Therefore,
the context of monitoring applications needs a distributed
complex event processing system that offers not only high
availability but also prevents false positives, false negatives,
and processing of duplicate events.

While replication is a well-established concept to increase
availability of individual functionality, it does alone not meet
the requirements for strong reliable distributed CEP. Using
a standard replication scheme in this context creates false
positives, false negatives and duplicates. Existing approaches
from other stream processing systems are not readily ap-
plicable, as they require using special operators or adding
sophisticated methods to extract local state.

In this paper, we present an approach that uses active
replication to ensure good responsiveness for reacting to fail-
ures in the event correlation network. As a main contribution,
we propose an algorithm that coordinates the replicas for
each processing node. We prove that the algorithm ensures a
strong reliability semantics in the presence of node failures.
The algorithm avoids the large overhead for the synchro-
nization of the replicas of traditional replication schemes
which grow quadratically in the number of disseminated
event messages. By adding only a small additional delay, our
performance evaluation show that the algorithm introduces
only a linear overhead. The event processing model used
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in this paper matches the requirement to many existing
distributed CEP systems and can therefore be transferred
easily to enable monitoring applications with high scalability
and strong reliability requirements.

The remainder of this paper is structured as follows:
Section 1II stresses the need for a strong reliability semantics
and shows a motivating example. Section VII covers related
work. A system model and formalization of a CEP system
is given in Section III. We define the problem of a strong
reliability semantics formally in Section IV. We describe our
approach, show the algorithm and prove its correctness in
Section V. Results of performance evaluation are presented
in Section VI. Section VIII concludes this paper and deals
with future work.

II. MOTIVATION

Consider a distributed manufacturing process for a com-
pany that produces a complex product which is assembled
from several parts, as illustrated in Figure 1. Each of these
parts is constructed at a separate facility. For each of the
production facilities exists a local management. A global
management oversees the whole production process and
issued the policy, that the storage space at each production
facility should be kept to a minimum in order to reduce
overall production cost. A complex event processing system
is used to support the local management of each facility by
deciding, how the available warehouse storage space should
be divided among all parts necessary for the local assembly
and all parts that are produced.

To this end, the following situations will be detected at
each facility:

Situation A: Production rate for part of type x: Use the
event notification that a part assembly has been completed
to derive the current production rate for each part type over
a given amount of time. Whenever this rate changes, a
situation of type A is sent to all downstream facilities. This
situation is correlated using the following event:

o Event A: Part of type x produced (i.e. construction
finished)

Situation B: Part of type x should be accepted for
storage in the local warehouse at rate y: Use information
about the local production process and the incoming and
outgoing rates of all parts in order to determine, how the
local storage space should be divided among all part types.
This situation is correlated using the following events:

o Event A: Part of type x produced (i.e. construction
finished)

o Event B: Part of type x consumed (i.e. construction
started)

o Event C: Part of type x stored (i.e. new part arrived
from other facility)

o Event D: Part of type x delivered (i.e. part shipped to
other facility)

« Event E: Current price for additional storage per m?

o Event F: Current ratio of events of type B and C for
part = (i.e. how much faster are parts needed at this
facility than shipped from other facilities?)

It can be seen that events of type A and C reduce the
available storage space at a facility, while events B and D
increase the available space. Event E determines the cost
for renting additional storage space and events of type F
indicate for each part type, how many parts need to be
stored. Whenever the production rate at one of the upstream
facilities or at the local facility changes, a recalculation of
the optimal distribution of the local storage space among all
part types is triggered. The new situation of type B is sent
to all upstream facilities for the respective part types.

End Product
| Part 1 | Part 2 | Part k |

((sub-Part2.1 ) [ Sub-Part2.2 ] .. [Sub-Part2.m ]

( sub-part2.2.1 ][ Sub-Part2.2.2 ] - [ Sub-Part2.2.n |

Figure 1.  Production hierarchy: Schematic overview of a distributed
manufacturing process. The end product is manufactured from parts which
itself are based on several sub-parts. Each manufacturing process is located
at another facility. Other edges are left out for clarity.

From this scenario, we can see that the information
provided by a situation of type B should be always correct:
When a part is shipped from one facility to another while
there is no storage space available, new space has to be
rented for a possibly high cost. Even higher cost can result
from a contract penalty, if too few parts of a certain type
are shipped because a change in storage space distribution
was not indicated and therefore a customer’s order cannot
be fulfilled on time. Therefore, distributed CEP can only be
used in this scenario, if the complex event correlation system
produces correct information at all times.

By simply using replication for each node participating
in the CEP system, this cannot be guaranteed. Consider for
example a failure of the node detecting Situation B which
had already received a certain amount of events of type A,
indicating new available storage. By switching to the replica,
this information is lost, and the event that a part of type x
can be stored, is not sent. Thus, a false negative occurs.
Similarly, if the same node had only received event of type
C, indicating additional usage of storage, switching to the
replica might result in a false positive event that a part of
type x can be stored. Therefore, either the state of all replicas
of a CEP node has to be synchronized, by using active or
passive replication, or a complete log of all incoming events
has to be available that can be re-processed by a replica.

Regardless of which strategy is used to maintain a syn-
chronized state for the replicas, duplicate events will be cre-



ated. First, consider the above example detecting Situation
B if duplicate events are processed. If an event of type A is
processed more than once, a false positive might be created.
If an event of type C is processed more than once, a false
negative might be created.

Next, we show how duplicates arise when using active
replication, passive replication or logging. With active repli-
cation, duplicates are created all the time, as all replicas
process and create the same events. With passive replication,
a replica might incorrectly assume the original has died and
start processing, as we are operating in an asynchronous
system. Using logging, regular acknowledgments have to be
sent to prune the logs. If a node crashed before sending
an acknowledgment for an event, its replica will receive
the same event, which might result in creating a duplicate.
Therefore, we need an algorithm to detect and filter dupli-
cates before processing them.

III. SYSTEM MODEL

We assume a network of n nodes with unique identifiers of
which at most f nodes fail simultaneously. Each node fails
with the probability py4s; node failures are not correlated.
The considered failure model is fail-stop. Furthermore, we
use a failure detection at each node such that eventually, no
crashed node is considered to be correct by any other correct
node.

The nodes are connected via a communication network
of reliable FIFO point-to-point links (e.g. via TCP), i.e.,
links can only fail temporarily, eventually deliver in FIFO
order and do not create messages. The correlation rules are
distributed over the nodes. The data sources are connected
reliably to the CEP system. All rules that together define a
situation form a tree, called query tree. A query containing
this tree is sent to the system by an application entity.
The rules are deployed on nodes selected by the system’s
placement algorithm, such as [8], [9].

A logical timestamp is attached to all events by their
senders. When referring to a certain timestamp, we denote
an event e, and its timestamp ¢, € T as a tuple (e, ty). If
timestamps are not important, we use the short notation ey.
The underlying CEP engine is either correct or not working
at all; i. e., even failed nodes make no incorrect correlation.
Each node has only one source per event type. This does
not imply that no other sources for this event type can
exist in the system. We make no other assumptions for time
and synchronization of nodes. Thus, the event correlation is
asynchronous.

An asynchronous system model does not imply high com-
munication delays. It simply states that we do not assume
an upper bound for message delay. This is useful, if there
actually is no such upper bound, or—and this is a reason
very relevant for practitioners—if the upper bound would be
significantly high. As in synchronous systems all reliability
mechanisms—e. g. detecting a failed node and re-sending

certain events—depend on the upper bound for message
delay, algorithms for failure recovery might suffer from a
severe performance penalty compared to an algorithm that
does not need an upper bound [10]. Note, however, that the
algorithm presented in this paper will work in synchronous
systems, too.

To ensure the order of correlated events is deterministic,
a well-defined selection function is used to pick an event
for correlation, if more than one would be available for
correlation. This can be enforced in most of the prevalent
languages, e.g. by using consumption policies. Thus, the
order of outgoing events depends directly on the order of
the incoming events.

The order in which a node sends events of a certain type x
corresponds to the order in which it received and processed
the events needed for the correlation of the event type x.

Formally, a CEP system S = (T's,Xg,7s,82g) provides
a function 75 : I's — Xg between the set of primary event
types I's and a set of types of correlated situations X g. The
function 7g is determined by the set of correlation rules (2g.

An individual correlation rule w € g operates on a
subset of the set of all events—primary or complex. A cor-
responding output event is created, if predefined conditions
are met. All events provide timestamps; the outgoing event’s
timestamp is derived solely from the incoming events’ times-
tamps. As an example, on detecting a sequence of events of
type A and B within 10 seconds, rule w; deployed at node
hi should create an event of type C'. Events of type A be
primary, events of type B complex events. Assume the event
sequence (va,10),(v4,25),(0p,30) of events with their
corresponding timestamps as input on h;. After receiving
the third event, an event (o, 30) is created; the function g()
for computing the new timestamp just copies the last event’s
stamp: w1 (v4,25), (05,30)) = (o¢, 9(25,30) = 30)

Formally, a rule w € (2, correlates a given set of primary
or complex events e, € 2('sU¥s) with corresponding
timestamps t,, € 7' to a complex event o; € g, also
attached with a timestamp:

w:2@sUSs) o Ty S0 % T, and

w({er, tr, }) = (0j,t;), with t; = g(tx,) (1)

Note, that the time when the events were actually cor-
related is not relevant for the resulting event’s timestamp.
Consequently, timestamp computation on node h is in-
dependent of the node’s local clock. Therefore, no clock
synchronization between correlation nodes is necessary; any
two nodes that apply the same rule to the same set of input
events will create the same complex event with the same
timestamp.

IV. STRONG RELIABLE CEP

Duplicates, false positives, and false negatives arise in a
CEP system at runtime. Thus, formalizing these occurrences



requires to look at one individual run, called an instance of a
CEP system S. An instance of S comprises additionally the
set of actually processed input events, each containing an
event type and additionally a timestamp ¢ € T'. Therefore,
I's CI's x T'. Similarly, the set of actually correlated situ-
ations is constructed: X g C ¥ g x T'. Both sets are partially
ordered by the relation <g according to the timestamps of
their elements. Duplicates can be identified using timestamps
of Xg: We denote Efg as the set of all events that were
created in the system S with the timestamp ¢; therefore
U, 2% = Zs. A complex event oy, is a duplicate, if two
occurrences are in the same set of correlated events at time
t, X%. Note that X g is actually a multiset as it might contain
more than one occurrence of the same event with an identical
timestamp.

False positives and false negatives in the set of situations
are defined with respect to a perfect set of situations. This set
is constructed using a reference system. A reference system
R creates a perfect set of correlated situations X i based on
the input data of a CEP system S. In other words, R creates
the output set of a failure-free execution of S.

The perfect system R takes the input (I's, 75) and simu-
lates 75(I's) — X g, ordered according to their timestamps
by <pg. Observe that R is well-defined as it uses the same
selection function as 9, i.e. it allows no ambiguity in terms
of correlation order. Afterwards, false positives and false
negatives can be identified by comparing the situation set of
the actual execution X g and the reference set X r: All events
that are in the actual situation set, but not in the reference
set are false positives. Similarly, all events that are in the
reference situation set, but not in the actual set, are false
negatives.

Using the formalisms, we can now define the semantic
for our algorithm using safety and liveness properties:

Definition 1: Strong Reliable CEP
A CEP System (I's,Xg,7s,{s) comprising the set of
incoming primary event types I'g, the set of complex event
types Xg, the correlation function 75 defined on these sets
by the set of correlation rules {2g provides strong reliable
CEP with respect to its reference system R, if the following
properties hold for all nodes and any arbitrary instance.

1) No false positives: If e € X g = e € Xp

2) No false negatives: If e ¢ Xg = e ¢ X

3) No duplication: Vt € T': s |{e|(e,t) € T} <1

4) No false ordering: Ve, e’ € ¥g:e <g € & e <g €
5) Completeness: 3t : |J, _, Eg =Xr

In the following, we present an algorithm that provides
strong reliable CEP for any CEP system by using replication.
For practical relevance of the solution it is important to
prevent quadratic runtime overhead. Therefore, coordinating
the replicas efficiently to keep the cost low in terms of
additional needed event messages and space requirements
is the main objective.

Applications

Applications

(b)

Figure 2. (a) Normal distributed correlation: each node deploys a set of
correlation rules. (b) Replication: 3 replicas for each set of correlation rules.

V. APPROACH FOR REPLICA COORDINATION

First, we give an overview of the algorithm, showing its
objectives and basic tasks. Second, we present stepwise,
how each task is fulfilled. Third, we give boundaries for the
algorithm’s overhead and prove its correctness by showing
that the properties of Definition 1 hold.

A. Algorithm Overview

The algorithm operates on a network of replicated cor-
relation nodes: As seen in Section III, all nodes deploy-
ing correlation rules form a graph. At first, this graph of
correlation nodes has to be augmented with f additional
replicas for each node, so that each set of rules is replicated
f + 1 times. Figure 2 shows an example for f = 2.
The algorithm coordinates the replicas to achieve strong
reliability semantics. At the same time, it tries to keep
the cost in terms of additional needed event messages and
additional space requirements at each node low.

We adapt the approach of active standby, in which all
nodes are assigned f additional replicas hosting the same
functionality. As these replicas are active, they receive,
process and produce the same events as the original node.
If one node fails, f other nodes remain. Therefore, in total
f simultaneous failures can be tolerated. Maintenance of an
accurate history of events is implicit in active standby, as
long as no messages are being lost during execution.

However, active standby induces quadratic message over-
head during runtime. Therefore, we introduce two node
operation modes: normal and leader of which only leaders
send their outgoing events. All other replicas store the events
in their outgoing queue. The queues have to be pruned
regularly to reduce storage costs and prevent overflows.
We use a leader election algorithm that guarantees that
eventually at least one leader will be elected out of all
correct replicas. Note, that more than one replica might be
elected as leader.

To cope with this, we provide a strategy to filter out
duplicate events in a node’s incoming queue, before they
are processed. This mechanism is needed, as events could



be delayed arbitrarily long and saving all incoming events
and checking for duplicates is not a feasible solution.

B. Algorithm Steps

The main algorithm is shown in Figure 3. It provides
methods for executing regular tasks and handling incoming
messages. We will explain the algorithm by describing the
three individual steps of outgoing queue pruning, duplicate
detection, and leader election.

Pruning the outgoing queue: All replicas but the
leader buffer the outgoing events instead of sending them.
A leader collects acknowledgments for all events it sends
to other nodes. If an event has been acknowledged by
all receivers it can safely be removed from the replicas’
queues. Therefore, a leader sends a list of all completely
acknowledged events to all replicas. This is done in regular
intervals rather than in a per-event basis to reduce cost.

The Base Algorithm in Figure 3 shows the methods
to coordinate this: Lines 7-18 show the processing of
an incoming primary or complex event. At first, an ac-
knowledgment is sent to the event’s sender (line8). If the
event is no duplicate, the event’s timestamp is archived
and correlations are executed (lines 12 and 13). All newly
correlated complex events are handled by the procedure
PROCESSOUTGOINGEVENT in lines 19-27. There, an event
is first saved to the outgoing queue (I.22) and send to
all receivers interested in this event only if the node acts
as leader (1.23). Lines 28-35 show the processing of ac-
knowledgments. The acknowledgment is archived (l.30)
and if the corresponding event has been acknowledged by
all receivers, it is removed from the outgoing queue and
added to a temporary list of all received acknowledgments
(11. 31-34). On a regular basis, all completely acknowledged
events are sent to all replicas (1.37). This is shown in
the method SENDCOMPLETELYACKEDEVENTS (11. 40-45).
Lines 46-50 show how a replica receives an incoming list
of completely acknowledged events and removes them from
its incoming queue.

Leader election: We use a leader election that provides
eventual correctness in an asynchronous system model.
Eventual agreement is not necessary.! We use latency mea-
surements to the previous node as a leader election criteria,
trying to minimize end to end latency in a greedy one-hop
manner. As a tie-breaker we select the lowest unique node id.
All other sorts of criteria could be used for electing a leader,
as long as eventual correctness is guaranteed. Leader election
is started, when a leader is no longer available due to node or
link failure. The replica detecting the failure determines all
other replicas eligible for leader voting and starts the voting
procedure. If multiple voting procedures are started, we use

IThis means that eventually at least one leader will be elected. However,
the replicas do not need to agree on one leader, therefore there may be
multiple of them.

the procedures’ starter node id as a tie-breaker to decide
which procedure will prevail and which will be canceled.

The Base Algorithm in Figure 3 shows in line 38 that each
node checks, whether the leader is still alive. If not, a LEAD-
ERDEADEVENT is triggered. If a leader /; detects a failed
link to another leader ls, it sends a LEADERDEADEVENT to
the remaining replicas of /. Additionally, if /5 detects that
it cannot receive events anymore, it sends a LEADERDEAD-
EVENT itself. When such an event is received, a new leader
election is started (1. 51-53). As a result, at least one other
replica will start sending outgoing messages.

Duplicate detection: Duplicates can be identified in the
incoming queue of each node using timestamps. Following
the construction principles of timestamps described in Sec-
tion IV and the no false ordering property of Definition 1,
the timestamps for each event type have to be strictly
monotonically increasing. In the system model, we restricted
our incoming connections to one per event type. Therefore,
if an event is received with a timestamp that is not greater
than the already archived timestamp for this event type, a
duplicate is detected and can be discarded before processing
it.

The Base Algorithm in Figure 3 shows in line 9 that only
event that are not identified as duplicates are processed.
A duplicate is detected if the timestamp of an incoming
event is not newer than the one already archived for the
corresponding event type.

C. Analysis: Bounds and Proof

After presenting the algorithm used for providing strong
reliability, we analyze it theoretically. In a performance
analysis we consider best case and worst case overhead
of our algorithm. Afterwards, we prove that our algorithm
provides strong reliable CEP according to Definition 1.

The overhead created by maintaining f additional replicas
compared to using no replication at all can be measured
in terms of additional sent events. We show the additional
messages sent in the best case and in the worst case for
our approach (cf. Figure 4). By sending with all replicas,
the worst case overhead is in O(f?) for f replicas. An
unadapted active standby approach would deliver exactly this
performance. Whereas in the best case only one replica per
node is sending. This creates overhead which is in O(f) for
f replicas. The best case will be achieved, during periods
when synchrony could be reached in the system. If this is
never the case, the performance will most likely be worse,
as more than one leader will be elected.

The additional space requirements for each node for
storing the timestamp array are in O(e) for e different types
of events. Additionally, replicas need to buffer the outgoing
events. As events remain in the buffer until they have been
acknowledged by all receiving replicas, the queue can grow
infinitely. Thus, if the only missing acknowledgments are
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: Use FailureDetector

: Boolean isLeader

: List completelyAcked Events
. List replicalist
. List receiver List
: Queue outgoing

> The set of all replicas
> Set of all receivers of outgoing events
> The outgoing queue

: upon incomingEvent(i F)

SENDACK(E) > Acknowledge the incoming event

if (ISDUPLICATE(7FE)) then
skip

else
ARCHIVETIMESTAMP(IE.type,iE.ts)
newComplexEvents <— EXECUTECORRELATIONS(%E)
for all (event € newComplexEvents) do

PROCESSOUTGOINGEVENT(event)

end for

end if

end

procedure PROCESSOUTGOINGEVENT(event)
receivers <— receiverList. GET(event.type)
for all (receiver € receivers) do
outgoing. ENQUEUE(event, recetver)
if (isLeader) then
SEND(event, receiver)
end if
end for
end procedure

upon Acknowledgment(ack, sender)
ackedEvent < ack.event
ADDACKNOWLEDGMENT (ackedEvent, sender)
if (ISCOMPLETELYACKED(ackedEvent)) then
outgoing.REMOVE(acked Event)
completelyAckedEvents.ADD(acked Event)
end if
end

upon regularBasis()
SENDCOMPLETELYACKEDEVENTS()
CHECKLEADERALIVE()

end

procedure SENDCOMPLETELYACKEDEVENTS()
for all (rep € replicaList) do
SEND(completely Acked Events, rep)
end for
completely AckedEvents. REMOVEALL()
end procedure

upon ReceiveAckedEventList(listO f Acked Events)
for all (event € listOfAckedEvents) do
outgoing.REMOVE(event)
end for
end

upon LeaderDeadEvent()
STARTLEADERELECTION()
end

Figure 3. Base Algorithm: Behavior of a node h

(f+1)* messages,
overhead P+2f msgs

f+1 messages,
overhead = f msgs

(a) Best Case (b) Worst Case

Figure 4. Overhead in terms of events for maintaining f additional replicas
per node, shown for f = 2: (a) In the best case, only one leader sends
events to all replicas of another node. (b) In the worst case, each replica
assumes itself to be a leader and thus all replicas send events to all replicas
of another node.

from nodes which are detected to have failed permanently,
the messages are removed from the queue.

Claim 1: Strong Reliable CEP
The Base Algorithm in Figure 3 provides strong reliable
distributed CEP if at least one correct replica for each
correlation node exists.

Correctness: We will prove that our algorithm pro-
vides strong reliability, by showing that the properties of
Definition 1 hold: No false positives, no false negatives, no
duplication, no false ordering, and completeness. We prove
each of the properties separately in a lemma.

Lemma 5.1: No false ordering
Every rule w with w(e;,t;) = (ok,tx) creates events oy,
for 7 € N with monotonically increasing timestamps ;.

Proof: We assume h to be the first node to produce
out-of-order events. As timestamp creation only depends
on the incoming event’s timestamps and we can assume
that correlation itself is correct, the sequence of timestamps
for resulting situations oy, is directly derived from the
timestamps of incoming events (cf. Equation 1). As event
correlation is order preserving (cf. Section III), A did already
receive out-of-order events. This contradicts with our initial
assumption. [ ]

Lemma 5.2: No duplication
No node executing the Base Algorithm (cf. Figure 3) pro-
cesses duplicate events.

Proof: The duplicate detection algorithm marks two
events o, and oy, as duplicates, if they are correlated by
the same rule wy using the exact same input events e;,
ie. wlep,ti) = (og,tr) ANwle,t;) = (o).,t.). As for
timestamp computation the same function ¢() is applied to
the timestamps t; of events involved in correlation, o and
o), must have the same timestamps, i.e. t; = t,. Thus,
they are identified as duplicates by the duplicate detection
algorithm of Section V. [ ]

Lemma 5.3: No false negatives
With algorithm 3 a CEP System S produces no false nega-
tives w.r.t. a reference system; i.e. if e ¢ g = e ¢ Xp.

Proof: We need to show the following properties:

o With acknowledgments, no events will get lost due to
node or link failures



o No messages will get lost due to outgoing queue

pruning

o No messages will get lost due to duplicate filtering

No loss due to acknowledgments: A sender removes an
outgoing event if and only if all receivers have acknowl-
edged the event or if the only pending acknowledgments
are from nodes that are permanently considered faulty. As
there are f + 1 receivers for each subscription of which
only f can fail simultaneously, at least one correct receiver
remains. If the sender itself fails before all receivers have
received acknowledged the event, f sender replicas remain,
of which only f—1 can additionally fail. Eventually accurate
leader election ensures that correct replicas will forward all
remaining events.

No loss due to pruning of outgoing queue: As only
events that have been acknowledged by f + 1 receivers
can be pruned from the outgoing queue. In any case there
will at least remain one correct receiver that will continue
processing.

No loss due to duplicate filtering: With Lemma 5.1, we
have guaranteed that timestamps of events of the same type
are strictly monotonically increasing at the receiver side.
Events are not received in another order than they are sent.
Thus, events with a newer timestamp have been created later
and also sent at a later point. Therefore, we do not filter out
non-duplicates by checking for timestamps. [ |

Lemma 5.4: No false positives
With algorithm 3 a CEP System S produces no false posi-
tives w.r.t. a reference system R; i.e.if e € ¥g = e € Xp.

Proof: With the no creation property for links (cf. Sec-
tion IV) and duplicates and false negatives already proven
impossible (cf. Lemma 5.2 and Lemma 5.3), false positives
are impossible. [ |

Lemma 5.5: Completeness
All events that can be correlated from the incoming streams
will be correlated eventually.

Proof: Since leader election is eventually correct and
at most f of the overall f+ 1 replicas available for each set
of correlation rules can fail, correlation itself will not stop.
With Lemma 5.3 and Lemma 5.4, all events will reach their
destination eventually, thus 3¢ : Ut, <t Eg = XR. [ |

VI. EVALUATION

In the evaluations we aimed to understand the perfor-
mance characteristics of the replication scheme indepen-
dent of specific operator implementations or other system
dependent details. Therefore, we implemented the scenario
presented in Section II in the PeerSim simulation frame-
work [11].

Our setup consists of a correlation network that comprises
70 nodes deploying. During regular execution, more than
40000 primary event messages served as input for the
system, resulting in about 13000 situations delivered to

the global management. Overall, more than 170000 event
messages were created in the system.

The overhead introduced by our algorithm compared to
a system using no replication is shown for both cases,
normal behavior with no failures and in the case of node and
link failure. For normal behavior, we analyze the overhead
depending on the number of additional replicas per node. In
the case of failures, we present a more detailed analysis of
the overhead depending on failure probability and number
of additional replicas per node.

Additionally, we show the average amount of simultane-
ously active leaders providing the same functionality. Given
the theoretical analysis of best and worst case in the previous
section, the actual system behavior is of great interest.

In each experiment, f additional replicas for each node
are deployed. Nodes are assumed to fail with probability
Drai at each simulation step. We show experimental results
for 0 < f < 5and 0% < pfai < 0.1%. The results for each
measurement were determined in 500 experiment runs.

Overhead: Figure 5b shows the overhead for different
node failure rates depending on the number of deployed
replicas per node. As it can be seen, our approach incurs
linear runtime overhead in terms of event messages. During
recovery it happens that messages which had been received
already but not acknowledged are transferred a second time.
It also can be seen that the amount of duplicates scales
linearly with the amount of replicas deployed.

Figure 6 shows the overhead for different numbers of
replicas depending on the failure probability for each node.
We can see that the amount of duplicates scales linearly
with the node failure rate. The scaling factor is higher,
the more replicas are deployed. In principle, the same
development can be seen for the leader election messages.
However, the actual transferred amount is highly depending
on link characteristics and which node makes the first leader
proposal. Therefore, the more replicas are deployed, the
more fluctuations are visible in these measurements.

Average leader count: The theoretical analysis of
the algorithm’s performance already provided boundaries:
Linear message overhead in the best case and quadratic
message overhead in the worst case. Decisive for the actual
performance is the amount of leaders that are active simulta-
neously for each functionality. The closer the average leader
count is to 1, the better performs the algorithm; i.e. fewer
duplicate messages are created. Figure VI shows that the
measured average leader count is very close to the optimum
of 1. At the same time it can be seen that the average
count is decreasing, if the nodes are very unreliable, because
fewer correct nodes exist within a replica group at a time
which could compete for the leader position. Multiple active
leaders occur when a replica makes the incorrect assumption
that the current leader has failed and starts a new election
process. Values below 1 indicate that at certain times no
correct replica for an operator exists; the selected failure rate
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is too high compared to the number of operators available.

Results show that the mechanism of leader election is
suitable to keep the amount of event messages at an accept-
able level of linear growth. Despite the fact that replicas
do not need to agree on a common leader, most of the time
only one leader is active per functionality. At the same time,
the additional overhead introduced through leader election is
marginal compared to the total number of event messages.

previous hop as decision criterion.

Leader election strategy: Figure VI shows the devel-
opment of the end to end latency for all detected situations
depending on the node failure rate. It can be seen that
using only three replicas for each node, the latency for a
very unreliable system with nodes with a failure rate of
Prait = 0.1 can be kept at almost the same level as with
no replicas but nodes with a failure rate of ps,; = 0.005.



We can also see that a higher failure rate introduces an
additional delay. The delay is higher, the less replicas are
used in the system. This is due to the fact that with no or
only few replicas it happens more often, that there is no
correct replica for an operator. Thus, processing is delayed
until a failed node recovers.

VII. RELATED WORK

Recently, an approach for dealing with unreliable commu-
nication channels when delivering events to a CEP system
has been proposed [12]. With this algorithm, the impact of
events not received by the CEP system can be limited by
omitting certain correlations. However, failures of correla-
tion nodes are not considered in this approach.

To the best of our knowledge, no distributed CEP system
features algorithms to address reliable event delivery to
consuming applications in the face of failures of correlation
nodes. In this section, we analyze reliability approaches of
other fields and judge their applicability for a distributed
CEP system.

Methods for group communication which ensure ordered
exactly-once delivery such as reliable multicast, atomic
broadcast or consensus require a synchronous system model
or are not guaranteed to terminate even in the face of a single
node failure [13], [14]. Therefore, they cannot be applied in
our case.

Standard principles for replication of nodes include state
machine replication, or active standby, and checkpointing,
or passive standby [15], [16]. These concepts propose to
either add active replicas for redundancy in the complete
system and have multiple executions at the same time or to
regularly synchronize an original with several passive repli-
cas. However, active standby increases the event messages
quadratically with the number of deployed replicas whereas
passive standby requires a checkpoint at each state change
if a lossless history of incoming events is to be provided.
In both cases, the additionally consumed bandwidth is
unacceptable for systems with high event rates. Furthermore,
applying one of these strategies will lead to duplicate events.
Therefore, duplicate filtering is required to guarantee strong
reliability semantics.

For Distributed Stream Processing (DSP), which is also
a paradigm for processing data in streams of potentially
high rates, a few reliability approaches were proposed. These
systems, however, typically provide operators less expressive
than many CEP operators. The existing approaches can be
divided in three categories: The first category adopts the
characterization of DSP as "partial fault-tolerant" [17], [18].
In the case of a failure, systems try to produce information
which is not perfectly accurate but might still be useful to
the receiver.

In the second category, information is published tenta-
tively and corrections can be issued at a later point in
time that revoke the messages sent before [19]-[22]. These

solutions are based on two premises: i) Dependencies of op-
erators on each other’s output have to be within a reasonable
limit to keep correction cost acceptable and more important
ii) the correction of incorrect messages has to be (still)
possible at all. In the scenarios we are examining, decisions
might already been made based on incorrect information that
are either very costly or impossible to correct. Therefore,
correct information is needed at all times.

Solutions of the third category prevent the delivery and
processing of incorrect information. They either implement
active standby [23], checkpointing [24] or use a logging
mechanism to record all messages missed during a node’s
downtime. On recovery of a node, these messages are re-
sent and can be processed [25]. However, the active approach
still increases the message load quadratically. Checkpointing
requires frequent execution of sophisticated state-extraction
algorithms that need either to be specified individually for
each operator or require taking a full memory snapshot. State
extraction either restricts the user to using a certain system
or requires additional expertise to implement the extraction
function. On the other hand, a memory snapshot can only be
taken if the respective pages are write-locked, which slows
down processing. Approaches using logging at upstream
neighbors can only tolerate one failed node at a time; an
extension for supporting multiple simultaneous node failures
cannot be implemented easily. The same difficulties arise for
employing combinations of checkpointing and logging.

Within many event-based systems, publish/subscribe mid-
dleware is used to mediate events between the producers
(publishers) and their consumers (subscribers). In this field,
reliability has been an active research topic. However, ap-
proaches only consider event routing. The state of a node—
which is necessary for correct event correlation—is not
considered.

None of the above strategies can be applied to an existing
distributed complex event processing system for providing
reliability while at the same time preventing false positives,
false negatives and processing of duplicates with acceptable
overhead.

VIII. CONCLUSION

Although reliability is the key for being able to use the
benefits of CEP in application fields which are sensitive
to incorrect information such as monitoring, it has hardly
been addressed in the literature. This paper presented an
algorithm that ensures a strong reliability semantics for an
arbitrary distributed CEP system. The algorithm uses repli-
cation to increase the availability and additionally provides
mechanisms to prevent false positives, false negatives and
processing of duplicates. Communication between replicas
is organized such that the induced overhead is kept low.

We proved correctness and provided practical perfor-
mance evaluation that analyzed the induced overhead during
normal execution and in the case of failures. Although the



worst case behavior yields an overhead that is quadratic in
the order of replicas per node, the evaluation results show
that even under high failure rates the message overhead stays
linear. The amount of additional messages for leader election
and the duplicates created because of replication are only
marginal compared to the total amount of transferred event
messages. Therefore, the presented algorithm is a first step
to enable the use of distributed CEP systems for scenarios
with a high demand for scalability as well as reliability.

Although in relative terms a linear growth of sent event
messages is acceptable, the absolute amount of sent mes-
sages is still significantly high due to replication. Thus, the
bandwidth requirements are pretty high, even if no failures
are experienced. However, this is the case with any approach
using a proactive replication scheme.

For future work, we see two relevant contributions: While
this work is an initial step to provide reliability for CEP,
we want to determine and support other relevant semantics
in highly distributed settings. Additionally, we want to
investigate reducing the runtime overhead and bandwidth
consumption e. g. by employing reactive replication.
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