
Supporting Strong Reliability for Distributed Complex Event Processing Systems

Marco Völz Boris Koldehofe

Universität Stuttgart
Institute of Parallel and Distributed Systems

Universitätsstr. 38, 70569 Stuttgart, Germany
Email: 〈firstname.lastname〉@ipvs.uni-stuttgart.de

Kurt Rothermel

Abstract—Many application classes such as monitoring ap-
plications, involve processing a massive amount of data from
a possibly huge number of data sources. Complex Event
Processing (CEP) has evolved as the paradigm of choice to
determine meaningful situations (complex events) by perform-
ing stepwise correlation over event streams. To keep up with
the high scalability demands of growing input streams, recent
approaches distribute event correlation over several correlation
nodes. However, already a failure of a single correlation node
impacts the correctness of the final correlation result. In this
paper, we illustrate the importance of a strong reliability
semantics for CEP in the context of a monitoring application
in a distributed production environment. Strong reliability
ensures each complex event is detected and delivered exactly
once to each application entity, and cannot be guaranteed by
the naive application of established replication principles. We
present a replication scheme which ensures strong reliability
in an asynchronous system model and can be applied to an
arbitrary distributed CEP system. The algorithm tolerates f
simultaneous failures by introducing f additional replicas for
each correlation node. We prove correctness as well as evaluate
the overhead introduced by the algorithm. Results show, that
the overhead scales linearly with the number of deployed
replicas and the node failure rate.

Keywords-failure recovery; replication; reliability; complex
event processing; monitoring

I. INTRODUCTION

Monitoring applications, e. g. in the domain of real-time

production monitoring, have to process huge amounts of

information and send alerts or trigger some action if some-

thing noteworthy happens. Usually, information is provided

in a steady stream of separate events which are detected by

several sensors. One part of a monitoring application’s task is

to send alerts if some important information is filtered from

the event stream, as for example when the production rate

for an assembled part changes significantly. Additionally, the

application can detect and infer more complex situations
from the information provided by different sensors, for

example how a limited storage space should be utilized in

order to keep production cost low. This way, alerts can be

sent to the facility’s management and appropriate actions

can be taken.

Using a CEP system, detected situations can again be

combined to derive even more complex situations, intro-

ducing new levels of abstraction. Therefore, larger streams

of information can be used by different applications with

different information needs. Distributed CEP systems [1]–

[4] promise significant improvement over the traditional

centralized approaches (e. g. [5]–[7]) in terms of scalability.

Nevertheless, in the field of monitoring systems not only

scalable but also reliable systems are needed.

However, up to now providing reliability has not received

a lot of attention in the area of distributed CEP. In detail,

applications are usually required to be available and provide

correct results even if network nodes fail, as they may be

responsible for huge amounts of money within a company

or an extremely valuable asset in the field of surveillance.

Even a single event that was not received by the user but

did occur (false negative) or that was received but did

not occur (false positive) can result in huge unnecessary

cost or damage. If duplicate events are not filtered during

intermediate processing, false positives can arise. Therefore,

the context of monitoring applications needs a distributed

complex event processing system that offers not only high

availability but also prevents false positives, false negatives,

and processing of duplicate events.

While replication is a well-established concept to increase

availability of individual functionality, it does alone not meet

the requirements for strong reliable distributed CEP. Using

a standard replication scheme in this context creates false

positives, false negatives and duplicates. Existing approaches

from other stream processing systems are not readily ap-

plicable, as they require using special operators or adding

sophisticated methods to extract local state.

In this paper, we present an approach that uses active

replication to ensure good responsiveness for reacting to fail-

ures in the event correlation network. As a main contribution,

we propose an algorithm that coordinates the replicas for

each processing node. We prove that the algorithm ensures a

strong reliability semantics in the presence of node failures.

The algorithm avoids the large overhead for the synchro-

nization of the replicas of traditional replication schemes

which grow quadratically in the number of disseminated

event messages. By adding only a small additional delay, our

performance evaluation show that the algorithm introduces

only a linear overhead. The event processing model used

Published in Proceedings of 13th IEEE International Conference on High Performance

Computing and Communications (HPCC-2011), pp. 477-486. Banff, Alberta, Canada. Sept 2011.

© IEEE 2011

http://dx.doi.org/10.1109/HPCC.2011.69



in this paper matches the requirement to many existing

distributed CEP systems and can therefore be transferred

easily to enable monitoring applications with high scalability

and strong reliability requirements.

The remainder of this paper is structured as follows:

Section II stresses the need for a strong reliability semantics

and shows a motivating example. Section VII covers related

work. A system model and formalization of a CEP system

is given in Section III. We define the problem of a strong

reliability semantics formally in Section IV. We describe our

approach, show the algorithm and prove its correctness in

Section V. Results of performance evaluation are presented

in Section VI. Section VIII concludes this paper and deals

with future work.

II. MOTIVATION

Consider a distributed manufacturing process for a com-

pany that produces a complex product which is assembled

from several parts, as illustrated in Figure 1. Each of these

parts is constructed at a separate facility. For each of the

production facilities exists a local management. A global

management oversees the whole production process and

issued the policy, that the storage space at each production

facility should be kept to a minimum in order to reduce

overall production cost. A complex event processing system

is used to support the local management of each facility by

deciding, how the available warehouse storage space should

be divided among all parts necessary for the local assembly

and all parts that are produced.

To this end, the following situations will be detected at

each facility:

Situation A: Production rate for part of type x: Use the

event notification that a part assembly has been completed

to derive the current production rate for each part type over

a given amount of time. Whenever this rate changes, a

situation of type A is sent to all downstream facilities. This

situation is correlated using the following event:

• Event A: Part of type x produced (i. e. construction

finished)

Situation B: Part of type x should be accepted for
storage in the local warehouse at rate y: Use information

about the local production process and the incoming and

outgoing rates of all parts in order to determine, how the

local storage space should be divided among all part types.

This situation is correlated using the following events:

• Event A: Part of type x produced (i. e. construction

finished)

• Event B: Part of type x consumed (i. e. construction

started)

• Event C: Part of type x stored (i. e. new part arrived

from other facility)

• Event D: Part of type x delivered (i. e. part shipped to

other facility)

• Event E: Current price for additional storage per m2

• Event F: Current ratio of events of type B and C for

part x (i. e. how much faster are parts needed at this

facility than shipped from other facilities?)

It can be seen that events of type A and C reduce the

available storage space at a facility, while events B and D

increase the available space. Event E determines the cost

for renting additional storage space and events of type F

indicate for each part type, how many parts need to be

stored. Whenever the production rate at one of the upstream

facilities or at the local facility changes, a recalculation of

the optimal distribution of the local storage space among all

part types is triggered. The new situation of type B is sent

to all upstream facilities for the respective part types.

Figure 1. Production hierarchy: Schematic overview of a distributed
manufacturing process. The end product is manufactured from parts which
itself are based on several sub-parts. Each manufacturing process is located
at another facility. Other edges are left out for clarity.

From this scenario, we can see that the information

provided by a situation of type B should be always correct:

When a part is shipped from one facility to another while

there is no storage space available, new space has to be

rented for a possibly high cost. Even higher cost can result

from a contract penalty, if too few parts of a certain type

are shipped because a change in storage space distribution

was not indicated and therefore a customer’s order cannot

be fulfilled on time. Therefore, distributed CEP can only be

used in this scenario, if the complex event correlation system

produces correct information at all times.

By simply using replication for each node participating

in the CEP system, this cannot be guaranteed. Consider for

example a failure of the node detecting Situation B which

had already received a certain amount of events of type A,

indicating new available storage. By switching to the replica,

this information is lost, and the event that a part of type x
can be stored, is not sent. Thus, a false negative occurs.

Similarly, if the same node had only received event of type

C, indicating additional usage of storage, switching to the

replica might result in a false positive event that a part of

type x can be stored. Therefore, either the state of all replicas

of a CEP node has to be synchronized, by using active or

passive replication, or a complete log of all incoming events

has to be available that can be re-processed by a replica.

Regardless of which strategy is used to maintain a syn-

chronized state for the replicas, duplicate events will be cre-



ated. First, consider the above example detecting Situation

B if duplicate events are processed. If an event of type A is

processed more than once, a false positive might be created.

If an event of type C is processed more than once, a false

negative might be created.

Next, we show how duplicates arise when using active

replication, passive replication or logging. With active repli-

cation, duplicates are created all the time, as all replicas

process and create the same events. With passive replication,

a replica might incorrectly assume the original has died and

start processing, as we are operating in an asynchronous

system. Using logging, regular acknowledgments have to be

sent to prune the logs. If a node crashed before sending

an acknowledgment for an event, its replica will receive

the same event, which might result in creating a duplicate.

Therefore, we need an algorithm to detect and filter dupli-

cates before processing them.

III. SYSTEM MODEL

We assume a network of n nodes with unique identifiers of

which at most f nodes fail simultaneously. Each node fails

with the probability pfail; node failures are not correlated.

The considered failure model is fail-stop. Furthermore, we

use a failure detection at each node such that eventually, no

crashed node is considered to be correct by any other correct

node.

The nodes are connected via a communication network

of reliable FIFO point-to-point links (e. g. via TCP), i. e.,

links can only fail temporarily, eventually deliver in FIFO

order and do not create messages. The correlation rules are

distributed over the nodes. The data sources are connected

reliably to the CEP system. All rules that together define a

situation form a tree, called query tree. A query containing

this tree is sent to the system by an application entity.

The rules are deployed on nodes selected by the system’s

placement algorithm, such as [8], [9].

A logical timestamp is attached to all events by their

senders. When referring to a certain timestamp, we denote

an event ek and its timestamp tk ∈ T as a tuple (ek, tk). If

timestamps are not important, we use the short notation ek.

The underlying CEP engine is either correct or not working

at all; i. e., even failed nodes make no incorrect correlation.

Each node has only one source per event type. This does

not imply that no other sources for this event type can

exist in the system. We make no other assumptions for time

and synchronization of nodes. Thus, the event correlation is

asynchronous.

An asynchronous system model does not imply high com-

munication delays. It simply states that we do not assume

an upper bound for message delay. This is useful, if there

actually is no such upper bound, or—and this is a reason

very relevant for practitioners—if the upper bound would be

significantly high. As in synchronous systems all reliability

mechanisms—e. g. detecting a failed node and re-sending

certain events—depend on the upper bound for message

delay, algorithms for failure recovery might suffer from a

severe performance penalty compared to an algorithm that

does not need an upper bound [10]. Note, however, that the

algorithm presented in this paper will work in synchronous

systems, too.

To ensure the order of correlated events is deterministic,

a well-defined selection function is used to pick an event

for correlation, if more than one would be available for

correlation. This can be enforced in most of the prevalent

languages, e. g. by using consumption policies. Thus, the

order of outgoing events depends directly on the order of

the incoming events.

The order in which a node sends events of a certain type x
corresponds to the order in which it received and processed

the events needed for the correlation of the event type x.

Formally, a CEP system S = (Γ̂S , Σ̂S , τS ,ΩS) provides

a function τS : Γ̂S → Σ̂S between the set of primary event

types Γ̂S and a set of types of correlated situations Σ̂S . The

function τS is determined by the set of correlation rules ΩS .

An individual correlation rule ω ∈ ΩS operates on a

subset of the set of all events—primary or complex. A cor-

responding output event is created, if predefined conditions

are met. All events provide timestamps; the outgoing event’s

timestamp is derived solely from the incoming events’ times-

tamps. As an example, on detecting a sequence of events of

type A and B within 10 seconds, rule ω1 deployed at node

h1 should create an event of type C. Events of type A be

primary, events of type B complex events. Assume the event

sequence (γA, 10), (γA, 25), (σB , 30) of events with their

corresponding timestamps as input on h1. After receiving

the third event, an event (σC , 30) is created; the function g()
for computing the new timestamp just copies the last event’s

stamp: ω1(γA, 25), (σB , 30)) = (σC , g(25, 30) = 30)
Formally, a rule ω ∈ ΩS , correlates a given set of primary

or complex events eki
∈ 2(

̂ΓS∪̂ΣS) with corresponding

timestamps tki
∈ T to a complex event σj ∈ Σ̂S , also

attached with a timestamp:

ω : 2(
̂ΓS∪̂ΣS) × T → Σ̂S × T , and

ω({eki , tki}) = (σj , tj), with tj = g(tki) (1)

Note, that the time when the events were actually cor-

related is not relevant for the resulting event’s timestamp.

Consequently, timestamp computation on node h is in-

dependent of the node’s local clock. Therefore, no clock

synchronization between correlation nodes is necessary; any

two nodes that apply the same rule to the same set of input

events will create the same complex event with the same

timestamp.

IV. STRONG RELIABLE CEP

Duplicates, false positives, and false negatives arise in a

CEP system at runtime. Thus, formalizing these occurrences



requires to look at one individual run, called an instance of a

CEP system S. An instance of S comprises additionally the

set of actually processed input events, each containing an

event type and additionally a timestamp t ∈ T . Therefore,

ΓS ⊆ Γ̂S × T . Similarly, the set of actually correlated situ-

ations is constructed: ΣS ⊆ Σ̂S × T . Both sets are partially

ordered by the relation ≺S according to the timestamps of

their elements. Duplicates can be identified using timestamps

of ΣS : We denote Σt
S as the set of all events that were

created in the system S with the timestamp t; therefore⋃
t Σ

t
S = ΣS . A complex event σk is a duplicate, if two

occurrences are in the same set of correlated events at time

t, Σt
S . Note that ΣS is actually a multiset as it might contain

more than one occurrence of the same event with an identical

timestamp.

False positives and false negatives in the set of situations

are defined with respect to a perfect set of situations. This set

is constructed using a reference system. A reference system

R creates a perfect set of correlated situations ΣR based on

the input data of a CEP system S. In other words, R creates

the output set of a failure-free execution of S.

The perfect system R takes the input (ΓS , τS) and simu-

lates τS(ΓS) → ΣR, ordered according to their timestamps

by ≺R. Observe that R is well-defined as it uses the same

selection function as S, i. e. it allows no ambiguity in terms

of correlation order. Afterwards, false positives and false

negatives can be identified by comparing the situation set of

the actual execution ΣS and the reference set ΣR: All events

that are in the actual situation set, but not in the reference

set are false positives. Similarly, all events that are in the

reference situation set, but not in the actual set, are false

negatives.

Using the formalisms, we can now define the semantic

for our algorithm using safety and liveness properties:

Definition 1: Strong Reliable CEP
A CEP System (Γ̂S , Σ̂S , τS ,ΩS) comprising the set of

incoming primary event types ΓS , the set of complex event

types ΣS , the correlation function τS defined on these sets

by the set of correlation rules ΩS provides strong reliable

CEP with respect to its reference system R, if the following

properties hold for all nodes and any arbitrary instance.

1) No false positives: If e ∈ ΣS ⇒ e ∈ ΣR

2) No false negatives: If e /∈ ΣS ⇒ e /∈ ΣR

3) No duplication: ∀t ∈ T : s |{e|(e, t) ∈ Σt
S}| ≤ 1

4) No false ordering: ∀e, e′ ∈ ΣS : e ≺S e′ ⇔ e ≺R e′

5) Completeness: ∃t : ⋃t′<t Σ
t′
S = ΣR

In the following, we present an algorithm that provides

strong reliable CEP for any CEP system by using replication.

For practical relevance of the solution it is important to

prevent quadratic runtime overhead. Therefore, coordinating

the replicas efficiently to keep the cost low in terms of

additional needed event messages and space requirements

is the main objective.

(a) (b)

Figure 2. (a) Normal distributed correlation: each node deploys a set of
correlation rules. (b) Replication: 3 replicas for each set of correlation rules.

V. APPROACH FOR REPLICA COORDINATION

First, we give an overview of the algorithm, showing its

objectives and basic tasks. Second, we present stepwise,

how each task is fulfilled. Third, we give boundaries for the

algorithm’s overhead and prove its correctness by showing

that the properties of Definition 1 hold.

A. Algorithm Overview

The algorithm operates on a network of replicated cor-

relation nodes: As seen in Section III, all nodes deploy-

ing correlation rules form a graph. At first, this graph of

correlation nodes has to be augmented with f additional

replicas for each node, so that each set of rules is replicated

f + 1 times. Figure 2 shows an example for f = 2.

The algorithm coordinates the replicas to achieve strong

reliability semantics. At the same time, it tries to keep

the cost in terms of additional needed event messages and

additional space requirements at each node low.

We adapt the approach of active standby, in which all

nodes are assigned f additional replicas hosting the same

functionality. As these replicas are active, they receive,

process and produce the same events as the original node.

If one node fails, f other nodes remain. Therefore, in total

f simultaneous failures can be tolerated. Maintenance of an

accurate history of events is implicit in active standby, as

long as no messages are being lost during execution.

However, active standby induces quadratic message over-

head during runtime. Therefore, we introduce two node

operation modes: normal and leader of which only leaders

send their outgoing events. All other replicas store the events

in their outgoing queue. The queues have to be pruned

regularly to reduce storage costs and prevent overflows.

We use a leader election algorithm that guarantees that

eventually at least one leader will be elected out of all

correct replicas. Note, that more than one replica might be

elected as leader.

To cope with this, we provide a strategy to filter out

duplicate events in a node’s incoming queue, before they

are processed. This mechanism is needed, as events could



be delayed arbitrarily long and saving all incoming events

and checking for duplicates is not a feasible solution.

B. Algorithm Steps

The main algorithm is shown in Figure 3. It provides

methods for executing regular tasks and handling incoming

messages. We will explain the algorithm by describing the

three individual steps of outgoing queue pruning, duplicate

detection, and leader election.

Pruning the outgoing queue: All replicas but the

leader buffer the outgoing events instead of sending them.

A leader collects acknowledgments for all events it sends

to other nodes. If an event has been acknowledged by

all receivers it can safely be removed from the replicas’

queues. Therefore, a leader sends a list of all completely

acknowledged events to all replicas. This is done in regular

intervals rather than in a per-event basis to reduce cost.

The Base Algorithm in Figure 3 shows the methods

to coordinate this: Lines 7–18 show the processing of

an incoming primary or complex event. At first, an ac-

knowledgment is sent to the event’s sender (line 8). If the

event is no duplicate, the event’s timestamp is archived

and correlations are executed (lines 12 and 13). All newly

correlated complex events are handled by the procedure

PROCESSOUTGOINGEVENT in lines 19–27. There, an event

is first saved to the outgoing queue (l. 22) and send to

all receivers interested in this event only if the node acts

as leader (l. 23). Lines 28–35 show the processing of ac-

knowledgments. The acknowledgment is archived (l. 30)

and if the corresponding event has been acknowledged by

all receivers, it is removed from the outgoing queue and

added to a temporary list of all received acknowledgments

(ll. 31–34). On a regular basis, all completely acknowledged

events are sent to all replicas (l. 37). This is shown in

the method SENDCOMPLETELYACKEDEVENTS (ll. 40–45).

Lines 46–50 show how a replica receives an incoming list

of completely acknowledged events and removes them from

its incoming queue.

Leader election: We use a leader election that provides

eventual correctness in an asynchronous system model.

Eventual agreement is not necessary.1 We use latency mea-

surements to the previous node as a leader election criteria,

trying to minimize end to end latency in a greedy one-hop

manner. As a tie-breaker we select the lowest unique node id.

All other sorts of criteria could be used for electing a leader,

as long as eventual correctness is guaranteed. Leader election

is started, when a leader is no longer available due to node or

link failure. The replica detecting the failure determines all

other replicas eligible for leader voting and starts the voting

procedure. If multiple voting procedures are started, we use

1This means that eventually at least one leader will be elected. However,
the replicas do not need to agree on one leader, therefore there may be
multiple of them.

the procedures’ starter node id as a tie-breaker to decide

which procedure will prevail and which will be canceled.

The Base Algorithm in Figure 3 shows in line 38 that each

node checks, whether the leader is still alive. If not, a LEAD-

ERDEADEVENT is triggered. If a leader l1 detects a failed

link to another leader l2, it sends a LEADERDEADEVENT to

the remaining replicas of l2. Additionally, if l2 detects that

it cannot receive events anymore, it sends a LEADERDEAD-

EVENT itself. When such an event is received, a new leader

election is started (ll. 51–53). As a result, at least one other

replica will start sending outgoing messages.

Duplicate detection: Duplicates can be identified in the

incoming queue of each node using timestamps. Following

the construction principles of timestamps described in Sec-

tion IV and the no false ordering property of Definition 1,

the timestamps for each event type have to be strictly

monotonically increasing. In the system model, we restricted

our incoming connections to one per event type. Therefore,

if an event is received with a timestamp that is not greater

than the already archived timestamp for this event type, a

duplicate is detected and can be discarded before processing

it.

The Base Algorithm in Figure 3 shows in line 9 that only

event that are not identified as duplicates are processed.

A duplicate is detected if the timestamp of an incoming

event is not newer than the one already archived for the

corresponding event type.

C. Analysis: Bounds and Proof

After presenting the algorithm used for providing strong

reliability, we analyze it theoretically. In a performance

analysis we consider best case and worst case overhead

of our algorithm. Afterwards, we prove that our algorithm

provides strong reliable CEP according to Definition 1.

The overhead created by maintaining f additional replicas

compared to using no replication at all can be measured

in terms of additional sent events. We show the additional

messages sent in the best case and in the worst case for

our approach (cf. Figure 4). By sending with all replicas,

the worst case overhead is in O(f2) for f replicas. An

unadapted active standby approach would deliver exactly this

performance. Whereas in the best case only one replica per

node is sending. This creates overhead which is in O(f) for

f replicas. The best case will be achieved, during periods

when synchrony could be reached in the system. If this is

never the case, the performance will most likely be worse,

as more than one leader will be elected.

The additional space requirements for each node for

storing the timestamp array are in O(e) for e different types

of events. Additionally, replicas need to buffer the outgoing

events. As events remain in the buffer until they have been

acknowledged by all receiving replicas, the queue can grow

infinitely. Thus, if the only missing acknowledgments are



1: Use FailureDetector
2: Boolean isLeader
3: List completelyAckedEvents
4: List replicaList � The set of all replicas
5: List receiverList � Set of all receivers of outgoing events
6: Queue outgoing � The outgoing queue

7: upon incomingEvent(iE)
8: SENDACK(iE) � Acknowledge the incoming event
9: if (ISDUPLICATE(iE)) then

10: skip
11: else
12: ARCHIVETIMESTAMP(iE.type,iE.ts)
13: newComplexEvents ← EXECUTECORRELATIONS(iE)
14: for all (event ∈ newComplexEvents) do
15: PROCESSOUTGOINGEVENT(event)
16: end for
17: end if
18: end

19: procedure PROCESSOUTGOINGEVENT(event)
20: receivers ← receiverList.GET(event.type)
21: for all (receiver ∈ receivers) do
22: outgoing.ENQUEUE(event, receiver)
23: if (isLeader) then
24: SEND(event, receiver)
25: end if
26: end for
27: end procedure

28: upon Acknowledgment(ack, sender)
29: ackedEvent ← ack.event
30: ADDACKNOWLEDGMENT(ackedEvent, sender)
31: if (ISCOMPLETELYACKED(ackedEvent)) then
32: outgoing.REMOVE(ackedEvent)
33: completelyAckedEvents.ADD(ackedEvent)
34: end if
35: end

36: upon regularBasis()
37: SENDCOMPLETELYACKEDEVENTS()
38: CHECKLEADERALIVE()
39: end

40: procedure SENDCOMPLETELYACKEDEVENTS()
41: for all (rep ∈ replicaList) do
42: SEND(completelyAckedEvents, rep)
43: end for
44: completelyAckedEvents.REMOVEALL()
45: end procedure

46: upon ReceiveAckedEventList(listOfAckedEvents)
47: for all (event ∈ listOfAckedEvents) do
48: outgoing.REMOVE(event)
49: end for
50: end

51: upon LeaderDeadEvent()
52: STARTLEADERELECTION()
53: end

Figure 3. Base Algorithm: Behavior of a node h

(a) Best Case (b) Worst Case

Figure 4. Overhead in terms of events for maintaining f additional replicas
per node, shown for f = 2: (a) In the best case, only one leader sends
events to all replicas of another node. (b) In the worst case, each replica
assumes itself to be a leader and thus all replicas send events to all replicas
of another node.

from nodes which are detected to have failed permanently,

the messages are removed from the queue.

Claim 1: Strong Reliable CEP
The Base Algorithm in Figure 3 provides strong reliable

distributed CEP if at least one correct replica for each

correlation node exists.

Correctness: We will prove that our algorithm pro-

vides strong reliability, by showing that the properties of

Definition 1 hold: No false positives, no false negatives, no
duplication, no false ordering, and completeness. We prove

each of the properties separately in a lemma.

Lemma 5.1: No false ordering
Every rule ω with ω(ei, ti) = (σk, tk) creates events σkj

for j ∈ N with monotonically increasing timestamps tkj .

Proof: We assume h to be the first node to produce

out-of-order events. As timestamp creation only depends

on the incoming event’s timestamps and we can assume

that correlation itself is correct, the sequence of timestamps

for resulting situations σkj
is directly derived from the

timestamps of incoming events (cf. Equation 1). As event

correlation is order preserving (cf. Section III), h did already

receive out-of-order events. This contradicts with our initial

assumption.

Lemma 5.2: No duplication
No node executing the Base Algorithm (cf. Figure 3) pro-

cesses duplicate events.

Proof: The duplicate detection algorithm marks two

events σk and σ′
k as duplicates, if they are correlated by

the same rule ωk using the exact same input events ei,
i. e. ω(ei, ti) = (σk, tk) ∧ ω(ei, ti) = (σ′

k, t
′
k). As for

timestamp computation the same function g() is applied to

the timestamps ti of events involved in correlation, σk and

σ′
k must have the same timestamps, i. e. tk = t′k. Thus,

they are identified as duplicates by the duplicate detection

algorithm of Section V.

Lemma 5.3: No false negatives
With algorithm 3 a CEP System S produces no false nega-

tives w. r. t. a reference system; i. e. if e /∈ ΣS ⇒ e /∈ ΣR.

Proof: We need to show the following properties:

• With acknowledgments, no events will get lost due to

node or link failures



• No messages will get lost due to outgoing queue

pruning

• No messages will get lost due to duplicate filtering

No loss due to acknowledgments: A sender removes an

outgoing event if and only if all receivers have acknowl-

edged the event or if the only pending acknowledgments

are from nodes that are permanently considered faulty. As

there are f + 1 receivers for each subscription of which

only f can fail simultaneously, at least one correct receiver

remains. If the sender itself fails before all receivers have

received acknowledged the event, f sender replicas remain,

of which only f−1 can additionally fail. Eventually accurate

leader election ensures that correct replicas will forward all

remaining events.

No loss due to pruning of outgoing queue: As only

events that have been acknowledged by f + 1 receivers

can be pruned from the outgoing queue. In any case there

will at least remain one correct receiver that will continue

processing.

No loss due to duplicate filtering: With Lemma 5.1, we

have guaranteed that timestamps of events of the same type

are strictly monotonically increasing at the receiver side.

Events are not received in another order than they are sent.

Thus, events with a newer timestamp have been created later

and also sent at a later point. Therefore, we do not filter out

non-duplicates by checking for timestamps.

Lemma 5.4: No false positives
With algorithm 3 a CEP System S produces no false posi-

tives w. r. t. a reference system R; i. e. if e ∈ ΣS ⇒ e ∈ ΣR.

Proof: With the no creation property for links (cf. Sec-

tion IV) and duplicates and false negatives already proven

impossible (cf. Lemma 5.2 and Lemma 5.3), false positives

are impossible.

Lemma 5.5: Completeness
All events that can be correlated from the incoming streams

will be correlated eventually.

Proof: Since leader election is eventually correct and

at most f of the overall f +1 replicas available for each set

of correlation rules can fail, correlation itself will not stop.

With Lemma 5.3 and Lemma 5.4, all events will reach their

destination eventually, thus ∃t : ⋃t′<t Σ
t′
S = ΣR.

VI. EVALUATION

In the evaluations we aimed to understand the perfor-

mance characteristics of the replication scheme indepen-

dent of specific operator implementations or other system

dependent details. Therefore, we implemented the scenario

presented in Section II in the PeerSim simulation frame-

work [11].

Our setup consists of a correlation network that comprises

70 nodes deploying. During regular execution, more than

40 000 primary event messages served as input for the

system, resulting in about 13 000 situations delivered to

the global management. Overall, more than 170 000 event

messages were created in the system.

The overhead introduced by our algorithm compared to

a system using no replication is shown for both cases,

normal behavior with no failures and in the case of node and

link failure. For normal behavior, we analyze the overhead

depending on the number of additional replicas per node. In

the case of failures, we present a more detailed analysis of

the overhead depending on failure probability and number

of additional replicas per node.

Additionally, we show the average amount of simultane-

ously active leaders providing the same functionality. Given

the theoretical analysis of best and worst case in the previous

section, the actual system behavior is of great interest.

In each experiment, f additional replicas for each node

are deployed. Nodes are assumed to fail with probability

pfail at each simulation step. We show experimental results

for 0 < f < 5 and 0% < pfail < 0.1%. The results for each

measurement were determined in 500 experiment runs.

Overhead: Figure 5b shows the overhead for different

node failure rates depending on the number of deployed

replicas per node. As it can be seen, our approach incurs

linear runtime overhead in terms of event messages. During

recovery it happens that messages which had been received

already but not acknowledged are transferred a second time.

It also can be seen that the amount of duplicates scales

linearly with the amount of replicas deployed.

Figure 6 shows the overhead for different numbers of

replicas depending on the failure probability for each node.

We can see that the amount of duplicates scales linearly

with the node failure rate. The scaling factor is higher,

the more replicas are deployed. In principle, the same

development can be seen for the leader election messages.

However, the actual transferred amount is highly depending

on link characteristics and which node makes the first leader

proposal. Therefore, the more replicas are deployed, the

more fluctuations are visible in these measurements.

Average leader count: The theoretical analysis of

the algorithm’s performance already provided boundaries:

Linear message overhead in the best case and quadratic

message overhead in the worst case. Decisive for the actual

performance is the amount of leaders that are active simulta-

neously for each functionality. The closer the average leader

count is to 1, the better performs the algorithm; i. e. fewer

duplicate messages are created. Figure VI shows that the

measured average leader count is very close to the optimum

of 1. At the same time it can be seen that the average

count is decreasing, if the nodes are very unreliable, because

fewer correct nodes exist within a replica group at a time

which could compete for the leader position. Multiple active

leaders occur when a replica makes the incorrect assumption

that the current leader has failed and starts a new election

process. Values below 1 indicate that at certain times no

correct replica for an operator exists; the selected failure rate



(a) Duplicate event messages (b) Leader messages

Figure 5. Overhead of replica placement in terms of duplicate event messages and messages for leader election dependent on the number of replicas.
Each node deployed 0 < f < 5 additional replicas. Up to f nodes fail simultaneously. (a) Shows the amount of duplicate event messages. (b) Shows the
amount of messages for leader election.

(a) Duplicate event messages (b) Messages for leader election

Figure 6. Overhead of replica placement in terms of duplicate events and messages for leader election dependent on node failure probability. Each node
deployed 0 < f < 3 additional replicas. Up to f nodes fail simultaneously; the failure probability is 0% < pfail < 0.1%. (a) Shows the amount of
duplicate event messages. (b) Shows the amount of messages sent for leader election.

Figure 7. Average count of simultaneously active leaders.

is too high compared to the number of operators available.

Results show that the mechanism of leader election is

suitable to keep the amount of event messages at an accept-

able level of linear growth. Despite the fact that replicas

do not need to agree on a common leader, most of the time

only one leader is active per functionality. At the same time,

the additional overhead introduced through leader election is

marginal compared to the total number of event messages.

Figure 8. Average end to end latency using the node’s latencies to the
previous hop as decision criterion.

Leader election strategy: Figure VI shows the devel-

opment of the end to end latency for all detected situations

depending on the node failure rate. It can be seen that

using only three replicas for each node, the latency for a

very unreliable system with nodes with a failure rate of

pfail = 0.1 can be kept at almost the same level as with

no replicas but nodes with a failure rate of pfail = 0.005.



We can also see that a higher failure rate introduces an

additional delay. The delay is higher, the less replicas are

used in the system. This is due to the fact that with no or

only few replicas it happens more often, that there is no

correct replica for an operator. Thus, processing is delayed

until a failed node recovers.

VII. RELATED WORK

Recently, an approach for dealing with unreliable commu-

nication channels when delivering events to a CEP system

has been proposed [12]. With this algorithm, the impact of

events not received by the CEP system can be limited by

omitting certain correlations. However, failures of correla-

tion nodes are not considered in this approach.

To the best of our knowledge, no distributed CEP system

features algorithms to address reliable event delivery to

consuming applications in the face of failures of correlation

nodes. In this section, we analyze reliability approaches of

other fields and judge their applicability for a distributed

CEP system.

Methods for group communication which ensure ordered

exactly-once delivery such as reliable multicast, atomic

broadcast or consensus require a synchronous system model

or are not guaranteed to terminate even in the face of a single

node failure [13], [14]. Therefore, they cannot be applied in

our case.

Standard principles for replication of nodes include state

machine replication, or active standby, and checkpointing,

or passive standby [15], [16]. These concepts propose to

either add active replicas for redundancy in the complete

system and have multiple executions at the same time or to

regularly synchronize an original with several passive repli-

cas. However, active standby increases the event messages

quadratically with the number of deployed replicas whereas

passive standby requires a checkpoint at each state change

if a lossless history of incoming events is to be provided.

In both cases, the additionally consumed bandwidth is

unacceptable for systems with high event rates. Furthermore,

applying one of these strategies will lead to duplicate events.

Therefore, duplicate filtering is required to guarantee strong

reliability semantics.

For Distributed Stream Processing (DSP), which is also

a paradigm for processing data in streams of potentially

high rates, a few reliability approaches were proposed. These

systems, however, typically provide operators less expressive

than many CEP operators. The existing approaches can be

divided in three categories: The first category adopts the

characterization of DSP as "partial fault-tolerant" [17], [18].

In the case of a failure, systems try to produce information

which is not perfectly accurate but might still be useful to

the receiver.

In the second category, information is published tenta-

tively and corrections can be issued at a later point in

time that revoke the messages sent before [19]–[22]. These

solutions are based on two premises: i) Dependencies of op-

erators on each other’s output have to be within a reasonable

limit to keep correction cost acceptable and more important

ii) the correction of incorrect messages has to be (still)

possible at all. In the scenarios we are examining, decisions

might already been made based on incorrect information that

are either very costly or impossible to correct. Therefore,

correct information is needed at all times.

Solutions of the third category prevent the delivery and

processing of incorrect information. They either implement

active standby [23], checkpointing [24] or use a logging

mechanism to record all messages missed during a node’s

downtime. On recovery of a node, these messages are re-

sent and can be processed [25]. However, the active approach

still increases the message load quadratically. Checkpointing

requires frequent execution of sophisticated state-extraction

algorithms that need either to be specified individually for

each operator or require taking a full memory snapshot. State

extraction either restricts the user to using a certain system

or requires additional expertise to implement the extraction

function. On the other hand, a memory snapshot can only be

taken if the respective pages are write-locked, which slows

down processing. Approaches using logging at upstream

neighbors can only tolerate one failed node at a time; an

extension for supporting multiple simultaneous node failures

cannot be implemented easily. The same difficulties arise for

employing combinations of checkpointing and logging.

Within many event-based systems, publish/subscribe mid-

dleware is used to mediate events between the producers

(publishers) and their consumers (subscribers). In this field,

reliability has been an active research topic. However, ap-

proaches only consider event routing. The state of a node—

which is necessary for correct event correlation—is not

considered.

None of the above strategies can be applied to an existing

distributed complex event processing system for providing

reliability while at the same time preventing false positives,

false negatives and processing of duplicates with acceptable

overhead.

VIII. CONCLUSION

Although reliability is the key for being able to use the

benefits of CEP in application fields which are sensitive

to incorrect information such as monitoring, it has hardly

been addressed in the literature. This paper presented an

algorithm that ensures a strong reliability semantics for an

arbitrary distributed CEP system. The algorithm uses repli-

cation to increase the availability and additionally provides

mechanisms to prevent false positives, false negatives and

processing of duplicates. Communication between replicas

is organized such that the induced overhead is kept low.

We proved correctness and provided practical perfor-

mance evaluation that analyzed the induced overhead during

normal execution and in the case of failures. Although the



worst case behavior yields an overhead that is quadratic in

the order of replicas per node, the evaluation results show

that even under high failure rates the message overhead stays

linear. The amount of additional messages for leader election

and the duplicates created because of replication are only

marginal compared to the total amount of transferred event

messages. Therefore, the presented algorithm is a first step

to enable the use of distributed CEP systems for scenarios

with a high demand for scalability as well as reliability.
Although in relative terms a linear growth of sent event

messages is acceptable, the absolute amount of sent mes-

sages is still significantly high due to replication. Thus, the

bandwidth requirements are pretty high, even if no failures

are experienced. However, this is the case with any approach

using a proactive replication scheme.
For future work, we see two relevant contributions: While

this work is an initial step to provide reliability for CEP,

we want to determine and support other relevant semantics

in highly distributed settings. Additionally, we want to

investigate reducing the runtime overhead and bandwidth

consumption e. g. by employing reactive replication.

ACKNOWLEDGMENT

This work has been supported by contract research “In-

ternationale Spitzenforschung II” of the Baden-Württemberg

Stiftung. The authors would like to thank Andreas Benzing,

Stefan Föll, Adnan Tariq, and all anonymous reviewers for

their helpful comments.

REFERENCES

[1] P. R. Pietzuch, B. Shand, and J. Bacon, “A framework
for event composition in distributed systems,” in Proc. of
Middleware ’03, 2003.

[2] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski, “The
PADRES distributed publish/subscribe system,” in FIW, 2005.

[3] G. G. Koch, B. Koldehofe, and K. Rothermel, “CORDIES:
Expressive Event Correlation in Distributed Systems,” in
Proc. of DEBS ’10, 2010.

[4] B. Schilling, B. Koldehofe, U. Pletat, and K. Rothermel, “Dis-
tributed Heterogeneous Event Processing: Enhancing Scala-
bility and Interoperability of CEP in an Industrial Context,”
in Proc. of DEBS ’10, 2010.

[5] S. Gatziu and K. R. Dittrich, “Samos: an active object-
oriented database system,” IEEE Data Eng. Bull., vol. 15,
no. 1-4, pp. 23–26, 1992.

[6] S. Chakravarthy and D. Mishra, “Snoop: an expressive event
specification language for active databases,” Data Knowl.
Eng., vol. 14, no. 1, pp. 1–26, 1994.

[7] A. Adi and O. Etzion, “Amit - The Situation Manager,” The
VLDB Journal, vol. 13, no. 2, pp. 177–203, 2004.

[8] S. Rizou, F. Dürr, and K. Rothermel, “Solving the Multi-
operator Placement Problem in Large-Scale Operator Net-
works,” in Proc. of ICCCN ’10, 2010.

[9] B. Schilling, B. Koldehofe, and K. Rothermel, “Efficient and
Distributed Rule Placement in Heavy Constraint-Driven Event
Systems,” in Proc. of HPCC ’11, 2011.

[10] M. Aguilera, “Stumbling over consensus research: Misunder-
standings and issues,” in Replication, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, vol.
Volume 5959/2010, ch. 4, pp. 59–72.

[11] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The
Peersim simulator,” 2004, http://peersim.sf.net.

[12] D. O’Keeffe and J. Bacon, “Reliable complex event detection
for pervasive computing,” in Proc. of DEBS ’10, 2010.

[13] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” J. ACM, vol. 43, no. 2, pp.
225–267, 1996.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[15] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992.

[16] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: a tutorial,” ACM Comput. Surv.,
vol. 22, no. 4, pp. 299–319, 1990.

[17] N. Bansal, R. Bhagwan, N. Jain, Y. Park, D. Turaga, and
C. Venkatramani, “Towards optimal resource allocation in
partial-fault tolerant applications,” in Proc. of INFOCOM ’08,
2008.

[18] G. Jacques-Silva, B. Gedik, H. Andrade, and K.-L. Wu,
“Language level checkpointing support for stream processing
applications,” in Proc. of DSN ’09, 2009.

[19] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Specula-
tive out-of-order event processing with software transaction
memory,” in Proc. of DEBS ’08, 2008.

[20] A. Brito, C. Fetzer, and P. Felber, “Minimizing latency in
fault-tolerant distributed stream processing systems,” in Proc.
of ICDCS ’09, 2009.

[21] J.-H. Hwang, S. Cha, U. Cetintemel, and S. Zdonik,
“Borealis-R: A Replication-transparent Stream Processing
System for Wide-area Monitoring Applications,” in Proc. of
SIGMOD ’08, 2008.

[22] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stone-
braker, “Fault-tolerance in the borealis distributed stream
processing system,” in Proc. of SIGMOD ’05, 2005.

[23] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and highly-
available stream processing over wide area networks,” in
Proc. of ICDE ’08, 2008.

[24] Y. Kwon, M. Balazinska, and A. Greenberg, “Fault-tolerant
stream processing using a distributed, replicated file system,”
Proc. of VLDB Endow., 2008.

[25] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik, “High-availability algorithms
for distributed stream processing,” in Proc. of ICDE ’05,
2005.


