PreCon — Expressive Context Prediction using
Stochastic Model Checking*

Stefan Foll, Klaus Herrmann, and Kurt Rothermel

Institute of Parallel and Distributed Systems
Universitat Stuttgart
Universitatstrasse 38, 70569 Stuttgart, Germany
{stefan.foell, klaus.herrmann, kurt.rothermel }@ipvs.uni-stuttgart.de

Abstract. Ubiquitous systems need to determine the context of humans
to deliver the right services at the right time. As the needs of humans
are often coupled to their future context, the ability to predict relevant
changes in a user’s context is a key factor for providing intelligence and
proactivity. Current context prediction systems only allow applications
to query for the next user context (e.g. the user’s next location). This
severely limits the benefit of context prediction since these approaches
cannot answer more expressive time-dependent queries (e.g. will the user
enter location X within the next 10 minutes?). Neither can they han-
dle predictions of multi-dimensional context (e.g. activity and location).
We propose PreCon, a new approach to predicting multi-dimensional
context. PreCon improves query expressiveness, providing clear formal
semantics by applying stochastic model checking methods. PreCon is
composed of three major parts: a stochastic model to represent context
changes, an expressive temporal-logic query language, and stochastic al-
gorithms for predicting context. In our evaluations, we apply PreCon to
real context traces from the domain of healthcare and analyse the per-
formance using well-known metrics from information retrieval. We show
that PreCon reaches an F-score (combined precision and recall) of about
0.9 which indicates a very good performance.

1 Introduction

Ubiquitous systems are expected to provide a new level of computational in-
telligence, where personalized services are tailored to fit the dynamic needs of
humans. One big challenge in this respect is to proactively identify the individual
needs of humans in the real world without requiring explicit input. As the user’s
needs are often connected to the physical context of human behaviour (e.g.,
where humans are going and what they are doing) ubiquitous systems have to
be context-aware. However, in order to be proactive, knowledge about the user’s
future context is of major importance. For instance in mobile advertising [1],
personalized information such as special offers or cultural events are delivered
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to mobile users. Incorporating the future context, the relevance of the advertise-
ments can be enhanced, e.g. based on the user’s next locations on his shopping
tour. Similarly, in domains like home automation or health care, awareness of
future context yields more effective services [2]. However, future context is an
implicit piece of information as it resides in the routines and habits inherent to
our daily lives. Therefore, context prediction approaches have been devised to
uncover the patterns of human behaviour and provide the gained knowledge to
ubiquitous applications. The level of how intelligently applications can under-
stand and respond to user needs is strongly connected to the expressiveness of
queries a context prediction system can answer.

Current approaches to context prediction [3], [4], [5], [6], [7], [8] only allow
for very simple queries for the most probable next user context (e.g. the user’s
next location). Hence, their expressiveness is severely limited since applications
are not able to extract any information on the expected time of such a context
change. We argue that intelligent ubiquitous applications need therefore the
ability to submit time-dependent queries (e.g. “Will user A be at location x
within the next 10 minutes?”). Likewise, queries for multi-dimensional context
(e.g. “Will the user be executing activity Y at location X within the next 10
minutes?”) must be possible. A system that can answer such expressive queries
accurately, provides applications with more flexibility and allows them to act in
a more goal-oriented way for their user.

We propose PreCon, a new approach to context prediction that allows time-
dependent multi-dimensional context prediction queries. PreCon applies well-
known methods of stochastic model checking [9] (used e.g. for the verification of
distributed communication protocols) to the analysis and prediction of human
behaviour. While classical model checking relies on fixed hand-crafted models
of computer systems, our models (called stochastic user models (SUM) in the
following) are representations of human behaviour that are learned from traces
of past context changes. We represent SUMs as Semi-Markov Chains such that
the changes in context are regarded as a stochastic process. We use temporal
logics as a query language, enabling applications to specify expressive temporal
properties on future context. For a prediction, our system verifies with which
probability these properties hold on a given SUMs. Our evaluations show that
PreCon delivers a high precision and recall for a real-world health-care scenario.

The rest of the paper is organized as follows. First, we give an overview of
our approach in Section 2. In Section 3, we present the concepts of SUMs and
describe our context prediction query language in Section 4. We then discuss the
stochastic algorithms for query evaluation in Section 5. Section 6 presents the
related work before we present the evaluation of our approach in Section 7 and
conclude the paper in Section 8.

2 Overview of the PreCon Approach

Figure 1 gives a high-level overview of our approach. We assume that a con-
text recognition system monitors the context of the user and records context
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Fig. 1. Overview of the PreCon approach — Concepts specified by PerCon are shown
in dark boxes

traces (time-stamped series of consecutive context changes) in user histories.
For instance, a context trace may contain information about which activities
have been executed at what time and location. The context traces are given as
input to our learning algorithm, which processes them to obtain an SUM. Our
framework allows context traces to be processed either in a batch-like fashion or
in real-time. For the batch-like approach, the learning algorithm processes one
or more context trace and creates a new SUM, while for the real-time approach,
the algorithm updates the existing SUM each time a relevant context change has
been observed. In both cases, the information about sequential changes in user
context is used to build a Semi-Markov Chain (SMC) — a well-known stochastic
process model that we use to represent SUMs. A SMC is a probabilistic state
transition system that maintains the discrete states of the user behaviour and
the associated state transition probabilities. Furthermore, the temporal charac-
teristics of context changes (the so-called dwell times) are modelled by the SMC.
This is the key to PreCon’s concept of time-dependent queries.

Applications can specify context prediction queries using different temporal
operators that are part of a temporal stochastic logic. This query language pro-
vides well-defined semantics to express reachability properties (e.g. will the user
arrive at a certain location) and invariant properties (e.g. will the user stay at a
certain location). A context prediction query is evaluated on an SMC to calculate
the probability with which the specified properties hold. A querying application
can specify a probability threshold with which the resulting probability is com-
pared, and a true or false is returned depending on the outcome. Finally, the
querying application may use this result to take proactive decisions in terms of,
e.g. user interaction and context-aware services, to enhance the user’s experi-
ence. In the following sections, we will investigate each element of PreCon in
turn.
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3 Stochastic User Model

People follow varying behavioural patterns in their daily lives, such that real
world user behaviour can not be described in a deterministic way. Consequently,
we require a user model that is able to deal with this probabilistic nature of
human behaviour. In the following, we give a precise formal definition of the
SUM. Subsequently, we present our approach for learning such a SUM from
observations recorded in real-world context traces.

3.1 Semi-Markov Chain

We represent an SUM as a Semi-Markov Chain (SMC) [10]. In general, Markov
Chains are a popular means for describing stochastic processes with discrete
state spaces. In addition to that, SMCs specify a so-called state dwell time — an
arbitrary probability distribution that is associated with every state transition
specifying the amount of time spent in a given state. Formally, a SMC M is a
3-tuple defined as:

M = (S,p,q)

where S is the state space, p: S x S — [0,1] with Vs € S : >, cop(s,s') =1
is the transition probability function, and h : (s,s’,t) — [0,1] with ¢ € R
represents the distribution of dwell times associated with a state transition
(s,s") € SxS. For h : (s,§,t), we will also write h, 4 (t) for brevity rea-
sons. The SMC allows us to describe a user’s behaviour in the following manner:
At each point in time, a user is in a state s € S that is identified by his cur-
rent context (cf. Section 3.2). While the user acts in the real world, his context
changes and his SMC moves to a new state s’ € S representing the new context.
s' is called the successor state of s, and s is visited with a certain probability
p(s,s’). Before leaving the current state s, s is active for a limited amount of
time (the dwell time represented by hs o (¢)). During this time period the user’s
context does not change.

3.2 Learning a SMC

In contrast to classical model checking, we do not expect a designer of the sys-
tem to define the SMC underlying the real world behaviour. Instead, we apply a
learning approach and derive the SMC from the observations of a context recog-
nition system. In the following, we describe the basic elements of an SMC as
well as the procedure of how to process context observations in order to learn
an SMC.

User States A user state s = (cy, ..., ¢,) is an n-dimensional vector of context
information. Each component ¢; of s is of a specific context type C;, and C1, ..., Cy,
are the context types known to the system with domains Dom(C1), ..., Dom(C,,).
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E.g. ¢; may be an integer value from Dom(C;) = NT, and C; may be the ambi-
ent temperature type. Other types could be location and activity, and the cor-
responding domains could be enumerations of possible activities and symbolic
location identifiers respectively. For example, the state s = ("meeting room”,
" give presentation”) € Dom(Location) x Dom(Activity) describes the fact that
the user executes the activity give presentation in a location referred to as meet-
ing room. Whenever a combination of context information (c1, ..., ¢,,) is detected
that has not already been encountered for the specific user, a new user state
s=(c1,...,cpn) is added to the SMC.

Transition Probabilities A concrete series of consecutive user states is rep-
resented as a stochastic process of random variables X, X5, X3, ..., where X;
refers to the state occupied after the i-th state transition. In order to learn the
state transition probabilities, we assume the Markov property: The probability
p(s, s’) for the state s’ to be visited next only depends on the current state s, and
is independent of all previous state changes. This assumption can be extended
such that p(s, s’) depends on the k last visited states (k-order Markov models [3])
if needed, and PreCon operates on these more general k-order models. However,
for simplicity, we assume k& = 1 here. The math is essentially the same.

Assuming a stationary probability distribution, the probabilities p(s, s’) can
be estimated from the history of past state transitions: Let wy o be the transition
weight, which denotes the number of transitions from s to s’ as observed in the
history. The transition probability p(s,s’) is defined as p(s,s’) = P(X,41 =
SNX, =s) = % Thus, the probability is the ratio of the number of
observed state transitions from s to s’ to the number of all observed transitions
from s.

Dwell Time Distribution The dwell time in state s is modelled as a random
variable Ds. We learn the probability distribution of Dy conditioned on each
transition such that hy o (t) = P(Ds = t|X,41 = §', X, = s). For this purpose,
we observe the time periods that pass between consecutive changes in user state.
In order to limit the storage and computation overhead, we apply a discretization
and divide time into intervals of equal size At, such that the i-th time interval
is defined as I; = [i - At, (i + 1) - At). The distribution hs ¢ can then be derived
as follows: Let w! , be the number of transitions (s, s’) that occurred in the
interval I; such that w, o = ZZ wiﬁs, is the total number of observed transitions
(s,s"). Then the probability for spending exactly time ¢ in state s before leaving
to successor state s’ is calculated as

22 1
s.s! tUHr : .
vt g &)

In equation 1, we use At as a normalization factor to ensure that [ hy . (t) dt =
1 for the cumulative distribution. As we deal with a discrete representation of
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the dwell time distribution, the cumulative distribution function fab hs,s (t)dt
is computed as a sum of intervals over the probability mass function. More
precisely, the cumulative probability is determined by the sum over the intervals
which are enclosed by the integral ranges between a and b. As a and b may fall
into discretization intervals, we interpolate the probability associated with the
fraction of the corresponding intervals based on a linear function. The cumulative
distribution is later used in Section 5 to determine the probability resulting from
time-bounded queries.

4 Prediction Query Language

PreCon’s prediction query language is based on Continuous Stochastic Logic
(CSL) [11], a probabilistic derivative of branching-time temporal logics (applied
in classical model checking). CSL provides operators for verifying temporal prop-
erties of probabilistic state transition systems. Applications construct queries
from these temporal operators and submit them to PreCon. The operators are
then evaluated on the learnt SMC to verify the specified properties.

The state space S can be traversed by going from one state to the next
as the transitions among the states permit. The resulting series of visited states
(called a path) models one possible temporal behaviour of the user. For a context
prediction, PreCom starts at the state s € S the user currently occupies in the
real world and evaluates the given query from there, possibly considering all
possible paths starting at s (depending on the temporal operators in the query).
The query language is defined as follows:

Let p € [0,1] be a probability threshold, let < € {<,>} be a comparison
operator, let ¢ € RT be a time bound, and let (C;,c € Dom(C;)) be a contex-
tual value ¢ of type C;. Queries can be composed from CSL using the following
grammar:

A query is a temporal-logic formula ¢ with
& =true| (Ci,c) | PAD | D | Pyp(ep),
where ¢ is a path formula defined as
o= XS0 | FS'o | G50 | &, US',

Using CSL, we can investigate reachability properties (using operators X and
F) and invariant properties (using operators G and U) of future user behaviour.
X is the Next operator. It evaluates a condition @ on all immediate successor
states of the current user state s. @ is expressed as a name-value pair (C;,¢)
consisting of the name of a context type C; (e.g. location) and a specific context
value ¢ (e.g. office). The query “Will the next location be the office?” can be
expressed by applying the Nezt operator to @ = (location, of fice), resulting in
X (location,of fice). F is the Eventually operator and can be used to verify if
a condition @ holds in any state reachable from s through paths in the SMC.
G is the Globally operator and can be used to check if the condition @ holds in



PreCon — Expressive Context Prediction using Stochastic Model Checking 7

every state on all paths starting in s. U is the Until operator and expresses that
eventually @5 must hold and @; must hold on all paths starting at the current
state until @5 holds.

Time is a first order construct of the prediction query language. All operators
are associated with a time constraint ¢, defining an upper bound on the time,
which may pass until the desired property holds. Having such a time bound and
using the dwell time distributions to evaluate time-bounded queries enables us
to formulate time-dependent queries.

The raw predictions are always probabilistic in nature when a query is eval-
uated. So the answer of the model checking algorithm is of the form “The user
enters his office within the next 10 minutes with probability 0.74”. A querying
application, however, usually expects a true or false as an answer. Therefore,
the calculated probabilities are compared to a probability threshold p, which is
expressed in the subscript of a query formula (Pg,(y)). The querying applica-
tion specifies this probability and gets a boolean result depending on whether
the outcome of the query evaluation exceeds the threshold or not'.

In Table 1, we give some examples for behavioural properties which can be
expressed as CSL formulas. The examples demonstrate the range of different
use cases for context predictions, including queries with different semantics and
context types.

Query Explanation

]P’zo,g(Xflomm(location, of fice)) |Will the office be the uer’s next location within
the next 10 minutes with a probability of > 0.87

P10 V(location, home) AlIs the user currently at home and will he eventu-
P8 FS20™ (<(location, home)) |ally leave with a probability > 0.8 within the next
30 minutes 7

P>o.6 G=30min (activity, walking) |Will the user be walking within the next 30 min-
utes with a probability > 0.67

P>o.2 ((location, stuttgart)|Will the user be in Stuttgart with a probability

U=60min (1ocation, home)) > 0.2 until he eventually reaches his home within
the next hour ?

P>1.0(activity, biking) Al|ls the user currently biking (anywhere) and will

Psos(FS59™™  (location, home) A|eventually relax (activity = sitting) at his home

(activity, sitting)) with a probability > 0.2 within the next hour?

Table 1. Examples of context prediction queries

The probability threshold p is an application-dependent value to influence
the trade-off between false positives (queries that evaluate to true but prove to
be false later on) and false negatives (queries that evaluate to false but actually
become true in reality): A higher threshold reduces the number of false positives

! Applications can also access the raw prediction result in case they require more
complex threshold comparisons.
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and increases the number of false negatives. A lower threshold has the opposite
effect. Consequently, the concrete threshold defines the ratio of false negative
and false positives that the application is willing to accept. The choice for the
threshold is dependent on the application semantics. For example, in security
critical applications it is usually beneficial to prepare for exceptional cases even
if they might not occur. Hence, such applications may tolerate a higher number
of false positives rather than false negatives. On the contrary, a large number
of false positives may negatively impact the satisfaction of a user in an applica-
tion that delivers advertisements based on his predicted future location. In this
case a higher probability threshold is beneficial to prevent the user from being
overwhelmed by irrelevant advertisements.

5 Query Processing

Classical model checking algorithms assume static state transition systems, where
the system is analysed at design-time and behavioural properties are only stud-
ied at state entry times. In our case, the system that is subject to the verification
is dynamic. In particular, the probability resulting from the evaluation of a query
is depending on the time Ad, that has passed since the current state s was en-
tered. Therefore, we have to extend the standard model checking approach to
account for Ad (referred to as the running dwell time in the following) by devis-
ing new ways of evaluating the temporal operators X and U. This is sufficient
since it can be shown that, F' and G can be expressed using the X and U opera-
tors [9]. For example, the reachability property F='$ can be transformed to the
equivalent expression (true Uét@)). We refer to X and U as the basic operators
in the following. Arbitrarily complex temporal-logic formula can be evaluated
in a bottom-up manner based on a tree representation [9] using only the basic
operators. Thus, evaluating a query requires two things:

1. We need to be able to determine whether a given state s satisfies a basic
context constraint ¢ = (C}, c). The basic satisfaction relation is defined as
(s=(c1,-Cj,.cccn) EDP) & ¢; =c.

2. We need the ability to calculate the probability of X<'@; and ®,U<!®,
for some basic context constraints @q,®,. Intuitively speaking, this involves
calculating the probabilities of reaching a state s with s = @, and of traveling
a path where s; = @5 holds for every state s;.

Our model checking problem can be solved by evaluating a satisfaction rela-
tion = for the path formula ¢ enclosed by the probabilistic operator Po,(¢) as
follows:

(s, Ad) |= Poyp() < P(s, Ad |= ) <p

In other words, the path formula ¢ is satisfied after Ad time units have passed
in state s iff the probability P(s, Ad |= ¢) for the occurrence of ¢ satisfies the
threshold condition <p.

In the following, we will present the evaluation approach for the two basic
operators in detail. Let ¢ be the index of the last state transition that was
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observed, such that X; = s denotes the current state and D, = Ad is the current
dwell time that has passed in this state. As a common basis for the computations,
we define the probability for moving from the state s to a successor state s’ within
time ¢ using the information present in the SMC as follows:

P(Xﬁ,l = S/,DS < Ad + t|XZ = S,Ds > Ad) (2)

P (Xl'+1 = Sl,Ad < Ds < Ad+t|X1 = S)

N 3
ZS/GSP(Xi+1 = 3/7DS > Ale,L = s) ( )

Ad+t
D5, 5') - / hew (z) da

A

— d
Zs’ESp(Svsl) ' / hs,s’ (.T) dx
Ad

(4)

We use Baye’s rule to transform formula (2) into (3), which is free of the dwell
time distribution in the conditional probability. Thus it can be computed using
the state transition probabilities and the dwell time distribution present in the
SMC (Equation 4).

5.1 Next Operator X

The next operator limits the search space for the satisfaction of property ¢
to the immediate successor states of the current state s. Due to the running
dwell time, we have to consider the dwell time distribution only from the time
Ad onwards and express this using a subscript in Xig. We extend the model
checking approach given by Lopez et al. [12] accordingly, as follows:

P(X34 (%) (5)
= Y P(Xip1=5,Ds < Ad+t|X; =5, D, > Ad) (6)
s'ESNs' =g
Ad+t
Svesnore?ss) [ b (@)da
- Ad (7)
Y oeegp(s,s) hs s (x) dz
Ad

We can calculate P(Xi; (¢)) directly, using Equation 4. The denominator is
the probability of reaching arbitrary next states in greater than Ad time units,
whereas the nominator reduces this probability to states where the ¢ holds. This
ratio represents the desired probability considering the running dwell time Ad.

5.2 Until Operator U

For the until operator, the satisfaction of the property ¢ must be evaluated along
all paths which can be reached from the current state within the given time
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bound. The exploration of the state space is therefore not necessarily bound by
the immediate successor states. Again, we extend the approach of Lopez et al.
[12] by additionally considering the running dwell time Ad. This is expressed
using a subscript in Uitd. The probability for the satisfaction of UEZ can then
be calculated as follows:

P($, U5 ®s) = Fu(s,s',t, Ad) (8)
1,if s = &y
1 Ad+t ’
Fa(S,Slyt,Ad) = >ores P(5:8") [ Ry he o ()t ’ Z:S’GS Ad p(s,s ) (9)

hss (x) - Fy(s, 't — x)dx, if s = P A Dy

0, otherwise

17 if s ’: @2
t

Fy(s, s 1) = Zs/es/o p(s,8") - hssr (@) - Fy(s, s’ t — x)dx (10)
5 if s ': @1 A —@52

0, otherwise

The extension of the standard algorithm results in two functions Fy (9) and Fj,
(10). Function F, is used in the first step of the verification, starting from the
current user state s taking the running dwell time in s into account. Function
F, uses Fy for calculating the probability over all the possible paths starting
at s. Fy calculates the probabilities recursively using convolution of dwell time
distributions, taking into account that a state may be left at each point in time
within the remaining time horizon.

6 Related Work

Context prediction in pervasive computing has attracted much attention in re-
cent years. Maryhofer proposed a general architecture for context prediction [2]
and used methods from time series analysis (e.g. ARMA) for prediction. Other
approaches have used Markov Models [5], [3], [8], compression algorithms [3], [7],
n-gram tries [6], or machine learning techniques [4] to predict context. However,
the predictions supported by these approaches only compute the most probable
next context in a single-dimensional context space. They do not allow queries for
temporal relations in a multi-dimensional context space. Semi-Markov Chains
as we use them have also been employed by Lee and Hou for an analysis of
transient and stationary features of user mobility on the Dartmouth campus
network [13]. However, they also did not consider a sophisticated query lan-
guage that supports temporal relations. PreCon is the first system to investigate
the application of temporal logics as a powerful and expressive query language
for context predictions.

For the calculation of the predictions, we adopt the techniques from the
field of stochastic model checking [14], which has been thoroughly studied by
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Baier et al. for Continuous Time Markov Chains [11]. Lopez et. al have worked
on the extension of the model checking algorithms for Semi Markov Chains
[12]. In our approach, we leverage on their results. However, we extend their
original model checking algorithms by including the running dwell time of the
states, allowing for accurate real-time predictions. In contrast to classical model
checking approaches, PreCon does not rely on a design-time specification of a
state transition system. Instead, we apply a learning algorithm for building an
SMC in an online fashion. This allows us to incorporate newly available data at
any time, making the predictions more accurate.

The combination of SMCs, a query language based on temporal logic, and
the online learning approach represents an important new step in the area of
context prediction.

7 Evaluation

We have evaluated PreCon using real-world context traces from a case study in
a German geriatric nursing home. The nursing home is an intensive care station
for elderly people suffering from dementia and other old-age diseases. The pa-
tients are accommodated in rooms on a nursing ward, where they receive care
from nurses throughout the day. Each nurse visits patients in different rooms
and performs treatment activities (e.g., the patient morning hygiene). PreCon
predicts the future context of the nurses, in order to optimize the tasks sched-
uled by an intelligent workflow management system. The integration of context
prediction into the scheduling decisions is part of the European research project
ALLOW [15]. In order to obtain context traces, the nurses were accompanied
over the course of 25 days during 3-5 hours in the morning shift. The traces
consist of time-stamped entries of (1) the activities performed by nurses (2) the
locations of their visits and (3) the ids of the patients they took care of. Thus,
the records define a time series of multi-dimensional context, where each entry
denotes a discrete change of context associated with a nurse. Given the context
traces, PreCon learns a SMC to represent the behaviour of each nurse. In order
to evaluate the impact of different context types on the prediction outcome, we
varied the types of context used to learn the SMCs. We investigated three differ-
ent state spaces, i.e., s € Dom(Location),s € Dom(Location) x Dom(Activity)
and s € Dom(Location) x Dom(Activity) x Dom(Patient).

It is important to note that comparisons with existing context prediction
systems are not possible at this time as they cannot produce the type of temporal
predictions generated by PreCon. Since PreCon is the first system to venture
into this area, we use metrics from the area of information retrieval (as explained
in the following) to asses the general performance of PreCon.

Metrics We performed the evaluations using the metrics precision, recall and
F-score known from the area of information retrieval. If a query result exceeds
the probability threshold, we count it as either true positive (T P) or false posi-
tive (FP), depending on whether the prediction matches the real-world context.
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Fig. 2. Evaluation results for the Next operator

Otherwise, in case the prediction remains below the probability threshold, we
distinguish between true negatives (T'N) or false negatives (FN). We count the
occurrences of (T'P), (FP), (T'N), and (FN) in order to calculate the metrics.
This way, we can evaluate the influence of a varying probability threshold p on
the precision defined as % as well as on recall defined as %. While
precision is a measure of the exactness of the predictions, recall is used to quan-
tify the completeness of the predictions. Additionally, we evaluate the F-score
which gives a combined measure of both and is defined as 2 - Brecision-recall 'y, o
; . . T ) recision—recall * 7
performance of these metrics gives important insight in how proactive applica-
tions are affected by a choice of the probability threshold as will be discussed in

the next subsection for different queries.

Basic Queries We evaluated our approach for two exemplary queries ]P’QP(X? (¢))

and P, ( F='®y) = P, ( true US'®y). We generated queries for the future loca-
tion of a user. The time constraint associated with these queries is set to ¢t = 10
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Fig. 3. Evaluation results for the Until operator

minutes. We evaluated the queries repeatedly, i.e, predictions were computed
upon a state change and periodically after AE = 10 seconds have passed in
a state. The results discussed in the following show the average of 2000 query
evaluations.

Figures 2(a)-(c) illustrate the results for the Next operator X];t (¢). Figure
2(a) shows the impact of a varying probability threshold on the precision metrics.
As expected, the precision gains from an increase of the probability threshold.
The reason is that the number of F'P decreases because an increasing portion
of the predictions with a low probability is discarded. At the same time, we can
observe the highest precision if states are composed of the multi-dimensional con-
text ”concrete activities”, "location” and ”patient”. In contrast, the precision re-
mains lowest when states only contain location information (single-dimensional).
Hence, the evaluation results show that additional context is relevant to discrim-
inate user states such that more accurate predictions can be expected. Figure
2(b) shows the recall as a function of the probability threshold. The results
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are reciprocal to the precision results: For an increasing probability threshold
the number of F'N increases, as more and more predictions are discarded that
actually match the future behaviour. This result illustrates the trade-off be-
tween precision and recall for different values of the probability threshold: If
the threshold is increased to guarantee more reliable predictions, the risk of dis-
carding correct predictions with a low probability rises. Figure 2(c) shows the
F-score and reveals the characteristics of this trade-off: The F-score rises as the
threshold increases from 0 to 0.4. Up to this threshold, the gain from a higher
precision outweighs the loss in recall. However, for a threshold higher than 0.4,
the loss due to the loss in recall becomes more significant, so that the score is
negatively affected. For applications that are interested in a good trade-off, we
therefore recommend p = 0.4 as a probability threshold. In this case, we achieve
a F-score of 0.86, which indicates a very good performance.

Figures 3(a)-(c) depict the evaluation results for the until operator. Figure
3(a) shows that the precision significantly gains already for lower thresholds
p > 0. The reason is that @5 can be fulfilled in all states reachable within the
time constraint. Thus, the chance to encounter the expected context is increased.
In contrast, the same chance is limited to the state successors in case of the next
operator. At the same time, the recall is highly reduced by an increasing thresh-
old as shown in Figure 3(b). Since the evaluated queries also address future
context, which appears in states reachable over multiple transitions that are un-
certain to occur, a significant amount of predictions has only a minor probability.
This large number causes a lot of F'Ns in total, so that a significant amount of
correct predictions is discarded. This observation is also reflected in Figure 3(c),
which shows the F-score. For a threshold p > 0.2 the high loss in recall domi-
nates the gain in precision. Compared to the next operator, the until operator
is more sensitive to the choice of the probability threshold. We therefore recom-
mend p = 0.2 as a threshold for applications to deal with the inherent trade-off
for the until operator. In this case, a good result with an F-score of 0.87 can be
achieved.

8 Conclusion

We presented PreCon, a novel approach to context prediction that enables in-
telligence in ubiquitous system by allowing for much more expressive queries
than existing systems. In PreCon, user behaviour is represented by Semi-Markov
Chains (SMC), and temporal-logics is used as a query language. We extended
well-known model-checking techniques to deal with the online character of con-
text predictions and to allow for continuous learning of SMCs. PreCon’s query
language provides a powerful means for applications to pose temporal queries for
reachability and invariant properties of future context. Thus, PreCon goes far
beyond existing approaches and represents a new class of context prediction sys-
tems that enable intelligent ubiquitous applications to take much more educated
decisions.
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We evaluated PreCon based on a real-world case study in the area of health-
care using metrics from information retrieval and showed that it exhibits a good
performance. Moreover, our evaluations yielded indications for choosing sensible
parameters for different classes of applications.

In our future work, we will extend our approach to probabilistic LTL as
another variant of temporal logics. This will enable us to define further types
of queries, which can not be expressed in CSL. Furthermore, we are working on
a distributed context prediction system where prediction models are cached on
mobile devices such that a user always has access to the future context that is
relevant for him.
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