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Abstract—With the increasing proliferation of small and cheap
GPS receivers, a new way of generating road maps could
be witnessed over the last few years. Participatory mapping
approaches like OpenStreetMap introduced a way to generate
road maps collaboratively from scratch. Moreover, automatic
mapping algorithms were proposed, which automatically infer
road maps from a set of given GPS traces. Nevertheless, one of
the main problems of these maps is their unknown quality in
terms of accuracy, which makes them unreliable and, therefore,
not applicable for the use in critical scenarios.

To address this issue, we propose MapCorrect: An automatic
map correction and validation system. MapCorrect automatically
collects GPS traces from people’s mobile devices to correct a
given road map and validate it by identifying those parts of
the map that are accurately mapped with respect to some user
provided quality requirements. Since fixing a GPS position is a
battery draining operation, the collection of GPS data raises con-
cerns about the energy consumption of the participating mobile
devices. We tackle this issue by introducing an optimized sensing
mechanism that gives the mobile devices notifications indicating
those parts of the map that are considered as sufficiently mapped
and, therefore, require no further GPS data for their validation.
Furthermore, we show by simulation that using this approach
up to 50% of the mobile phones’ energy can be saved while not
impairing the effectiveness of the map correction and validation
process at all.

Index Terms—Wireless sensor networks, Mobile Computing,
Energy-aware systems

I. INTRODUCTION

Within the last few years mobile phones evolved from spe-
cial purpose devices to versatile computing platforms. Hence,
most of them nowadays combine the ability of conducting
phone calls with the possibility to transfer data packets and to
make use of the built-in sensors like a GPS sensor or a camera.
By utilizing these built-in sensors, sensor data can be collected
without the requisite for a prior sensor deployment, as they
already reside on mobile phones that are carried by people.
This approach was described in various papers entitling it with
different names, e.g. “Public Urban Sensing” [1], “Mobile
Phone Sensing” [2] or “Mobiscopes” [3]. We refer to this
new form of sensor data collecting in the following as Public
Sensing. Due to the inherent mobility of the sensors, new
scientific challenges arise in Public Sensing that go beyond
the research field of traditional sensor networks.

One particular scenario, in which sensor data from different
spatial locations can be utilized, is the generation of road

maps. Manual approaches like OpenStreetMap [4] show the
feasibility of generating useful maps out of GPS traces that
were gathered and manually integrated into a global map by
volunteers. In contrast to that approach, there also exists work
dealing with the automatic generation of road maps out of raw
GPS traces (e.g. [5], [6]). The drawback of both approaches
is that the quality of the resulting road map can hardly be
assessed. For instance, the accuracy of the road points of the
map heavily depends on the accuracy of the GPS sensors that
were used for gathering the required traces. Furthermore, the
geometry of a road map might change over time due to road
construction works. Therefore, to make sure that a given road
map is accurate and up-to-date, some form of map validation
and correction has to be done. Given the fact that most GPS
sensors indicate an estimation about the accuracy of a position
fix, a set of recently recorded GPS traces can be utilized to
validate and correct the geometry of an existing road map by
comparing the coordinates and accuracy values of these traces
with the given map.

While manually collecting the needed GPS traces would
cause a huge effort and thus cannot be considered as a suitable
solution, an approach that is based on the aforementioned
Public Sensing works without any manual effort by auto-
matically utilizing GPS sensors that are already deployed
on common mobile phones. Since reading sensor values and
uploading the sensed data are battery draining operations
the user will only accept the sensing system if it does not
significantly decrease the battery life of his device. Having
these constraints in mind, we present MapCorrect: A map
correction and validation system that uses a Public Sensing
approach to extract and process GPS traces from common
mobile phones while minimizing the battery consumption of
the involved devices.

Given an initial road map, MapCorrect matches GPS traces
that were automatically recorded by the participating mobile
phones to this map. Using the accuracy and position infor-
mation provided with each GPS fix, MapCorrect refines the
geometry of the road map by using map interpolation methods
and marks a road segment as validated if it is sufficiently
verified by GPS traces. Addressing the efficiency matter,
MapCorrect sends the set of validated road segments to the
mobile devices, which can turn off their GPS devices as long
as they are located on a validated road segment.
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In detail, the contributions of our work are as follows:

1) We introduce quality metrics that quantify the accuracy
of a given road map without requiring knowledge about
the ground truth data.

2) We introduce MapCorrect, a system that automatically
gathers GPS traces from mobile devices to refine the
geometry of a given road map and to mark those parts
of the map as validated that are accurately mapped with
regard to some user given accuracy thresholds.

3) We present an optimized sensing approach that reduces
the number of GPS fixes the mobile devices have to
perform for collecting the necessary GPS traces.

4) We show by simulation that using the optimized sensing
approach MapCorrect saves up to 50% of the mobile
devices’ energy compared to a naive approach, in which
every mobile device continuously senses its position.
Furthermore, we show that the speed and the quality of
the map correction and validation process do not suffer
from the optimized sensing approach.

The rest of the paper is organized as follows. In Section II
we first give an overview of related work concerning map
manipulation algorithms and efficient mobile sensor data ac-
quisition. In Section III we introduce our system model, before
we present in Section VI the basic concepts of MapCorrect
dealing with the general process of map validation and cor-
rection. In Section V we address the efficiency of our approach
by introducing an optimized sensing concept. In Section VI
we show the simulation results we obtained by evaluating the
system, before Section VII concludes this work.

II. RELATED WORK

Since our work addresses problems that arise from two
different research areas, we discuss them in the following
separately. First, we look at algorithms that perform some kind
of automatic map manipulation. Second, we focus on the prob-
lem of efficient data acquisition from mobile sensors, which
is not covered by the aforementioned mapping algorithms.

A. Automatic Map Manipulation

One of the first approaches that automatically constructs a
road map from scratch was proposed by Morris et al [7]. In
the first step of their approach, they construct an initial graph
from a set of given GPS traces. This is done by splitting
the traces at their intersection points into segments, which
constitute the edges of that graph. To merge edges that are
duplicate representations of the same physical road, a sequence
of graphical reduction steps is executed on that graph. As a
result, a distinct road structure is obtained in the end. Until
now, several other map generation algorithms were proposed,
all using different theoretical approaches to merge a set of
ambiguous GPS traces into a distinct representation of a road
map (e.g. [5], [6], [8], [9]). Bruntrup et al. [6], for instance, use
an incremental map generation approach, which starts with a
single GPS trace and consecutively merges similar traces with
the existing one to infer the road geometry.

Besides these general mapping algorithms, other work fo-
cuses on more specific challenges like inferring intersections
from a set of overlapping GPS traces [10] or detecting ob-
stacles by analyzing the position and communication history
of mobile nodes [11]. In contrast to the aforementioned algo-
rithms, which have the goal to infer the road structure, there
are some approaches that assume the road structure as given
and only focus on surveying its current condition. For instance,
the Pothole Patrol system [12] tries to detect road anomalies
by analyzing acceleration data of cars. The Nericell system
[13] follows a similar approach but, in addition, interprets data
from audio sensors to estimate traffic conditions. The work that
comes closest to our approach in terms of map manipulation is
the one presented by Rogers et al. [14]. They use GPS traces to
refine an already existing road map and try to predict vehicle
lanes for a given road.

Our approach differs from those mentioned in this section
due to the fact that none of them provide explicit quality
metrics that can be used for checking the accuracy of a given
road map with respect to some user given quality requirements.
Furthermore, all of these approaches rely on GPS traces that
were collected by mobile devices, but none of them considers
the process of efficiently acquiring this data. In the next section
we have a closer look on existing work dealing with that issue.

B. Efficient Mobile Sensor Data Acquisition

Originating from the field of traditional stationary sensor
networks, the research field of effective data acquisition from
common mobile devices (Public Sensing) has gained increas-
ing momentum over the last few years. While most of the
initial papers described the major visions and challenges of this
new research field (e.g. [1], [3], [15]), gradually more concrete
solutions arise that deal with the efficient collection of sensor
data from mobile devices. The scope of these solution ranges
from the cooperative distribution of sensing tasks (e.g. [16]) to
efficient data acquisition algorithms, on which we will focus
in the following.

Mobile sensors are deployed on mobile devices, which come
with limited resources. Hence, one of the main objectives of
the efficient data acquisition from mobile sensors is to reduce
the mobile devices’ overall energy consumption. For instance,
Eisenman et. al. [17] reduce the energy consumption of mobile
nodes by adapting the communication range of a node to an
optimal size considering parameters like time constraints. An-
other way of reducing the energy consumption is the proactive
scheduling of sensor readings, in order to avoid redundant data
acquisition from multiple sensors. Most of the existing work
on this topic presents scheduling algorithms for stationary
sensor networks, which do not consider sensor movement (e.g.
[18], [19]). In our previous work ([20]-[22]), we presented
mobile sensor scheduling algorithms that tackle the mobility
issue. By using position and movement information of the
mobile devices as input to the sensor scheduling, we showed
that the number of devices that redundantly sense a predefined
point of interest can be significantly reduced.
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This work differs from the work mentioned before since it is
the first work that tackles the problem of verifying a road map
using Public Sensing. This addresses new problems that were
not considered in the approaches mentioned before. Since the
scheduling of the GPS sensors depends on the dynamically
changing set of validated road segments, we have to face the
question of a dynamic sensor scheduling. Moreover, we have
to make sure that the information that is necessary for the
dynamic scheduling is communicated in an efficient manner.

III. SYSTEM MODEL

Next, we present our system model and assumptions. The
main parts of our system consist of a central server and a
set of mobile devices. A mobile device comes with a GPS
sensor and communicates with the central server via a cellular
mobile network like UMTS (see Figure 1). We assume that
the server knows the set of mobile devices that are available
for the data collection due to a registration mechanism like
the one proposed in [23]. Mobile devices are carried by
people, thus the server has no influence on their movement
direction or speed. The movement of the devices follows an
underlying road structure. While the central server comes with
unlimited processing power and power supply, the energy of
a mobile devices is limited by the device’s battery. Therefore,
battery draining operations like GPS position fixes and mobile
communication are critical and have to be minimized.

A mobile device obtains with each GPS fix location coor-
dinates and an error value that indicates the accuracy of these
coordinates. As proposed in [24], this error value is expressed
by the standard deviation o of the obtained position. By taking
into account the relative geometry of the satellites used for the
GPS fix, the Horizontal Dilution of Precision (HDOP) can be
derived. With the help of this value and the User Equivalent
Range Error (cyprE), 0 can be calculated by [25]:

oc=HDOP - OUERE

Hence, a smaller value for ¢ implies a higher probability
that the true position of the mobile device is close to the
coordinates obtained by the GPS fix. We assume that all GPS
sensors can derive the HDOP and the oyggrg value and,
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Fig. 2. Example Road Graph

therefore, can calculate the standard deviation o of a GPS
position. We refer to this value as pgp,.0.

The road map that is to be verified is stored in a database
and can be accessed by the server. We assume that the mobile
devices also know this map, otherwise the server could just
distribute it to the mobile devices. The map is given as a
road graph that consists of edges and vertices. The vertices
represent road intersections and terminal points of a road. They
are interconnected by polygonal road edges, which represent
the roads. Each road edge consists of a set of connected road
points, which reflect the geometry of the road (see Figure 2a).
A road point p has an assigned error value p.e, which specifies
the accuracy of the road point in analogy to the error value of
a position fix pg,s.0. Therefore, the position of a road point
with a low error value can be considered as relative accurate
with respect to the real shape of the road. By assigning each
road edge a distinct number and defining its first road point
as its starting point, we can refer to a particular point on a
road by (r,d), in which r indicates the road edge and d the
distance from its starting point to the location of the point
following the road’s course (see Figure 2b). Additionally, we
define the subsection of a road edge starting at road point p;
and ending at road point p; with 7 < j as the road segment

<pi,pj> = (pi7pi+1,---, j—17pj)~
IV. MAP VALIDATION MECHANISM

To explain the basic concepts of MapCorrect, we present in
this section the basic idea of map correction and validation.
First, we introduce the quality metrics that are needed for
identifying accurately mapped road segments before we show
how the system is initialized with a given map validation
query. Subsequently, we show how GPS traces are processed
to refine and validate a road map.

A. Quality Metrics

Besides correcting the geometry of given road map, the
goal of MapCorrect is to provide the user with a set of road
segments that can be considered validated in terms of accuracy.
Therefore, we have to define a way to measure the quality of a
given road segment and to decide in which case we consider a
road segment as validated. Since these estimations are highly
subjective, we subsequently introduce quality requirements,
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which are specified by the user and included as part of the
map validation query.

The output of the sensing process of the mobile devices
are GPS traces, which are processed by the central server.
These GPS traces are used to enrich the existing road graph
with additional road points, whereas the error value p.e of a
new road point is derived from the positioning error py,s.o.
More details of the individual processing steps are presented
in the next section. By evaluating the spatial distribution
and the accuracy of the road points of a road segment, we
decide if that segment can be considered as validated. Hence,
we introduce two user-given parameters, which define the
maximum distance d,,q, and the maximum error e,,,, of a
set of successive road points.

Consider a road segment (p;, p;) of the road graph. To mark
this road segment as validated it must fulfill the two following
criteria, in which d(p,,p,) indicates the length of the edge
between the road points p, and p,:

vk € {Za 7] - 1} : d(pkapk-‘rl) S dmal‘ (1)
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Both requirements aim at the accuracy of the shape of the
road segment. Equation (1) ensures that the maximum distance
between each pair of successive road points is not larger than
the given threshold value d,,,,. Obviously, complex shapes
like curves can only be approximated accurately, if the road
points are close enough (see Figure 3). Equation (2) ensures
that the error value of all road points in (p;,p;) does not
exceed the maximum error threshold e,,,,. Thus, it makes
sure that the road points are sufficiently mapped in terms of
position accuracy.

B. Initialization

The systems starts with a map validation query from a user.
This query includes the afore defined quality metrics and the
map that should be validated. The bounding box of this map
defines the area-of-interest from which the system gathers GPS
traces for map validation. For the following processing steps,
we initialize all road points of the road graph with an initial
error value. If no accuracy information for the initial road map
is known, we initialize its road points with a worst-case error
value. Otherwise, the system can start with already known
accuracy values for the road points.

To start with, the server sends an initialization message to all
known mobile devices that are located in the area-of-interest.
After having received such a message, all participating mobile
devices start continuously recording GPS positions every 4
seconds. Each time a mobile device has recorded a predefined
number of positions it sends the recorded GPS trace to the
server.

C. Processing GPS Traces

Having received a GPS trace from a mobile device, the
server starts comparing it with the road graph. In the following
we assume that every GPS trace can be matched with a
corresponding road of the road graph. If that is not the case
the trace could either have been recorded on a road that is not
part of the given map or the mobile device is currently not
located on a road. Since we focus on map validation, we filter
out GPS traces that cannot be matched to a road segment.
Nevertheless, one of the map generation algorithm described
in Section II could be applied to these traces to enrich the
road graph with additional roads.

Given a GPS trace, we use one of the existing road fusion
algorithms (e.g. [26], [7]) to merge this trace with an existing
road. Therefore, we briefly sketch Roth’s approach [26] in the
following. In the first step, the points of a given GPS trace are
matched to a road r; and the road points of r; are matched
to the given GPS trace. The details of this matching can be
found in [26]. We will focus in the following on an example in
which a GPS point is matched to a road point. The processing
of a road point that is matched to a GPS trace is performed
in an analogous way.

Given that the GPS position pg,, is matched to the position
(ri,d) on road r;, a new road point p,, at position (r;,d) is
generated (see Figure 4-a). The error value p,,.e of this point
is calculated by interpolating the error value of its predecessor
and successor road point on the road edge, in relation to its
distance to these points:
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In the next step, the GPS position pg,, and the road point p,,
are used to correct the road geometry by calculating a new
road point py¢,, (see Figure 4-b). To obtain the coordinates of
this point, a weighted interpolation is performed that is based
on the standard deviation of pg,, and the error value of p,,:
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Furthermore, the error value of the new point is set by
using Bayes conditional probabilities applied to the Gaussian
distribution [14]:
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Fig. 4. Processing GPS Trace

It can be easily derived from this formula that the obtained
value of py,eq.€e decreases in comparison to p,,.e and, there-
fore, the confidence in the new position is higher. Having
calculated the coordinates and the accuracy value for pyeq,
we remove p,, from the road edge and insert p,e, at its
corresponding position (see Figure 4-c). Since merging a GPS
trace with a road results in the creation of additional road
points and lower error values for the involved road points, the
likelihood that a road segment fulfills the user given quality
requirements increases with each processed GPS trace.

Having merged a given GPS trace with the road graph as
described above, the server checks for all changed road edges
if there are road segments on these edges which fulfill the
quality criteria defined in section IV-A. This can be done for
each road edge in linear time, starting with the first road point
po and increasing the sequence until one of the conditions is
violated at point p,. In this case the server marks the segment
(po,pi—1) as validated and continues checking with p; as a
new starting point. As a result, the server can deduce a set of
validated segments for each road edge. This set can now be
used to realize an optimized sensing approach that is explained
in the next section. Besides the refined road map, this set also
constitutes the final output of the system, which indicates the
user which parts of the maps are validated.

V. OPTIMIZED SENSING

Having introduced the basic concepts of the map correction
and validation system, we address in the following the effi-
ciency of the sensing process. For this reason, we introduce
an optimized sensing approach that reduces the number of GPS
fixes a mobile devices has to execute. The basic idea behind
this approach is to suppress GPS fixes that are not needed
for the map validation process. This is achieved by restricting
sensing to road segments that have not been validated yet.

In order to let the mobile devices know on which road
segments GPS fixes can be suppressed, we introduce update
messages that are sent from the server to the mobile devices
containing the list of already validated road segments. In
the following we first show how to suppress GPS fixes by
introducing the concept of selective sensing. Subsequently, we

Require: pgps,tgps, V, Vang
1: tsup — tgps
. Pm < MAP-MATCHING (D)
: seg <~ GET-SEGMENT(p,,)
. if seg ¢ V then
return tg,,,
else
dmin < min(seg.end — ppy, Py —
tsup <~ dmin/vavg
tsup A maz(tsup, t!]PS)
return tg,,,
: end if

seg.start)
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Fig. 5. Selective Sensing Algorithm

present an efficient way for disseminating the required update
messages from the server to the mobile devices.

A. Selective Sensing

Assuming that a mobile device knows all already validated
road segments, it can save energy by suppressing its GPS
positioning as long as it is located on one of these segments.
To detect this, a mobile device matches each obtained GPS
position to the nearest point on the road graph and then checks
if this position lies on a validated road segment. If this is
the case, the device can postpone its next GPS fix until the
earliest possible time when it might leave the segment. Having
disabled the GPS sensor, the problem is that a mobile device
cannot detect whether it is still on a validated segment or not.
Therefore, it has to determine a time span that estimates the
minimum time it will stay on that segment to schedule its
next GPS fix. To get an appropriate approximation for that
time span, we calculate it by using the algorithm shown in
Figure 5. The algorithm is executed after each position fix
and takes as input the current GPS position pg,,, the standard
positioning interval ¢,,,, the set of validated road segments V'
and the average speed v,y of the mobile device that executes
this algorithm. Since the current speed can be obtained from
a GPS fix, a mobile device can determine v,,4 by averaging
the speed values of all fixes performed so far. The output of
the algorithm is the time interval ¢,,, that determines the time
until the next position fix is performed.

The algorithm starts by identifying the road segment seg to
which the GPS position pg,, is matched (lines 2-3) and then
checks if that segment is already validated (line 4). If that
is not the case, the algorithm returns %y, (line 5) that is set
to the standard positioning interval Z,,, (line 1). Otherwise,
the distance d,,;, from the closest end of the segment seg
to the matched point p,, is calculated (line 7). Given the
resulting distance, we use linear dead-reckoning to calculate
the minimum time span ¢, in which the mobile device might
reach the end of the segment seg if it moves at average speed
(line 8). Finally, we require t,,, to be at least as big as the
standard positioning interval ¢4, and therefore only return the
larger value (line 9). By considering the average speed vy Of
the mobile device and not taking into account its positioning



Require: pg,s, co, Se, Lc
I: ¢ = GET-CELL(Pgps)
2: if ¢, # ¢, then
3: Sy, < GET-UPDATE(Cy, te(cn))
4: SC(Cn) — SC(Cn) U S,
5 Co < Cp,
6: end if

Fig. 6. Query Algorithm - Running on Mobile Devices

error, we derive an optimistic estimation for ¢g,,. This may
result in a too large t,,, if the mobile device moves at a
higher speed then vg4,4. On the other hand, it results in a
more appropriate estimation of %, if the device’s speed is
Vqug Or lower, and therefore results in a more effective GPS
suppression. After having calculated t,,, the mobile device
schedules its next GPS fix at the end of this time span.

B. Update Protocol

In order to perform the selective sensing algorithm described
in the previous section, the mobile nodes need to know
the current set of validated road segments. Therefore, we
introduce a protocol, that ensures an efficient communication
between the server and the mobile nodes for updating this
set. The simplest way to do this is to broadcast the set
of validated segments to all mobile devices in the area-of-
interest. Using this approach, all mobile devices have an up-
to-date view on all validated segments. If the server marks
new segments as validated, it only has to send these segments
to update the devices’ view. However, receiving the broadcast
messages consumes energy at the mobile devices. Therefore,
updates messages should only be sent to devices for which
the information is actually relevant. Hence, we utilize a more
scalable solution that follows a location-aware approach.

The basic idea is to use the information about the current
position of a device to inform it only about the set of validated
segments that are in its current vicinity. For this reason, we
divide the area-of-interest into a grid structure. The coordinates
of the grid cells are included in the initialization message and
thus are known to all devices. A mobile device associates every
grid cell ¢; with a timestamp ¢.(c;) and a set of validated
segments S.(c;). The timestamp ¢.(c;) indicates the last time
the device has been located in cell ¢; and S.(¢;) contains the
validated segments that are located in ¢; and were up-to-date
when the device left the cell at time ¢.(c;). Based on this,
a mobile device runs the query algorithm shown in Figure
6, right before it executes the selective sensing algorithm
presented in the last section. In the first part of the algorithm,
the device determines its current grid cell and checks if the cell
has changed since the last position fix (lines 1-2). If that is the
case, the device sends a query for validated road segments to
the server containing the new cell and the timestamp associated
with that cell (line 3). Having received an update from the
server the mobile device updates its local set of validated
segments for that cell (line 4).

Require: c,,t,
1: S, < GET-SEGMENTS-IN-CELL(cy,)
2: Sout 0
3. for all vs € S,, do
4:  if t5(vs) > t,, then
5: Sout < Sout Uws
6 end if
7. end for
8: return S,

Fig. 7. Update Algorithm - Running on Server

To supply the mobile devices with the appropriate set of
validated segments, the server has to keep track of all changes
it applies to the set of validated segments. Therefore, it
associates each validated segment vs with a timestamp t4(vs)
indicating the time when the server marked the segment as
validated. If the server now receives a query from a mobile
device, it performs the algorithm shown in Figure 7 to return
a set of validated segments to the device. Given the required
cell ¢, and the corresponding timestamp ¢,, from the mobile
device, the server determines the set of all validated segments
that are located in ¢, (line 1). In the next steps it initializes
an output set and adds all validated segments to this output
set that were marked as validated after time ¢,, (lines 2-7).

Both algorithms ensures that a mobile device that changes a
cell gets an up-to-date view on all currently validated segments
that are located in its new cell. However, the mobile devices
only receive an update from the server when they change a
cell. Because mobile devices can stay inside a cell for an
unknown time, the server also has to proactively distribute
information about newly validated segments to the mobile
devices. Since the server knows from the query messages in
which cell each mobile device is currently located, it can send
a set of newly validated segments selectively to those mobile
devices which are located in the cells that are affected by this
change.

VI. EVALUATION

In the evaluation of our concept we conducted extensive
simulations to check the effectiveness and efficiency of Map-
Correct. Since we utilize for the map correction step existing
map fusion algorithms, the resulting accuracy of the road edges
heavily depend on the respective algorithm. Therefore, we
focus the evaluation on the efficiency of the system and the
effectiveness of the map validation process.

A. Simulation Setup

To provide a realistic simulation scenario we evaluated our
approach with the network simulator ns-2 using mobility traces
from the trace file generator UDelModels [27]. UDelModels
uses a given road map to generate mobility traces that are
based on well-founded statistical data models. For the gener-
ation of the necessary pedestrian traces we used partitions of
the road graphs of Chicago and Dallas. The same graphs were
taken as input in the map validation query. Since the evaluation



for these two maps led to the same results, we only discuss
the outcome of the simulations for the Chicago map in the
following.

Throughout the simulations we used the following parame-
ter settings: We assumed a requested maximum point distance
of d,q = 3 meters and a maximum error of e,,,, = 3 meters.
The error value of a GPS fix pyps.0c was modeled according
to a normal distribution with ;x = 0 and ¢ = 10 meters. The
standard positioning interval was set to t4,, = 3 seconds.
We simulated 2000 mobile nodes moving at pedestrian speed
while the simulation time was set to one day (Sam till 23pm).
To measure the amount of energy that is consumed by each
operation on a mobile device, we use a commonly used energy
model ([28], [20]) that can be found in Table I.

Operation Energy [m]]
GPS Position Fix 75
GPRS Send (1000 Bit) 80
GPRS Receive (1000 Bit) 40

TABLE I
ENERGY MODEL

For the evaluation of our system we compare the results of
three different approaches that reflect the different concepts
we developed for MapCorrect. At first, we look at a naive
approach in which all mobile devices continuously record GPS
positions without using the presented optimized sensing ap-
proach. In the second approach we use the optimized sensing
approach by performing selective sensing and broadcasting
the set of validated segments from the server to all mobile
devices in the area-of-interest. We refer to this as the broadcast
approach. In the last case, we look again at the concept of
selective sensing, but use the grid-based update protocol for
distributing the validated segment information to the mobile
devices. We refer to this as the grid-based approach.

B. Effectiveness of the Map Validation

At first, we have a look at the effectiveness of the three
approaches regarding the map validation process. To assess
the progress of the map validation we have a look at the road
segments that fulfill the quality metrics defined in Section IV-A
after a certain time and thus can be considered as validated.
The results of the naive approach can be seen as an upper
bound for the effectiveness of the system. Since mobile devices
perform a continuous sensing in that approach, the server has
as much information as possible for the map validation.

Figure 8 shows the cumulated length of all validated seg-
ments over time. We see that there is almost no difference
between the three approaches at any point in time. As a
consequence, we can derive two facts:

1) In the end, there is no difference in the total length of the
validated segments. This implies that the two approaches
that use optimized sensing (broadcast and grid-based
approach) validate the same amount of segments as the
naive approach.
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2) There is no temporal gap between the different ap-
proaches at any point in time. Hence, the speed of the
validation is the same in all three approaches.

We can therefore conclude that optimized sensing does not
decrease the effectiveness of the map validation process at all.

C. Energy Efficiency

Next, we have a look at the amount of energy that is
consumed by the mobile devices. For this reason, we have
a look at the cumulated amount of energy that is consumed
by all mobile devices over time. We can see from Figure 9
that the energy consumption of the broadcast approach is the
highest followed by the naive approach. The least energy is
consumed by the grid-based approach, which saves up to 50%
compared to the naive one. Since the energy consumption
constitutes from different operations, we have a closer look
at the single operations that are performed in each approach
to better understand these results.

Figure 10 shows the sum of all GPS fixes over all mobile
devices that were performed in the system. We can see that
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the approaches that use optimized sensing need 55% less GPS
fixes than the naive approach. Moreover, we notice a small gap
between the broadcast and the grid-based approach. This stems
from the fact that in the broadcast approach a mobile device
knows all validated segments from the whole area-of-interest.
However, in the grid-based approach a mobile device knows
only the validated segments that are located in the device’s
current cell. As a result, a mobile device can perform a more
effective suppression of GPS fixes in the broadcast approach
if a validated segment ranges over more than one cell.

Considering the fact that all approaches showed the same
effectiveness regarding the speed and the final output, we
can conclude that all the additional GPS fixes that were
performed in the naive approach were redundant and brought
no additional value to the validation process.

At last, we have a look at the total sum of messages that
were sent and received by all mobile devices over time. This
sum includes the messages used for uploading the GPS traces
from the mobile devices to the server and all the messages
that are needed in the update protocol. From Figure 11 we
can see that the broadcast-based approach by far requires the
most number of messages. From that, we can explain why
it performs so badly in the overall energy consumption. The
grid-based approach needs only a fraction of the messages of
the broadcast approach, while the naive approach needs the
fewest number of messages since it does not employ update
messages.

Comparing the Figures 10 and 11 we can explain the total
energy consumption shown in Figure 9 as follows: On the
one hand the broadcast and the grid-based approach save up
to 50% of energy for GPS fixes over the naive approach. On
the other hand the naive approach is the less energy consuming
approach considering the number of messages. Hence, the
number of messages in the broadcast approach is too high
to outperform the naive approach. In contrast, the grid-based
approach needs far fewer messages and can therefore com-
pensate the effort for additional messages by requiring far less
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GPS fixes than the naive approach. To conclude the evaluation
we can state that a grid-based approach saves up to 50% of
energy compared to a naive map validation approach, whereas
the broadcast approach does not pay off in terms of energy
consumption. We also showed that although less energy is
consumed and less GPS fixes are performed, the quality and
the speed of the validation process do not decrease.

VII. CONCLUSION

In this paper we presented an automatic approach to refine
and validate the geometry of an existing roadmap. We pro-
posed a Public Sensing based data acquisition approach that
utilizes the already deployed GPS sensors on people’s mobile
devices for automatically gathering GPS traces and use them
for correcting and validating a given road map. Moreover, we
introduced an optimized sensing approach, which drastically
decreases the amount of energy that is consumed by the mobile
devices that take part in the data collection. Although the
number of performed GPS fixes decreases, we showed that
this approach does not impair the effectiveness of the map
validation process.

In future work we want to address further issues concern-
ing Public Sensing based mapping. Besides the validation
approach we have presented in this paper, we will focus on
an effective map consistency check, in which mobile devices
check in predefined time intervals if the already validated
geometry of a road map is still valid. This requires a quite dif-
ferent sensor scheduling, since the systems needs to assign the
mobile devices sensing tasks, instead of the proactive sensing
that the mobile devices perform in MapCorrect. Furthermore,
we want to include fairness aspects in the sensor scheduling
decisions, which aims at an uniform load distribution among
the mobile devices.
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