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Abstract—With the increasing proliferation of small and cheap
GPS receivers, a new way of generating road maps could
be witnessed over the last few years. Participatory mapping
approaches like OpenStreetMap introduced a way to generate
road maps collaboratively from scratch. Moreover, automatic
mapping algorithms were proposed, which automatically infer
road maps from a set of given GPS traces. Nevertheless, one of
the main problems of these maps is their unknown quality in
terms of accuracy, which makes them unreliable and, therefore,
not applicable for the use in critical scenarios.

To address this issue, we propose MapCorrect: An automatic
map correction and validation system. MapCorrect automatically
collects GPS traces from people’s mobile devices to correct a
given road map and validate it by identifying those parts of
the map that are accurately mapped with respect to some user
provided quality requirements. Since fixing a GPS position is a
battery draining operation, the collection of GPS data raises con-
cerns about the energy consumption of the participating mobile
devices. We tackle this issue by introducing an optimized sensing
mechanism that gives the mobile devices notifications indicating
those parts of the map that are considered as sufficiently mapped
and, therefore, require no further GPS data for their validation.
Furthermore, we show by simulation that using this approach
up to 50% of the mobile phones’ energy can be saved while not
impairing the effectiveness of the map correction and validation
process at all.

Index Terms—Wireless sensor networks, Mobile Computing,
Energy-aware systems

I. INTRODUCTION

Within the last few years mobile phones evolved from spe-

cial purpose devices to versatile computing platforms. Hence,

most of them nowadays combine the ability of conducting

phone calls with the possibility to transfer data packets and to

make use of the built-in sensors like a GPS sensor or a camera.

By utilizing these built-in sensors, sensor data can be collected

without the requisite for a prior sensor deployment, as they

already reside on mobile phones that are carried by people.

This approach was described in various papers entitling it with

different names, e.g. “Public Urban Sensing” [1], “Mobile

Phone Sensing” [2] or “Mobiscopes” [3]. We refer to this

new form of sensor data collecting in the following as Public
Sensing. Due to the inherent mobility of the sensors, new

scientific challenges arise in Public Sensing that go beyond

the research field of traditional sensor networks.

One particular scenario, in which sensor data from different

spatial locations can be utilized, is the generation of road

maps. Manual approaches like OpenStreetMap [4] show the

feasibility of generating useful maps out of GPS traces that

were gathered and manually integrated into a global map by

volunteers. In contrast to that approach, there also exists work

dealing with the automatic generation of road maps out of raw

GPS traces (e.g. [5], [6]). The drawback of both approaches

is that the quality of the resulting road map can hardly be

assessed. For instance, the accuracy of the road points of the

map heavily depends on the accuracy of the GPS sensors that

were used for gathering the required traces. Furthermore, the

geometry of a road map might change over time due to road

construction works. Therefore, to make sure that a given road

map is accurate and up-to-date, some form of map validation

and correction has to be done. Given the fact that most GPS

sensors indicate an estimation about the accuracy of a position

fix, a set of recently recorded GPS traces can be utilized to

validate and correct the geometry of an existing road map by

comparing the coordinates and accuracy values of these traces

with the given map.

While manually collecting the needed GPS traces would

cause a huge effort and thus cannot be considered as a suitable

solution, an approach that is based on the aforementioned

Public Sensing works without any manual effort by auto-

matically utilizing GPS sensors that are already deployed

on common mobile phones. Since reading sensor values and

uploading the sensed data are battery draining operations

the user will only accept the sensing system if it does not

significantly decrease the battery life of his device. Having

these constraints in mind, we present MapCorrect: A map

correction and validation system that uses a Public Sensing

approach to extract and process GPS traces from common

mobile phones while minimizing the battery consumption of

the involved devices.

Given an initial road map, MapCorrect matches GPS traces

that were automatically recorded by the participating mobile

phones to this map. Using the accuracy and position infor-

mation provided with each GPS fix, MapCorrect refines the

geometry of the road map by using map interpolation methods

and marks a road segment as validated if it is sufficiently

verified by GPS traces. Addressing the efficiency matter,

MapCorrect sends the set of validated road segments to the

mobile devices, which can turn off their GPS devices as long

as they are located on a validated road segment.
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In detail, the contributions of our work are as follows:

1) We introduce quality metrics that quantify the accuracy

of a given road map without requiring knowledge about

the ground truth data.

2) We introduce MapCorrect, a system that automatically

gathers GPS traces from mobile devices to refine the

geometry of a given road map and to mark those parts

of the map as validated that are accurately mapped with

regard to some user given accuracy thresholds.

3) We present an optimized sensing approach that reduces

the number of GPS fixes the mobile devices have to

perform for collecting the necessary GPS traces.

4) We show by simulation that using the optimized sensing

approach MapCorrect saves up to 50% of the mobile

devices’ energy compared to a naive approach, in which

every mobile device continuously senses its position.

Furthermore, we show that the speed and the quality of

the map correction and validation process do not suffer

from the optimized sensing approach.

The rest of the paper is organized as follows. In Section II

we first give an overview of related work concerning map

manipulation algorithms and efficient mobile sensor data ac-

quisition. In Section III we introduce our system model, before

we present in Section VI the basic concepts of MapCorrect

dealing with the general process of map validation and cor-

rection. In Section V we address the efficiency of our approach

by introducing an optimized sensing concept. In Section VI

we show the simulation results we obtained by evaluating the

system, before Section VII concludes this work.

II. RELATED WORK

Since our work addresses problems that arise from two

different research areas, we discuss them in the following

separately. First, we look at algorithms that perform some kind

of automatic map manipulation. Second, we focus on the prob-

lem of efficient data acquisition from mobile sensors, which

is not covered by the aforementioned mapping algorithms.

A. Automatic Map Manipulation

One of the first approaches that automatically constructs a

road map from scratch was proposed by Morris et al [7]. In

the first step of their approach, they construct an initial graph

from a set of given GPS traces. This is done by splitting

the traces at their intersection points into segments, which

constitute the edges of that graph. To merge edges that are

duplicate representations of the same physical road, a sequence

of graphical reduction steps is executed on that graph. As a

result, a distinct road structure is obtained in the end. Until

now, several other map generation algorithms were proposed,

all using different theoretical approaches to merge a set of

ambiguous GPS traces into a distinct representation of a road

map (e.g. [5], [6], [8], [9]). Bruntrup et al. [6], for instance, use

an incremental map generation approach, which starts with a

single GPS trace and consecutively merges similar traces with

the existing one to infer the road geometry.

Besides these general mapping algorithms, other work fo-

cuses on more specific challenges like inferring intersections

from a set of overlapping GPS traces [10] or detecting ob-

stacles by analyzing the position and communication history

of mobile nodes [11]. In contrast to the aforementioned algo-

rithms, which have the goal to infer the road structure, there

are some approaches that assume the road structure as given

and only focus on surveying its current condition. For instance,

the Pothole Patrol system [12] tries to detect road anomalies

by analyzing acceleration data of cars. The Nericell system

[13] follows a similar approach but, in addition, interprets data

from audio sensors to estimate traffic conditions. The work that

comes closest to our approach in terms of map manipulation is

the one presented by Rogers et al. [14]. They use GPS traces to

refine an already existing road map and try to predict vehicle

lanes for a given road.

Our approach differs from those mentioned in this section

due to the fact that none of them provide explicit quality

metrics that can be used for checking the accuracy of a given

road map with respect to some user given quality requirements.

Furthermore, all of these approaches rely on GPS traces that

were collected by mobile devices, but none of them considers

the process of efficiently acquiring this data. In the next section

we have a closer look on existing work dealing with that issue.

B. Efficient Mobile Sensor Data Acquisition

Originating from the field of traditional stationary sensor

networks, the research field of effective data acquisition from

common mobile devices (Public Sensing) has gained increas-

ing momentum over the last few years. While most of the

initial papers described the major visions and challenges of this

new research field (e.g. [1], [3], [15]), gradually more concrete

solutions arise that deal with the efficient collection of sensor

data from mobile devices. The scope of these solution ranges

from the cooperative distribution of sensing tasks (e.g. [16]) to

efficient data acquisition algorithms, on which we will focus

in the following.

Mobile sensors are deployed on mobile devices, which come

with limited resources. Hence, one of the main objectives of

the efficient data acquisition from mobile sensors is to reduce

the mobile devices’ overall energy consumption. For instance,

Eisenman et. al. [17] reduce the energy consumption of mobile

nodes by adapting the communication range of a node to an

optimal size considering parameters like time constraints. An-

other way of reducing the energy consumption is the proactive

scheduling of sensor readings, in order to avoid redundant data

acquisition from multiple sensors. Most of the existing work

on this topic presents scheduling algorithms for stationary

sensor networks, which do not consider sensor movement (e.g.

[18], [19]). In our previous work ([20]–[22]), we presented

mobile sensor scheduling algorithms that tackle the mobility

issue. By using position and movement information of the

mobile devices as input to the sensor scheduling, we showed

that the number of devices that redundantly sense a predefined

point of interest can be significantly reduced.
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This work differs from the work mentioned before since it is

the first work that tackles the problem of verifying a road map

using Public Sensing. This addresses new problems that were

not considered in the approaches mentioned before. Since the

scheduling of the GPS sensors depends on the dynamically

changing set of validated road segments, we have to face the

question of a dynamic sensor scheduling. Moreover, we have

to make sure that the information that is necessary for the

dynamic scheduling is communicated in an efficient manner.

III. SYSTEM MODEL

Next, we present our system model and assumptions. The

main parts of our system consist of a central server and a

set of mobile devices. A mobile device comes with a GPS

sensor and communicates with the central server via a cellular

mobile network like UMTS (see Figure 1). We assume that

the server knows the set of mobile devices that are available

for the data collection due to a registration mechanism like

the one proposed in [23]. Mobile devices are carried by

people, thus the server has no influence on their movement

direction or speed. The movement of the devices follows an

underlying road structure. While the central server comes with

unlimited processing power and power supply, the energy of

a mobile devices is limited by the device’s battery. Therefore,

battery draining operations like GPS position fixes and mobile

communication are critical and have to be minimized.

A mobile device obtains with each GPS fix location coor-

dinates and an error value that indicates the accuracy of these

coordinates. As proposed in [24], this error value is expressed

by the standard deviation σ of the obtained position. By taking

into account the relative geometry of the satellites used for the

GPS fix, the Horizontal Dilution of Precision (HDOP) can be

derived. With the help of this value and the User Equivalent

Range Error (σUERE), σ can be calculated by [25]:

σ = HDOP · σUERE

Hence, a smaller value for σ implies a higher probability

that the true position of the mobile device is close to the

coordinates obtained by the GPS fix. We assume that all GPS

sensors can derive the HDOP and the σUERE value and,
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Fig. 2. Example Road Graph

therefore, can calculate the standard deviation σ of a GPS

position. We refer to this value as pgps.σ.

The road map that is to be verified is stored in a database

and can be accessed by the server. We assume that the mobile

devices also know this map, otherwise the server could just

distribute it to the mobile devices. The map is given as a

road graph that consists of edges and vertices. The vertices

represent road intersections and terminal points of a road. They

are interconnected by polygonal road edges, which represent

the roads. Each road edge consists of a set of connected road

points, which reflect the geometry of the road (see Figure 2a).

A road point p has an assigned error value p.e, which specifies

the accuracy of the road point in analogy to the error value of

a position fix pgps.σ. Therefore, the position of a road point

with a low error value can be considered as relative accurate

with respect to the real shape of the road. By assigning each

road edge a distinct number and defining its first road point

as its starting point, we can refer to a particular point on a

road by (r, d), in which r indicates the road edge and d the

distance from its starting point to the location of the point

following the road’s course (see Figure 2b). Additionally, we

define the subsection of a road edge starting at road point pi
and ending at road point pj with i < j as the road segment

〈pi, pj〉 = (pi, pi+1, ..., pj−1, pj).

IV. MAP VALIDATION MECHANISM

To explain the basic concepts of MapCorrect, we present in

this section the basic idea of map correction and validation.

First, we introduce the quality metrics that are needed for

identifying accurately mapped road segments before we show

how the system is initialized with a given map validation

query. Subsequently, we show how GPS traces are processed

to refine and validate a road map.

A. Quality Metrics

Besides correcting the geometry of given road map, the

goal of MapCorrect is to provide the user with a set of road

segments that can be considered validated in terms of accuracy.

Therefore, we have to define a way to measure the quality of a

given road segment and to decide in which case we consider a

road segment as validated. Since these estimations are highly

subjective, we subsequently introduce quality requirements,
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which are specified by the user and included as part of the

map validation query.

The output of the sensing process of the mobile devices

are GPS traces, which are processed by the central server.

These GPS traces are used to enrich the existing road graph

with additional road points, whereas the error value p.e of a

new road point is derived from the positioning error pgps.σ.

More details of the individual processing steps are presented

in the next section. By evaluating the spatial distribution

and the accuracy of the road points of a road segment, we

decide if that segment can be considered as validated. Hence,

we introduce two user-given parameters, which define the

maximum distance dmax and the maximum error emax of a

set of successive road points.

Consider a road segment 〈pi, pj〉 of the road graph. To mark

this road segment as validated it must fulfill the two following

criteria, in which d(px, py) indicates the length of the edge

between the road points px and py:

∀k ∈ {i, ..., j − 1} : d(pk, pk+1) ≤ dmax (1)

∀k ∈ {i, ..., j} : pk.e ≤ emax (2)

Both requirements aim at the accuracy of the shape of the

road segment. Equation (1) ensures that the maximum distance

between each pair of successive road points is not larger than

the given threshold value dmax. Obviously, complex shapes

like curves can only be approximated accurately, if the road

points are close enough (see Figure 3). Equation (2) ensures

that the error value of all road points in 〈pi, pj〉 does not

exceed the maximum error threshold emax. Thus, it makes

sure that the road points are sufficiently mapped in terms of

position accuracy.

B. Initialization

The systems starts with a map validation query from a user.

This query includes the afore defined quality metrics and the

map that should be validated. The bounding box of this map

defines the area-of-interest from which the system gathers GPS

traces for map validation. For the following processing steps,

we initialize all road points of the road graph with an initial

error value. If no accuracy information for the initial road map

is known, we initialize its road points with a worst-case error

value. Otherwise, the system can start with already known

accuracy values for the road points.

To start with, the server sends an initialization message to all

known mobile devices that are located in the area-of-interest.

After having received such a message, all participating mobile

devices start continuously recording GPS positions every tgps
seconds. Each time a mobile device has recorded a predefined

number of positions it sends the recorded GPS trace to the

server.

C. Processing GPS Traces

Having received a GPS trace from a mobile device, the

server starts comparing it with the road graph. In the following

we assume that every GPS trace can be matched with a

corresponding road of the road graph. If that is not the case

the trace could either have been recorded on a road that is not

part of the given map or the mobile device is currently not

located on a road. Since we focus on map validation, we filter

out GPS traces that cannot be matched to a road segment.

Nevertheless, one of the map generation algorithm described

in Section II could be applied to these traces to enrich the

road graph with additional roads.

Given a GPS trace, we use one of the existing road fusion

algorithms (e.g. [26], [7]) to merge this trace with an existing

road. Therefore, we briefly sketch Roth’s approach [26] in the

following. In the first step, the points of a given GPS trace are

matched to a road ri and the road points of ri are matched

to the given GPS trace. The details of this matching can be

found in [26]. We will focus in the following on an example in

which a GPS point is matched to a road point. The processing

of a road point that is matched to a GPS trace is performed

in an analogous way.

Given that the GPS position pgps is matched to the position

(ri, d) on road ri, a new road point pm at position (ri, d) is

generated (see Figure 4-a). The error value pm.e of this point

is calculated by interpolating the error value of its predecessor

and successor road point on the road edge, in relation to its

distance to these points:

pm.e =
pm−1.e · d(pm, pm+1) + pm+1.e · d(pm, pm−1)

d(pm, pm+1) + d(pm, pm−1)
(3)

In the next step, the GPS position pgps and the road point pm
are used to correct the road geometry by calculating a new

road point pnew (see Figure 4-b). To obtain the coordinates of

this point, a weighted interpolation is performed that is based

on the standard deviation of pgps and the error value of pm:

pnew.x =
pm.x · pgps.σ + pgps.x · pm.e

(pm.e+ pgps.σ)
(4)

pnew.y =
pm.y · pgps.σ + pgps.y · pm.e

(pm.e+ pgps.σ)
(5)

Furthermore, the error value of the new point is set by

using Bayes conditional probabilities applied to the Gaussian

distribution [14]:

pnew.e =
pm.e · pgps.σ

(pm.e+ pgps.σ)
(6)
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Fig. 4. Processing GPS Trace

It can be easily derived from this formula that the obtained

value of pnew.e decreases in comparison to pm.e and, there-

fore, the confidence in the new position is higher. Having

calculated the coordinates and the accuracy value for pnew,

we remove pm from the road edge and insert pnew at its

corresponding position (see Figure 4-c). Since merging a GPS

trace with a road results in the creation of additional road

points and lower error values for the involved road points, the

likelihood that a road segment fulfills the user given quality

requirements increases with each processed GPS trace.

Having merged a given GPS trace with the road graph as

described above, the server checks for all changed road edges

if there are road segments on these edges which fulfill the

quality criteria defined in section IV-A. This can be done for

each road edge in linear time, starting with the first road point

p0 and increasing the sequence until one of the conditions is

violated at point pi. In this case the server marks the segment

〈p0, pi−1〉 as validated and continues checking with pi as a

new starting point. As a result, the server can deduce a set of

validated segments for each road edge. This set can now be

used to realize an optimized sensing approach that is explained

in the next section. Besides the refined road map, this set also

constitutes the final output of the system, which indicates the

user which parts of the maps are validated.

V. OPTIMIZED SENSING

Having introduced the basic concepts of the map correction

and validation system, we address in the following the effi-

ciency of the sensing process. For this reason, we introduce

an optimized sensing approach that reduces the number of GPS

fixes a mobile devices has to execute. The basic idea behind

this approach is to suppress GPS fixes that are not needed

for the map validation process. This is achieved by restricting

sensing to road segments that have not been validated yet.

In order to let the mobile devices know on which road

segments GPS fixes can be suppressed, we introduce update

messages that are sent from the server to the mobile devices

containing the list of already validated road segments. In

the following we first show how to suppress GPS fixes by

introducing the concept of selective sensing. Subsequently, we

Require: pgps, tgps, V, vavg
1: tsup ← tgps
2: pm ← MAP-MATCHING(pgps)
3: seg ← GET-SEGMENT(pm)
4: if seg /∈ V then
5: return tsup
6: else
7: dmin ← min(seg.end− pm, pm − seg.start)
8: tsup ← dmin/vavg
9: tsup ← max(tsup, tgps)

10: return tsup
11: end if

Fig. 5. Selective Sensing Algorithm

present an efficient way for disseminating the required update

messages from the server to the mobile devices.

A. Selective Sensing

Assuming that a mobile device knows all already validated

road segments, it can save energy by suppressing its GPS

positioning as long as it is located on one of these segments.

To detect this, a mobile device matches each obtained GPS

position to the nearest point on the road graph and then checks

if this position lies on a validated road segment. If this is

the case, the device can postpone its next GPS fix until the

earliest possible time when it might leave the segment. Having

disabled the GPS sensor, the problem is that a mobile device

cannot detect whether it is still on a validated segment or not.

Therefore, it has to determine a time span that estimates the

minimum time it will stay on that segment to schedule its

next GPS fix. To get an appropriate approximation for that

time span, we calculate it by using the algorithm shown in

Figure 5. The algorithm is executed after each position fix

and takes as input the current GPS position pgps, the standard

positioning interval tgps, the set of validated road segments V
and the average speed vavg of the mobile device that executes

this algorithm. Since the current speed can be obtained from

a GPS fix, a mobile device can determine vavg by averaging

the speed values of all fixes performed so far. The output of

the algorithm is the time interval tsup that determines the time

until the next position fix is performed.

The algorithm starts by identifying the road segment seg to

which the GPS position pgps is matched (lines 2–3) and then

checks if that segment is already validated (line 4). If that

is not the case, the algorithm returns tsup (line 5) that is set

to the standard positioning interval tgps (line 1). Otherwise,

the distance dmin from the closest end of the segment seg
to the matched point pm is calculated (line 7). Given the

resulting distance, we use linear dead-reckoning to calculate

the minimum time span tsup in which the mobile device might

reach the end of the segment seg if it moves at average speed

(line 8). Finally, we require tsup to be at least as big as the

standard positioning interval tgps and therefore only return the

larger value (line 9). By considering the average speed vavg of

the mobile device and not taking into account its positioning



Require: pgps, co, Sc, tc
1: cn ← GET-CELL(pgps)
2: if co �= cn then
3: Su ← GET-UPDATE(cn, tc(cn))
4: Sc(cn)← Sc(cn) ∪ Su

5: co ← cn
6: end if

Fig. 6. Query Algorithm - Running on Mobile Devices

error, we derive an optimistic estimation for tsup. This may

result in a too large tsup if the mobile device moves at a

higher speed then vavg . On the other hand, it results in a

more appropriate estimation of tsup if the device’s speed is

vavg or lower, and therefore results in a more effective GPS

suppression. After having calculated tsup, the mobile device

schedules its next GPS fix at the end of this time span.

B. Update Protocol

In order to perform the selective sensing algorithm described

in the previous section, the mobile nodes need to know

the current set of validated road segments. Therefore, we

introduce a protocol, that ensures an efficient communication

between the server and the mobile nodes for updating this

set. The simplest way to do this is to broadcast the set

of validated segments to all mobile devices in the area-of-

interest. Using this approach, all mobile devices have an up-

to-date view on all validated segments. If the server marks

new segments as validated, it only has to send these segments

to update the devices’ view. However, receiving the broadcast

messages consumes energy at the mobile devices. Therefore,

updates messages should only be sent to devices for which

the information is actually relevant. Hence, we utilize a more

scalable solution that follows a location-aware approach.

The basic idea is to use the information about the current

position of a device to inform it only about the set of validated

segments that are in its current vicinity. For this reason, we

divide the area-of-interest into a grid structure. The coordinates

of the grid cells are included in the initialization message and

thus are known to all devices. A mobile device associates every

grid cell ci with a timestamp tc(ci) and a set of validated

segments Sc(ci). The timestamp tc(ci) indicates the last time

the device has been located in cell ci and Sc(ci) contains the

validated segments that are located in ci and were up-to-date

when the device left the cell at time tc(ci). Based on this,

a mobile device runs the query algorithm shown in Figure

6, right before it executes the selective sensing algorithm

presented in the last section. In the first part of the algorithm,

the device determines its current grid cell and checks if the cell

has changed since the last position fix (lines 1–2). If that is the

case, the device sends a query for validated road segments to

the server containing the new cell and the timestamp associated

with that cell (line 3). Having received an update from the

server the mobile device updates its local set of validated

segments for that cell (line 4).

Require: cn, tn
1: Sn ← GET-SEGMENTS-IN-CELL(cn)
2: Sout ← ∅
3: for all vs ∈ Sn do
4: if ts(vs) > tn then
5: Sout ← Sout ∪ vs
6: end if
7: end for
8: return Sout

Fig. 7. Update Algorithm - Running on Server

To supply the mobile devices with the appropriate set of

validated segments, the server has to keep track of all changes

it applies to the set of validated segments. Therefore, it

associates each validated segment vs with a timestamp ts(vs)
indicating the time when the server marked the segment as

validated. If the server now receives a query from a mobile

device, it performs the algorithm shown in Figure 7 to return

a set of validated segments to the device. Given the required

cell cn and the corresponding timestamp tn from the mobile

device, the server determines the set of all validated segments

that are located in cn (line 1). In the next steps it initializes

an output set and adds all validated segments to this output

set that were marked as validated after time tn (lines 2–7).

Both algorithms ensures that a mobile device that changes a

cell gets an up-to-date view on all currently validated segments

that are located in its new cell. However, the mobile devices

only receive an update from the server when they change a

cell. Because mobile devices can stay inside a cell for an

unknown time, the server also has to proactively distribute

information about newly validated segments to the mobile

devices. Since the server knows from the query messages in

which cell each mobile device is currently located, it can send

a set of newly validated segments selectively to those mobile

devices which are located in the cells that are affected by this

change.

VI. EVALUATION

In the evaluation of our concept we conducted extensive

simulations to check the effectiveness and efficiency of Map-

Correct. Since we utilize for the map correction step existing

map fusion algorithms, the resulting accuracy of the road edges

heavily depend on the respective algorithm. Therefore, we

focus the evaluation on the efficiency of the system and the

effectiveness of the map validation process.

A. Simulation Setup

To provide a realistic simulation scenario we evaluated our

approach with the network simulator ns-2 using mobility traces

from the trace file generator UDelModels [27]. UDelModels

uses a given road map to generate mobility traces that are

based on well-founded statistical data models. For the gener-

ation of the necessary pedestrian traces we used partitions of

the road graphs of Chicago and Dallas. The same graphs were

taken as input in the map validation query. Since the evaluation



for these two maps led to the same results, we only discuss

the outcome of the simulations for the Chicago map in the

following.

Throughout the simulations we used the following parame-

ter settings: We assumed a requested maximum point distance

of dmax = 3meters and a maximum error of emax = 3meters.

The error value of a GPS fix pgps.σ was modeled according

to a normal distribution with μ = 0 and σ = 10meters. The

standard positioning interval was set to tgps = 3 seconds.

We simulated 2000 mobile nodes moving at pedestrian speed

while the simulation time was set to one day (5am till 23pm).

To measure the amount of energy that is consumed by each

operation on a mobile device, we use a commonly used energy

model ([28], [20]) that can be found in Table I.

Operation Energy [mJ]

GPS Position Fix 75

GPRS Send (1000 Bit) 80

GPRS Receive (1000 Bit) 40

TABLE I
ENERGY MODEL

For the evaluation of our system we compare the results of

three different approaches that reflect the different concepts

we developed for MapCorrect. At first, we look at a naive
approach in which all mobile devices continuously record GPS

positions without using the presented optimized sensing ap-

proach. In the second approach we use the optimized sensing

approach by performing selective sensing and broadcasting

the set of validated segments from the server to all mobile

devices in the area-of-interest. We refer to this as the broadcast
approach. In the last case, we look again at the concept of

selective sensing, but use the grid-based update protocol for

distributing the validated segment information to the mobile

devices. We refer to this as the grid-based approach.

B. Effectiveness of the Map Validation

At first, we have a look at the effectiveness of the three

approaches regarding the map validation process. To assess

the progress of the map validation we have a look at the road

segments that fulfill the quality metrics defined in Section IV-A

after a certain time and thus can be considered as validated.

The results of the naive approach can be seen as an upper

bound for the effectiveness of the system. Since mobile devices

perform a continuous sensing in that approach, the server has

as much information as possible for the map validation.

Figure 8 shows the cumulated length of all validated seg-

ments over time. We see that there is almost no difference

between the three approaches at any point in time. As a

consequence, we can derive two facts:

1) In the end, there is no difference in the total length of the

validated segments. This implies that the two approaches

that use optimized sensing (broadcast and grid-based

approach) validate the same amount of segments as the

naive approach.
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2) There is no temporal gap between the different ap-

proaches at any point in time. Hence, the speed of the

validation is the same in all three approaches.

We can therefore conclude that optimized sensing does not

decrease the effectiveness of the map validation process at all.

C. Energy Efficiency

Next, we have a look at the amount of energy that is

consumed by the mobile devices. For this reason, we have

a look at the cumulated amount of energy that is consumed

by all mobile devices over time. We can see from Figure 9

that the energy consumption of the broadcast approach is the

highest followed by the naive approach. The least energy is

consumed by the grid-based approach, which saves up to 50%
compared to the naive one. Since the energy consumption

constitutes from different operations, we have a closer look

at the single operations that are performed in each approach

to better understand these results.

Figure 10 shows the sum of all GPS fixes over all mobile

devices that were performed in the system. We can see that
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the approaches that use optimized sensing need 55% less GPS

fixes than the naive approach. Moreover, we notice a small gap

between the broadcast and the grid-based approach. This stems

from the fact that in the broadcast approach a mobile device

knows all validated segments from the whole area-of-interest.

However, in the grid-based approach a mobile device knows

only the validated segments that are located in the device’s

current cell. As a result, a mobile device can perform a more

effective suppression of GPS fixes in the broadcast approach

if a validated segment ranges over more than one cell.

Considering the fact that all approaches showed the same

effectiveness regarding the speed and the final output, we

can conclude that all the additional GPS fixes that were

performed in the naive approach were redundant and brought

no additional value to the validation process.

At last, we have a look at the total sum of messages that

were sent and received by all mobile devices over time. This

sum includes the messages used for uploading the GPS traces

from the mobile devices to the server and all the messages

that are needed in the update protocol. From Figure 11 we

can see that the broadcast-based approach by far requires the

most number of messages. From that, we can explain why

it performs so badly in the overall energy consumption. The

grid-based approach needs only a fraction of the messages of

the broadcast approach, while the naive approach needs the

fewest number of messages since it does not employ update

messages.

Comparing the Figures 10 and 11 we can explain the total

energy consumption shown in Figure 9 as follows: On the

one hand the broadcast and the grid-based approach save up

to 50% of energy for GPS fixes over the naive approach. On

the other hand the naive approach is the less energy consuming

approach considering the number of messages. Hence, the

number of messages in the broadcast approach is too high

to outperform the naive approach. In contrast, the grid-based

approach needs far fewer messages and can therefore com-

pensate the effort for additional messages by requiring far less
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GPS fixes than the naive approach. To conclude the evaluation

we can state that a grid-based approach saves up to 50% of

energy compared to a naive map validation approach, whereas

the broadcast approach does not pay off in terms of energy

consumption. We also showed that although less energy is

consumed and less GPS fixes are performed, the quality and

the speed of the validation process do not decrease.

VII. CONCLUSION

In this paper we presented an automatic approach to refine

and validate the geometry of an existing roadmap. We pro-

posed a Public Sensing based data acquisition approach that

utilizes the already deployed GPS sensors on people’s mobile

devices for automatically gathering GPS traces and use them

for correcting and validating a given road map. Moreover, we

introduced an optimized sensing approach, which drastically

decreases the amount of energy that is consumed by the mobile

devices that take part in the data collection. Although the

number of performed GPS fixes decreases, we showed that

this approach does not impair the effectiveness of the map

validation process.

In future work we want to address further issues concern-

ing Public Sensing based mapping. Besides the validation

approach we have presented in this paper, we will focus on

an effective map consistency check, in which mobile devices

check in predefined time intervals if the already validated

geometry of a road map is still valid. This requires a quite dif-

ferent sensor scheduling, since the systems needs to assign the

mobile devices sensing tasks, instead of the proactive sensing

that the mobile devices perform in MapCorrect. Furthermore,

we want to include fairness aspects in the sensor scheduling

decisions, which aims at an uniform load distribution among

the mobile devices.
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[22] D. Philipp, F. Dürr, and K. Rothermel, “A sensor network abstraction
for flexible public sensing systems,” in Proceedings of the 8th IEEE In-
ternational Conference on Mobile Ad-hoc and Sensor Systems, October
2011.

[23] T. Farrell, K. Rothermel, and R. Cheng, “Processing continuous range
queries with spatiotemporal tolerance,” Mobile Computing, IEEE Trans-
actions on, vol. 10, no. 3, pp. 320–334, March 2011.

[24] “Navstar gps: Global positioning system standard positioning service
performance standard,” United States Department of Defense, Tech.
Rep., 2008.

[25] R. Lange, H. Weinschrott, L. Geiger, A. Blessing, F. Dürr, K. Rothermel,
and H. Schütze, “On a generic uncertainty model for position informa-
tion,” in Proceedings of the 1st International Workshop on Quality of
Context. Springer, Juni 2009, Workshop-Beitrag, pp. 1–12.

[26] J. Roth, “Extracting line string features from gps logs,” Schriftenreihe
der Georg-Simon-Ohm-Hochschule Nuernberg, 2008.

[27] J. Kim, V. Sridhara, and S. Bohacek, “Realistic mobility simulation of
urban mesh networks,” Ad Hoc Netw., vol. 7, pp. 411–430, March 2009.
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