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Abstract—Context-based communication allows for the dissem-
ination of messages to mobile users with a specified context, i.e.
at a location and with certain attribute values. This enables, e.g.,
a message to students on campus attending a certain class, with
information about a study group for an upcoming exam. An
overlay network of context-aware routers efficiently disseminate
the messages to all matching receivers. Directed forwarding of
such messages requires that the routers maintain knowledge
about the contexts of connected users. Global knowledge, i.e.,
each router knowing about every user, scales poorly, though,
because of the necessary updates.

To overcome this challenge, a router can selectively propagate
context information that actually allows its neighbors to prune a
message distribution tree. In this paper, we present an approach
to adaptively propagate only those user contexts that offer a
reduction in overall system load. The algorithm automatically
and locally adapts to the observed messages and user contexts
on each node.

Our solution significantly improves the scalability of the system
by reducing the overall load by almost 50%.

I. INTRODUCTION

Context-aware communication (contextcast) allows for a
dissemination of messages to mobile receivers with matching
contexts. Possible applications for such a technology include the
dissemination of concert information for people interested in a
certain musical style or invitations to study groups for students
attending the same university class (cf. [1]). To achieve this goal,
a system can use one of two forwarding strategies: (1) Broadcast
a message, thus reaching every possible recipient. (2) Use
knowledge about user contexts for a directed forwarding.

Obviously, constantly broadcasting messages limits the
performance of such a message dissemination scheme. Thus, to
efficiently distribute contextcast messages, we use an overlay
network with context-based routing algorithms. Users connect
to routers in whose access network they currently reside.
Context updates are propagated into the network for the routers
to maintain their routing tables. The contextcast routers make
forwarding decisions by comparing the addressed context to
the contexts of users in access networks.

However, maintaining the contexts of all users on all routers
causes a high update load in the network, shifting the load
from message broadcasts to context update broadcasts. There
are two possible solutions to reduce this context update load:
On the one hand, we can aggregate similar user contexts to
reduce the amount of redundant information in propagated
contexts. We investigated this in our previous work [2]. On the

other hand, we can selectively propagate only those contexts
that are actually addressed, which is the focus of this paper.

As main contribution, we present an adaptive, selective
context propagation approach, which propagates user contexts
according to the messages the system observes. The rationale
here is that propagating contexts in the system is unnecessary
if they are only rarely addressed. For example, if a context
class is addressed only once a day, propagating context updates
to the routers is much more costly than simply broadcasting
this one message when it occurs. It can also be combined with
the aggregation approach to reduce the amount of redundancy
in the information that gets propagated.

We introduce a distributed algorithm, with each node
deciding locally what context information would reduce the
amount of false positive messages from its neighbors. Each
node keeps a statistic on the observed false positives for this
purpose. With this statistic, it identifies false positive classes
that generate more load than the context updates to prevent them
and propagates this information. In addition, each node also
monitors the context information it has received to determine
when a context is no longer useful to maintain. This is the case
when messages change enough that the false positives, which
this context information prevented, no longer occur. In this case,
it improves overall load when such information is invalidated
and the system falls back to assuming the presence of a
matching receiver, speculatively forwarding these messages.

Our results show that the adaptive context propagation
reduces the overall system load by almost 50%. This is achieved
by a drastic reduction in context updates at the expense of
additional, speculatively forwarded messges.

The remainder of this paper is structured as follows: In
Section II, we give a brief overview of our system model, before
introducing the statistical measurements and the Adaptive
Context Propagation in Section III. Section IV presents the
results of our evaluation of a prototype implementation of
these concepts, and in Section V we summarize our work and
conclude with a brief outlook on future work.

A. Related Work

The concept of context-based routing (or contextcast) [1]
is in its idea similar to content-based routing [3]. Distributed
content-based pub/sub systems such as Siena [4], REBECA [5],
or PADRES [6], use a broker network to deliver notifications
to all interested clients. To this end, the brokers forward clients’
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subscriptions, and then use this knowledge for their forwarding
decision. Without this knowledge, the best approach is to
broadcast all notifications and let clients filter based on their
subscriptions. With the propagation of subscriptions to brokers,
this broadcast shifts from notifications to subscriptions: Each
broker needs to know about the clients’ interests for a directed
forwarding. To reduce the load of these subscriptions, “cover”
and “merge” try to replace several subscriptions for overlapping
sets of notifications by fewer, potentially larger subscriptions.

The use of “advertisements” provides a further improvement
to this scheme. These broadcasts describe the notifications a
source may send out. Brokers then forward subscriptions only
towards sources that might produce a matching notification [7].
In publish/subscribe, this was shown to significantly improve
the scalability of a system [8]. However, our system supports
senders that send only a few messages, for which explicit
advertisements would not work. Nevertheless, our solution
subsumes the use of advertisements in pub/sub. Our system
uses the observation of speculatively forwarded false positives
as a form of implicit advertisements: Context information is
only forwarded over links towards routers from where false
positives originate, thus enabling routers in-between to use
directed forwarding. This reduces these false positives without
broadcasting all context updates or explicit advertisements.

Contextcast employs a very similar routing scheme: Mes-
sages in our system contain constraints on the intended
receivers’ contexts. User contexts are propagated to the routers,
which use them to forward messages in the direction of
matching receivers. This reduces the amount of needlessly
transmitted messages compared to the broadcast forwarding
(i.e., broadcast of messages, with local filtering depending on
receiver context and the constraints). Unfortunately, since user
contexts are very dynamic, propagating and updating these user
contexts causes a rather high load in the network. We have
shown an approach where similar contexts are aggregated and
only the combined information is propagated. The resulting
coarser information reduces the update load.

While this may sound similar to ‘cover’ and ‘merge’ in
pub/sub systems, there are two key differences: the fact that
user context are essentially point values in a context space and
it is necessary to add and remove contexts all the time with
very little overhead. These points require a more sophisticated
approach than the relatively simple concepts behind cover and
merge. A more detailed discussion of these differences and
our aggregation approach is available in [2].

In contrast to context aggregation, with its goal of reducing
redundant information in propagated user contexts, in this paper
we show an approach to only propagate context information
that is actually addressed by messages and can thus lower
message dissemination load.

II. SYSTEM MODEL AND CONTEXTCAST SEMANTIC

In this section, we introduce the Contextcast system model
as well as the message dissemination semantic, which forms
the basis of our Adaptive Context Propagation algorithm in
Section III.

A. System Model

Contextcast employs a distributed system of context-aware
routers, or ContextRouters, organized in an overlay network,
depicted in Figure 1. The links in the overlay network form an
acyclic undirected graph; for any arbitrary overlay network, a
routing algorithm can ensure the acyclic property. The overlay
links follow a locality principle, i.e., connections between
geographically close routers are more likely than between ones
that are far apart. This design allows us to exploit existing
locality with regard to user contexts, e.g., a concentration of
students on a campus. We assume that some attributes (such as
location) and attribute combinations are used more often than
others, especially from high volume senders, while spontaneous
messages from regular clients show greater variations in their
addressing.

In addition to routing functionality, some routers provide
access to the network for clients covering a certain service area.
When this distinction from the ContextRouter is significant, we
call the nodes with added access functionality ContextNodes.
The ContextNodes maintain information about the contexts of
connected users within their service areas.

B. Contextcast Semantic

A user context c in the system consists of an arbitrary number
of context attributes αi. A(c) denotes the set of all the attributes
that make up a context c, i.e., A(c) = {α1, α2, . . . , αk}. Each
attribute αi is a tuple (type, name, value). Figure 2a shows an
example of such a context c.

A context message m addresses clients using constraints φi
on context attributes. All these constraints need to be fulfilled
for a user (or rather their context) to actually match and thus
receive a message. A constraint φ is a tuple (type, name,
predicate, value), where typeφ is the attribute type, nameφ
is the attribute name, and predicateφ can be any predicate that
is defined on the type of the attribute. Additionally, messages
usually have a payload, which is the actual message content.
Figure 2b shows such a message m.

We designed the contextcast forwarding mechanism to
achieve a “no false negatives” semantic. This means that a user
should not miss any message whose addressing their respective
context information matches. The matching semantic between
messages and user contexts as well as the changes necessary
to support an aggregation of user contexts are described in
detail in our previous publications [1], [2].

ContextNode ContextRouter

Service AreaCONTEXTCAST Client

Figure 1: The Contextcast system
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c: WGS84: loc = 48.12N, 9.10E
hierarchy: class = "pedestrian"

enum: gender = "female"
int: age = 29

...
(a) Example of a user context

m: WGS84: loc ∈ 48.0N–48.4N, 9.0E–9.2E
enum: gender = "female"

int: age > 15
int: age < 35
payload = [questionnaire & voucher]

(b) Example of a contextcast message

Figure 2: User Contexts and Contextcast Messages

III. ADAPTIVE CONTEXT PROPAGATION

In contextcast, we can observe two types of load on
the overlay links: message load, which results from the
dissemination of messages, and context update load, which is
caused by the propagation of context information to routers.
Message load can be divided into legitimate message load
(those messages for which a receiver exists) and false positive
message load. There is little one can do about the legitimate
message load if the system is to retain its previous semantic.
False positive load, however, is generated whenever the system
forwards a message for which no matching receiver exists.
This happens when a node has imprecise information, e.g. due
to incomplete knowledge about contexts, and must assume
the presence of a matching receiver in the direction of a link.
Therefore, propagating context knowledge reduces false positive
load, by giving a router the necessary information to employ
its directed forwarding algorithm. However, this comes at the
price of the load it takes to propagate and maintain context
information. The goal is to minimize the overall system load,
i.e., from contextcast messages and context updates.

Our approach adapts to the actual messages and user contexts
in the system. Propagating context information is only useful
for attributes/combinations that actually occur in constraints.
At the same time, we need to consider the dynamic of contexts,
which requires updates to keep propagated information current.

Therefore, we only propagate context information iff it
reduces the overall combined message and update load. In
other words, the reduction in false positives must outweigh the
additional update load for the context information.

Since we no longer propagate each context, the system needs
to be able decide when it has the necessary information for a
directed forwarding. To this end, we allow incomplete context
information (the details are explained in the next section),
which can be used for a directed forwarding if available, but
fall back to speculative forwarding otherwise. Each node can
decide in a decentralized manner what information to forward
to a neighbor, based on statistics it keeps on false positive
messages and context updates.

In the following sections, we present the necessary changes
to handle such incomplete knowledge, metrics and statistics to
estimate the load of context updates and false positives, and
the algorithms that use these statistics to adaptively forward
context information when it benefits overall load.

A. Incomplete Context Knowledge

With complete context knowledge available to Context-
Routers, i.e., the user contexts of all downstream receivers,
a directed forwarding decision is straightforward: A router
forwards a message over a link if and only if it knows of a
matching recipient in that direction. However, for our adaptive
context propagation, the system must be adjusted to maintain
the semantic without this complete knowledge. The following
simple example illustrates the challenges when supporting
incomplete context knowledge.

Figure 3 shows two ContextRouters A and B. A knows
contexts c1, c2, c3, and c4 (locally within its service area). A
has forwarded only c2 and c4 to router B, which has entered
this information in its routing table for the link to A. From
the perspective of B, we call A the origin of the contexts. If B
now evaluates a message, which would match c1, it would not
forward it since it does not know about c1. Without additional
care, this would require falling back to broadcasting messages
since every router would have to assume the presence of a
matching recipient for any given message.

To prevent this, every router must be able to decide whether it
has enough knowledge to evaluate a given message’s constraints
or needs to fall back to speculative forwarding. To support
incomplete knowledge in our system, we allow routers to select
attribute sets Ap = {αi : i ∈ {1, . . . , k}}, for which complete
knowledge is maintained on a link. (The actual selection is
based on observed messages and discussed in Section III-B.)
The attribute knowledge for such a set Ap is propagated as
a composite context. Such a composite context contains the
context information of several user contexts for the attribute
set Ap. A router that receives such a composite context has
the complete picture of values for the attributes in Ap and can
fully evaluate messages with constraints on the attributes in
Ap or a subset thereof.

A composite context is constructed from all contexts
whose attribute sets intersect Ap. More formally, let Ap =
{αi : i ∈ {1, . . . , k}} be a set of attributes a router wants to
propagate. For every context ci with A(ci) ∩ Ap 6= ∅, we
construct partial contexts cp,i by removing all attributes from
ci that are not in Ap. These resulting partial contexts are
then merged into a composite context for Ap and propagated.
(Currently, this merging is a simple list of all partial contexts;

A
B

Service Area

c2
c4

c4

c2
c1

c3

Figure 3: Context knowledge and forwarding
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later, it could also be more sophisticated, such as an aggregation
of the partial contexts.) This composite context then needs to
be continuously updated by the node that created it so its
neighbors can use the information for directed forwarding. The
receiver of the composite context has complete knowledge
about the values of the attributes in Ap and can use it for its
directed forwarding decision.

B. System Load Statistics

In this section, we present a number of statistics, which we
use to determine whether to propagate certain attribute sets
Ap or invalidate them once they are no longer useful. All the
statistics are taken during a configurable time window tw.

1) False Positive Rate: The false positive rate fp is a
measure of how many false positives arrive at a node of a
certain type. It directly measures the amount of false positive
load that could be avoided in the system by propagating certain
context information.

Whenever a router receives a contextcast message M , with
constraints {φα1

, . . . , φαk
}, one of two things can happen: (1)

The router knows another entity to which it needs to send M .
This can be either a neighboring router or a matching receiver
in its own access network. (2) The router does not need to
forward the message to a neighbor and knows no local receiver.
In case (1), M is a legitimate message since the router either
has a local or a downstream receiver. In case (2), M is a false
positive message and needs to be counted as such.

For a given constraint combination {φα1
, . . . , φαk

}, we
count the false positive rate for the attribute combination
{α1, . . . , αk} during a time window tw as:

fp ({α1, . . . , αk})

=
number of false positives for {α1, . . . , αk}

tw
(1)

2) Context Update Rate: The context update rate u reflects
the amount of load that results from propagating and updating
a certain piece of context information, i.e., a composite context.

For an existing composite context c it can be observed
directly as:

u (c) =
number of updates for c

tw
(2)

However, when evaluating the propagation of a new com-
posite context, it is necessary to estimate the update rate, since
it cannot be observed yet. In this case, the update rate can be
estimated from the new composite context’s attributes and their
update rate, which each node can observe directly. Formally,
the update rate of a context cnew consisting of the attributes
α1, . . . , αk, i.e., A(c) = {α1, . . . , αk} can be estimated as the
sum of the updates observed for its individual attributes:

u (c) = u ({α1, . . . , αk})

=

∑k
i=1 observed number of updates for αi

tw
(3)

3) Distribution Prune Rate: The distribution prune rate p is a
measure of the usefulness of a piece of context information after
it has been propagated. After a node propagates a composite
context to a neighbor, the origin node no longer receives the
respective false positive messages (the reason for propagating
the information). We measure this effect by counting the
number of messages pruned by a context c:

p (ccomposite) =
number of pruned messages for ccomposite

tw
(4)

Obviously, this can only be measured at the pruning node
rather than the node that sent the respective context update.

4) Smoothing: To limit the influence of short term changes,
we smooth the statistics using an exponential moving average
with a factor β. Thus, e.g., the smoothed false positive rate
fpS,t (A) for an attribute set A at time t is calculated from the
previous observed and smoothed values as:

fpS,t (A) = βfpt−1 (A) + (1− β)fpS,t−1 (A) (5)

We can calculate the smoothed context update rate uS(c) and
the smoothed distribution prune rate pS(c) in the same manner.

5) Statistic Overhead: The impact of the statistic on the
routers is relatively minor. We can use Bloom filters, for
example, to efficiently store false positive statistics for attribute
sets. Also, the nodes regularly remove old attribute sets that
have not seen a false positive in some time. This cleans out
rare combinations and keeps the statistic size manageable.

The statistics for propagated composite contexts increase
the size of each context by a fixed amount: two counters for
the prunes and updates in the current observation window and
two floats for the respective rates that are updated after the
window ends.

C. Per-link Adaptive Context Propagation

Using the metrics from the previous sections, we can now in
detail describe our adaptive context propagation algorithm, the
necessary changes in message forwarding and our approach to
invalidate old contexts.

Each node observes the rate of false positives for the
messages it receives. It also monitors the update rates for
all the contexts it knows or estimates them from the individual
attributes’ update rates. Using these two rates, it can calculate
the benefit of a certain piece of context information.

Definition 1 (Context Benefit): Let ccomposite be a composite
context. Using Equations 2 and 4, a router can calculate the
context benefit B(ccomposite) as the smoothed distribution prune
rate pS(c) over the smoothed context update rate uS(c) required
for ccomposite:

B (ccomposite) =
pS(ccomposite)

uS(ccomposite)
(6)

Intuitively, the context benefit gives us a measure for the amount
of messages saved by a composite context ccomposite and the
load required to update it.
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For a set of context attributes Acand = {α1, . . . , αk} that
was not propagated, yet, it is possible to estimate the benefit
using Equations 1 and 3:

B (Acand) =
fpS(Acand)

uS(Acand)
=
fpS({α1, . . . , αk})
uS({α1, . . . , αk})

(7)

Obviously, only propagating attribute sets with B(A) > 1
improves the load on the system, as it saves more false positives
than the load it generates for updating the context information.

1) Propagating Composite Contexts: The nodes need to
decide for which attribute sets they propagate a composite
context. Since the nodes cannot compute the power set of all
attributes, they need an efficient method to select candidate
sets for propagation. Our selection of candidate attribute sets
is based on the observed sets of attributes used in constraints
and their propagation benefit.

After each time window, when the statistics are updated, a
node calculates the expected benefit of propagating an attribute
set B(A) using Equation 6. The attribute sets with a benefit
above a propagation threshold Bth,P, are propagated towards
the neighbor. This threshold limits context propagation to those
candidates that actually offer an adjustable benefit and prevents
candidates from propagation that arise due to small fluctuations
in the statistic. Without this, we may observe candidates where,
in one time window, the false positives outweigh the updates
slightly (and would thus be propagated); and in the next time
window, the updates dominate, thus contradicting the decision
to propagate the candidate set. After such a propagation, the
node must update the composite context in the future; at least
until it is invalidated because the messages have changed
sufficiently so the information is no longer useful.

Additionally, a newly propagated attribute set Anew may be a
superset of another attribute sets Ak. Since a composite context
for Anew contains all the information of composite contexts for
its subsets, a node can then stop updating these subsets. The
node receiving the new composite context can also determine
all subset contexts and remove them from its routing table.
These steps are formally summarized in Figure 4

2) Message Forwarding: The message forwarding algorithm
requires only a minor change, shown in Figure 5. Nodes use
directed forwarding if they have the necessary knowledge to
evaluate the constraints of a Message M and fall back to
speculative forwarding if not. Finding the relevant composite
contexts is not the focus of this paper. It could, however, be
implemented efficiently using an approach similar to [9].

3) Context Invalidation: After some time, the messages
a composite context is supposed to prevent may no longer
occur. In this case, we must invalidate a composite context so
the originating node no longer needs to update it, thus again
lowering the overall system load. Obviously, the messages this
context stopped, should they occur occasionally, will then be
propagated as false positives, since the node must assume the
presence of a matching receiver.

Similar to the initial propagation, a router sends back an
invalidate message for each composite context whose benefit
drops below a configurable invalidation threshold BI,th. A value

Require: A list FP of candidate attribute sets for neighbor n.
Ensure: Composite context for the attribute sets with sufficient

benefit propagated to n.
Cprop ← ∅
for all Acand,i ∈ FP do

if fp(Acand,i) > fpth and B(Acand,i) > Bth,P then
for all Aprop ∈ Cprop do

if Acand,i ⊆ Aprop then
continue

else if Aprop ⊆ Acand,i then
Cprop ← Cprop \Aprop

end if
Cprop ← Cprop ∪Acand,i

end for
end if

end for
for all Aprop ∈ Cprop do

Propagate a composite context for Aprop
end for

Figure 4: Composite Context Propagation

Require: A message M , routing tables for all neighbors.
Ensure: M forwarded to satisfy “no false positive” semantic.

for all n ∈ Neighbors do
if ∃Ccomposite : A(M) ⊆ A(Ccomposite) then

Forward M to n if any cpartial ∈ Ccomposite matches M
else

Forward M to n speculatively
end if

end for

Figure 5: Message Forwarding

BI,th ≤ 1 causes the invalidation of all those contexts for which
the updates are more costly than the messages stopped. This
is formally shown in Figure 6.

4) Propagation/Invalidation Hysteresis: The two different
values for the propagation threshold BP,th and the invalidation
threshold BI,th serve as a hysteresis for the propagation and
invalidation. This way, an administrator can configure the
system to only propagate information if it saves 30% more
false positives than the updates it causes (BP,th = 1.3). At
the same time, the system may be configured to invalidate

Require: The list C of composite contexts received from a
neighboring node n.

Ensure: All contexts invalidated for which updates dominate
the system load.
for all c ∈ C do

if B (c) < BI,th then
Send invalidation message for c to n

end if
end for

Figure 6: Composite Context Invalidation
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those contexts which save 10% less messages compared to the
necessary updates (BI,th = 0.9). If the two values were too
close or the same, the system would respond rather nervously to
small changes during an observation window since they might
raise or lower a given context’s benefit above or below the
threshold, causing a propagation or invalidation, respectively.

IV. EVALUATION

We have implemented our adaptive approach, shown in the
algorithms in Figure 4, 5, and 6, in a prototype implementation
to evaluate its performance. The goal of our approach is to
reduce the overall load in the overlay network. Therefore, we
focus our experiments on that and disregard things such as
underlay latency. For this reason, we implemented the prototype
in the Peersim [10] network simulator, which does not consider
the underlay network topology.

For the simulation, the network consists of 500 Context-
Routers, placed on an area of [0, 1] × [0, 1] and connected
according to the Heuristically Optimized Trade-off model
(cf. [11]). We selected the weight parameter γ (the authors
of [11] use the letter α) as

√
n for a network of n nodes. This

leads to an acyclic undirected network graph, which exhibits
an Internet-like power-law distribution for the node degrees.

A fraction of 60% of these nodes are then selected as access
nodes (ContextNodes). They get assigned a rectangular service
area with edge lengths between [0.05, 0.06). Each service area
is then placed on the simulation area with its corresponding
ContextNode in the center. Areas extending beyond the [0, 1]
interval in either direction are cut off to remain within the
boundaries of the simulation. This leaves a number of routers
with degree 1 without an access network. Even though no user
can ever connect to such a node, they can still send messages,
e.g., a provider of commercial messages might operate its own
overlay node as gateway.

We simulate an average of 9000 clients in the system, each
with a location identical to its access network’s service area.
Additionally, each contains between six and twelve numeric
attributes, uniformly chosen out of a set of 30 different ones.
The values of the numeric attributes follow normal distributions
with different means and standard deviations per attribute.

The network load is determined by the rates of updates
and messages. To not favor either update or message load,
we simulate update and message rates of 5 per simulation
cycle, each. Updates are generated according to the following
instructions, which models users both changing their context
and users leaving and new ones joining the system: A fraction
of 70% of all updates results from a change of a single
attribute. If the changed attribute is the user’s location, the
simulation uniformly selects one of its ten nearest neighboring
ContextNodes as its new access node; the value of a numeric
attribute is changed in the same manner as it is created for
new contexts. For the remaining 30% of updates, a uniformly
selected context disconnects and a different random context
– created in the previously described way – connects to the
system. Context messages originate from 1

10 of our routers,
which are uniformly chosen as senders. Messages are created

in a manner similar to context updates: A fraction λ = 0.5
contains a target location with edge length between 0.2 and
0.3. In addition, they contain between one and three numeric
constraints; the selection of the numeric constraints follows a
Zipf distribution (with parameter 1.5, using different attribute
permutations for the different senders). This ensures that
messages of a sender show a bias towards similar addressing.

For our evaluation, we compare our adaptive algorithm (A)
with a baseline approach (B) that propagates all updates into
the network. We look at both the steady-state and dynamic
performance of our adaptive approach. For each experiment,
we run ten simulations with different random seeds and then
compute the arithmetic mean of the simulation runs. Unless
stated otherwise, the standard deviation of the different runs
was negligible. Table I contains an overview of our setup.

A. Load Reduction: Impact Of Propagation Threshold

To illustrate the merit of our approach, we compare the
adaptive context propagation with the baseline over a sampling
period of 1, 000 simulation cycles. We observe the system
in a steady state to ensures that the initial propagation of
user contexts does not give the baseline approach an unfair
disadvantage. Figure 7a shows the update and message load for
the baseline and the adaptive approach for various propagation
thresholds Bth,P. The invalidation threshold Bth,I was set to a
constant 0.9 for this experiment.

The results show that our adaptive approach reduces the
overall load by between 42% and 43% compared to the baseline
algorithm. Looking at the individual load elements, one can
see that the adaptive approach lowers the amount of updates
by between 87% and 94%. At the same time, since nodes
no longer have complete context information, they need to
fall back to speculative forwarding for more messages, thus
increasing the number of forwarded messages by 614% up to
709%. The difference in message is due to false positives, of
course, since the baseline approach forwards and delivers a
message if and only if there is a matching receiver. However,
even with this increase in messages, the overall load on the
system is almost cut in half, due to the reduction in updates.
This meets our expectations, since one of the major goals
in the design of this algorithm is to trade off update load
against additional false positives, while preserving the “no
false negatives” semantic. Context invalidations play virtually
no role in this experiment since the system is in a steady state
and messages do not change significantly enough.

Parameter Value
# of routers 500

γ
√
500

# of access nodes 300
# of users 9000

# of numeric attributes/user 6 - 12 (uniform)
average update rate 5/cycle

# of numeric constraints/message 1 - 3 (uniform)
average message rate 5/cycle

Table I: Summary of simulation parameters
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Figure 7: Static Behavior of the System
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Figure 8: Dynamic Behavior of the System

The propagation threshold Bth,P determines what context in-
formation is forwarded between routers. The higher this number,
the fewer information neighbors exchange, thus increasing false
positive load, while at the same time reducing the amount of
update load. In this scenario, with each node using a relatively
similar attribute set for all its messages, the system soon reaches
a steady state: all nodes have propagated composite contexts
for the prevalent messages in the system. The attribute sets of
these composite contexts have a high benefit value. Thus, with
a lower threshold, the system establishes additional composite
contexts for rarely addressed attribute sets. They increase update
load without actually pruning many distribution trees; higher
thresholds removes these from the system without causing many
additional messages, thus lowering the overall system load. For
very high thresholds, the effect reverses and the additional false
positives start dominating the total system load.

B. Load Reduction: Impact Of Message & Update Rates

As the previous experiment showed, our adaptive approach
reduces update load at the expense of an increase in message
load. If a given percentage of all forwarded messages are
overhead in the form of false positives, increasing the message
sending rate also increases the absolute amount of false
positives. To investigate the influence of the message rate
on our system, we observe the system with Bth,I = 1.5,

a constant update rate ru = 5/cycle and message rates
rm ∈ {5, 7.5, 10, 12.5, 15}, for 1, 000 cycles in a steady state.

Figure 7b shows the amount of messages and updates for
the different message rates, for the adaptive (A) and baseline
approaches (B). Clearly, higher message rates increase the
message load on the system, both legitimate and false positive
messages. Once the message rate reaches 2.5 times the update
rate, the overall load of the adaptive approach is higher than the
overall load of the baseline algorithm. Our algorithm is tailored
more to handling dynamic context attributes such as location
or mode of transportation than to rather static attributes (e.g.,
subscriptions to news feeds).

Also, note that the higher message load causes an increased
number of updates for the adaptive approach. This is due to the
higher message rates causing more attribute combinations to
reach the propagation threshold and thus the system to create
composite contexts for these combinations.

C. Stabilization: Impact Of Exponential Moving Average

The continuous measurements enable our system to adapt to
changes in the addressing of messages. To measure how quickly
our system adapts, we introduce a drastic change after 2, 500
simulation cycles: Every sender constructs messages using a
certain preference of attributes, basically a Zipf distribution
over a permutation of attributes. In this experiment, for the
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first 2, 500 cycles, the nodes select numeric constraints from
the first 15 attributes. At 2, 500 cycles, each node selects a
new permutation of the attributes from the second half of
the available 30 attributes. Thus, at this instant, the complete
addressing in the system changes, requiring the distribution of
new composite contexts to match the new messages.

To measure the impact of the parameter γ of the exponential
moving average, we vary this parameter between 0.5 and
0.8, with a constant window length of 100 cycles. Figure 8a
shows the amount of messages and new composite contexts
over time for γ = 0.5 and γ = 0.8. (To maintain the
legibility of the figure, we omit the measurements for the
updates in the system as well as for values between 0.5 and
0.8; the curves show the same trend, they just differ in the
number of messages.) For both values, at 2, 500 cycles, the
amount of messages increases sharply to the same amount
of speculatively forwarded messages; at this time, previously
established composite contexts can no longer be used for
directed forwarding. It then decreases again as new composite
contexts are propagated and used to reduce the speculatively
forwarded messages. The higher γ shows a quicker reaction,
with more new composite contexts and a faster decline of
message load, since the influence of the last measurement on
the moving average is higher. It also exhibits a lower overall
number of messages (i.e., speculative forwarding) once the
system stabilizes since nodes propagate composite context
faster; with a lower value γ, the same false positive needs to
be observed for several observation windows before the benefit
is high enough to actually propagate a composite context.

An administrator should set γ to the highest possible value
that still sufficiently filters out transient changes in message
addressing, to allow for a quick adaptation to changes and an
overall lower load due to speculative forwarding.

D. Stabilization: Impact Of Window Length

We also observe the stabilization for different window lengths
tw ∈ {25, 50, 75, 100} (in simulation cycles). We introduce the
same change to the system as in the previous section. Figure 8b
shows that the window length tw influences the time it takes
for the system to react to changes (again, for legibility, we
limited the figure to tw = 25 and tw = 100). A higher window
length, e.g., 100 cycles, causes a higher spike of messages
right after the change. This is due to the fact that with tw = 25,
the nodes can establish the first new composite contexts after
25 cycles, which then immediately reduce message load, while
with tw = 100, the nodes need to speculatively forward for
75 more cycles before reacting to the change. However, for
tw = 100, we also see that the system establishes more new
composite contexts over a 100 cycle period. Thus, even though
a drastic change causes more speculatively forwarded messages
for higher tw, the number decreases faster as well and reaches
an overall lower number. This is caused by a better observation
of messages over the longer time window.

Just as for γ, we recommend that an administrator sets tw
to the highest value that offers a good balance between agility
when reacting to changes and longer and thus more accurate

statistics. Obviously, this depends on the rate of messages and
updates that nodes observe.

V. CONCLUSION & FUTURE WORK

In this paper, we presented an approach for adaptive routing
in a context-based communication system. The nodes of
an overlay network for context-based message forwarding
adaptively propagate context information in the overlay network
and automatically adapt their routing tables. This reduces the
overall system load by over 40%, owing largely to the drastic
reduction in context updates in our system.

In the future, we are planning to investigate a self-tuning
improvement to the presented algorithm. This would allow the
routers to automatically adjust the various parameters of the
approach to improve overall system load. Another direction
we are planning to investigate are negative comparisons with
partial information. A prime example here is the location
information: if routers have the information of what locations
can be reached over a link, they can test the location constraint,
directly pruning all branches which have no overlap with the
destination location.
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