
A Sensor Network Abstraction for Flexible Public

Sensing Systems

Damian Philipp, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems

University of Stuttgart

Stuttgart, Germany

Email: [damian.philipp,frank.duerr,kurt.rothermel]@ipvs.uni-stuttgart.de

Abstract—Public Sensing is a new paradigm for developing
large-scale sensor networks at low cost by utilizing mobile phones
that are already surrounding us in our everyday lives. In this
paper we present a sensor network abstraction layer for creating
flexible public sensing systems that can execute arbitrary queries.
To this effect we develop several algorithms to select mobile nodes
for executing a query. These algorithms allow a user to define
a trade-off between quality and efficiency of query execution by
choosing an appropriate algorithm. Our evaluations show that we
can achieve a 99% increase in efficiency with the most efficient
approaches and only about 10% decrease in result quality under
worst conditions.

I. INTRODUCTION

Public Sensing (PS) is a new paradigm for developing large-

scale sensor networks at low cost by utilizing mobile phones

that are already surrounding us in our everyday lives [1], [2].

Liu et. al. [3] created a theoretical basis for PS by showing that

the area covered by a sensor network is significantly increased

when the sensor nodes are mobile. In contrast to previous

approaches, where the movement of nodes is controlled by

the system, PS exploits the inherent uncontrolled mobility of

people carrying smartphones.

From a technical perspective, PS is leveraged by the prolif-

eration of commodity smartphones like the Apple iPhone or

the Google Android phones. These devices offer features that

were previously found only in expensive specialized sensing

devices, e.g., Tmote Sky [4]. A WiFi interface allows for fast

short-range communication between nodes, a UMTS interface

allows for internet access at any time. Each node can determine

its location through systems such as GPS, WiFi-Positioning

[5] or ultrasonic positioning systems [6]. Smartphones also

contain environmental sensors – at the very least for measur-

ing light intensity (camera) and volume (microphone). Other

sensors can easily be added via Bluetooth.

In this work we present a novel kind of opportunistic public

sensing system (PSS) [7] that allows for flexible and efficient

acquisition of arbitrary sensor readings in arbitrarily large

areas, limited only by the availability of nodes carrying the

necessary sensors. Our system can handle both one-shot and

periodic queries as well as the acquisition of several types of

sensor readings in parallel. Up to now, research has mostly

focused on either creating large-scale maps of a single kind

of data [8], [9] or on arbitrary sensing tasks in a small area

[10]. We face several challenges in creating a large-scale PSS.

First, an application interface is required that allows for

posting queries to the PSS in an intuitive and flexible manner.

Consider the example of monitoring environmental vari-

ables, e.g., noise levels. Excessive noise is considered to be

an environmental hazard [11]. It may, therefore, be of interest

to people to create maps of noise levels on the streets of their

hometown or their work environment. As noise levels may

vary over a given area, it is important to achieve a good spatial

coverage in the area of interest to get a meaningful result.

However, determining which level of coverage is “good”

highly depends on the application.

From this example, we can identify the following require-

ments: The user must be able to explicitly specify the points of

interest defining the service area of a query, since for example

using simple grid-based approaches to guarantee a certain

coverage may result in readings taken at indoor locations,

which are of no use in our example. This specification must be

independent from the mobility of devices, as the user cannot be

expected to have intimate knowledge on the current state of the

PSS, e.g., where mobile nodes are located. In addition, the user

must be able to specify how many readings shoud be taken

at each point of interest (POI). One reading per POI might

not be enough, e.g., when a user wants to use an aggregation

function to remedy for outliers due to faulty sensor equipment.

Our first contribution is, therefore, an intuitive sensor

network abstraction of a PSS to be presented to the user.

Users give a mobility-transparent description of points that

are relevant to them as the design for a static (wireless)

sensor network comprised of virtual sensors. This specification

includes the number of readings to take at each sensing site,

thus allowing for k-coverage of sensing sites. Our abstraction

layer will select suitable mobile nodes from the PSS to fill the

role of each virtual sensor. Contrary to related work [12]–[14],

our system does not need a training period but will instead start

reporting sensor readings instantly.

The second challenge in creating a large-scale PSS is

selecting the nodes to provide readings for virtual sensors.

The first issue is the mobility of nodes. Consider the noise

monitoring application from the previous example. Sound

levels change when the distance between the source of the

sound and the sensor changes. To obtain accurate readings, it

is, therefore, necessary to chose nodes close to each sensing
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site. Due to the uncontrolled mobility of nodes, we can not

know in advance which node will be close to which site.

Therefore, we developed algorithms for on-demand selection

of nodes to obtain sensor readings.

Determining which node should take a reading for a given

point is further complicated by uncertain position information.

For instance, GPS accuracy is rarely better than 5 meters [15],

while less energy-intensive approaches like WiFi-based or cell-

based positioning are even less accurate [5].

Finally we need to consider the energy consumption of our

system. In traditional sensor networks, energy is a severely

limited resource. While a smartphone has a rechargeable

battery, energy is still a severe limitation. As the public sensing

application will run as a continuous background task on every

node, we must take care to limit energy usage so that the

battery lifetime of the phones is not decreased significantly.

Intuitively speaking, even with our system running, the battery

of a phone should not run out before the end of the day.

To quantify the above issues, we identified several metrics

for the performance of our system as a second contribution.

These metrics can be divided into two classes. Quality metrics,

i.e., coverage of observation area and the distance of readings

to requested sensing sites, measure the quality of the query re-

sult. Efficiency metrics, i.e., the amount of redundant readings

obtained, the sensing load of each individual node, and the

network load, measure the cost of the sensor data acquisition

process. We also give a short discussion on energy cost for

communication. While the overall energy consumption would

be a more powerful efficiency metric, we cannot evaluate it,

since there is no comprehensive energy model available for

the various types of sensors that can be used by our system.

These metrics form the basis for the third contribution:

Distributed algorithms for selecting mobile nodes to obtain

sensor readings. The goal of these algorithms is to ensure a

certain result quality while causing minimum cost as measured

by our efficiency metrics.

The remainder of this work is structured as follows: Sec-

tion II presents related work. Section III will introduce our

system model, followed by the definition of our sensor network

abstraction in Section IV. We present our quality metrics in

Section V. The algorithms for sensor selection we developed

are presented in Section VI and subsequently evaluated in Sec-

tion VII, along with a presentation of our efficiency metrics.

We will conclude with a summary in Section VIII.

II. RELATED WORK

PS has generated a lot of interest in the research community

in recent years [1], [2]. Several prototype systems that have

mobile nodes carrying their own sensors, such as AnonySense

[16], CenceMe [17], MobGeoSen [18], Bubble-Sensing [10],

CO-monitoring [8] and noise pollution monitoring [9] have

been developed. Each of these systems is built for a single

task only, e.g., measuring air quality or sensing social context,

whereas our system allows for performing several of these

tasks in parallel. They all have in common that participating

nodes constantly sample their sensors and upload the samples

to a central server. No coordination or optimization is per-

formed. MetroSense [19] is a general framework that discusses

several high-level topics and optimizations for PS but does not

present actual solutions to algorithmic challenges.

In our previous work on PSS, we considered a system where

mobile nodes carry communication equipment only [20]. In

this system RFID sensors are located at fixed positions and

can be sampled by the mobile nodes. The nodes coordinate

so that sensors are read only once per measurement interval.

Unlike our current work, the queries that can be executed

in this system are limited by the type and number of RFID

sensors that are deployed. In addition, as the position of each

RFID sensor is known exactly, the distance of a node to the

sensing site does not impact the accuracy of the result.

We also presented another system for obtaining measure-

ments along street segments which uses mobility prediction

and coordination between nodes to achieve k-coverage [21].

This system takes continuous readings as opposed to the point-

wise readings in our current work.

MapCorrect [22] presents a system for automatic validation

and correction of road maps from GPS fixes. A gateway uses a

pessimistic algorithm to estimate when nodes should take GPS

fixes, thus reducing the number of redundant sensor readings.

Reddy et. al. [12]–[14] developed a reputation system for

selecting the most suitable nodes for long-running tasks. The

reputation is built over a long time (e.g., several days) from

geographical and temporal availability, derived from mobility

information and from past participation in sensing tasks.

However, the purpose of the system is to aid a human operator

in node selection. No automatic node selection is performed.

In the context of traditional sensor networks, reducing the

number of sensor readings that are taken has been a topic of

interest for quite some time. There are two main approaches:

coverage optimization and model-driven optimization. In cov-

erage optimization approaches sensors are assigned a covered

area and sensors are chosen so that the areas of chosen sensors

have the least overlap [23], [24]. Model-driven approaches

[25]–[28] determine the information value of sensors and

choose only those sensors with the highest information value.

None of these systems have the problem of determining

what node to query for a sensing site, as sensing sites are

predetermined by the sensor deployment.

Works in actuated sensing [29], [30] also focus on networks

of mobile nodes. The main difference to PSS is that the

movement of nodes is controlled by the system. Thus, these

systems achieve the benefit of using fewer sensors to cover a

large area at the additional cost of having to deploy specialized

mobile sensor nodes.

III. SYSTEM MODEL

Next, we present our system components and assumptions.

Our system consists of a gateway and a number of mobile

nodes. The gateway is located somewhere on the internet and

serves as an interface for users and applications to submit

queries to the PSS. It is responsible for distributing queries in

the system and serves as a sink for sensor readings.



Each node consists of a WiFi interface, a UMTS interface

for mobile internet access, a built-in GPS device and a set of

environmental sensors (light, sound, temperature, air pollution,

etc.). We assume that the GPS sensor does not provide perfect

location information. The error for position fixes follows

a two-dimensional normal distribution with zero-mean and

standard deviation σ. For each position fix, the GPS sensor

also returns the current σ.

Let us now define some terminology. δ(a, b) is used to

denote the Euclidean distance of points a, b in the 2D plane.

We will use postrue(r) and posvis(r) to refer to the true

position and visible position of a reading r respectively. These

positions are not necessarily identical, as the system cannot

always determine postrue(r) precisely, e.g., due to uncertain

positioning information or due to node movement in the time

between taking a position fix and taking a sensor reading. We

extend this notation to all other kinds of positions as well.

The variables monitored by the environmental sensors

follow an unknown spatial distribution. Although the con-

crete distribution is unknown, we assume that two read-

ings a and b taken some distance δ(postrue(a), postrue(b))
apart, their difference is limited by an (unknown) monoton-

ically increasing error function of the distance: |a − b| ≤
e(δ(postrue(a), postrue(b))). Readings from an environmental

sensor are returned instantly upon accessing the sensor.

Nodes use their WiFi interface to send one-hop broadcasts

to their neighbors. We assume every node to have continuous

internet access through multi-hop routing in clusters of mobile

nodes. In such a cluster, only the cluster head (CH) uses

its UMTS interface for internet access. Messages from the

gateway are sent to the CH and then relayed via WiFi broad-

cast, messages from cluster members other than the CH are

collected at their respective CH and then sent via UMTS. Intra-

cluster routing is done using a standard ring-based routing

approach. Cluster membership of a node is determined by the

hop count from the node to a CH. Nodes always joins the

cluster of the closest CH, if that CH is closer than some system

defined maximum hop count. If no CH is available, unclustered

nodes elect a new CH, thus forming a new cluster.

For the following considerations we assume that our sys-

tem will be deployed in an urban setting. Nodes move at

walking speed. We also assume that every node has several

other nodes in its one-hop WiFi neighborhood, although our

system operates independently of the actual state of the WiFi

neighborhood.

IV. SENSOR NETWORK ABSTRACTION

The base of our sensor network abstraction is the concept

of a virtual sensor. A virtual sensor has several properties: a

position, called the sensing site s, a type t of reading (light,

temperature, noise, etc.) and a sensing period p, denoting a

time interval at which readings will be taken.

To obtain data from the PSS, a user generates a set of virtual

sensors V , thus defining the service area. She then submits a

query Q = (V, k, δmax) to the gateway. Apart from the set of

virtual sensors, the query contains two additional parameters
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Figure 1. Overview of the system architecture

that have no resemblance in a static sensor network. k defines

how many readings should be obtained by the PSS for every

virtual sensor. δmax is used to define the covering relationship:

A node n is said to cover s, iff δ(n, s) ≤ δmax. For each

sensing site s, our algorithms will obtain readings from nodes

covering s. Thus, the selection of δmax directly influences the

maximum error of a reading by bounding the error function

e. However, as e is unknown to us, we push the selection

of a suitable δmax to the user, so that she can use expert

knowledge to select a suitable value. Note that V is unique for

every query, thus virtual sensors are not shared across queries.

Queries may be canceled by the user at any time.

To simplify the following descriptions, we assume that all

virtual sensors of a query share the same values for p and

are of same type t. With this simplification, we can rewrite

a query as Q = (S, t, p, k, δmax), where set S denotes the

sensing sites of the different virtual sensors. Modifying our

algorithms for executing queries as in the original definition

is straight-forward.

The sensor network abstraction is implemented as a two-

tier architecture, depicted in Fig. 1. The first tier is the

gateway which serves as a user interface to the PSS, performs

filtering of query results and performs temporal decomposition

of queries. The second tier is implemented by all mobile

nodes participating in the system in a distributed way and

is responsible for spatial decomposition of queries.

The PSS only supports the execution of one-shot queries, as

we have to reconsider which nodes to select for taking readings

at the end of each period due to the mobility of nodes. We

thus perform temporal decomposition in the first tier, where the

gateway issues a one-shot query to the PSS at the end of every

period. Notice that our system does not place any restriction

on the amount of queries that are submitted in parallel.

The second tier in our system is responsible for spatial

decomposition of queries, that is, selecting nodes to fill the



role of the virtual sensors, distribute the query to these nodes,

and to transport their readings back to the gateway. Its imple-

mentation is split across the gateway and the mobile nodes as

will become clear when we present the actual algorithms in

Section VI.

V. QUALITY METRICS

Intuitively speaking, a query result is of high quality if

the data gives a sufficiently complete and accurate picture

of the real world, i.e., no phenomenon was missed and

measurements carry a bounded error. Whether or not given

data can be considered complete and accurate is dependent on

the application and thus out of the scope of the PSS. We have,

however, identified two quality metrics that will allow a user

to make this determination: coverage of queries and distance

of readings.

Coverage of a query is defined as the fraction of sens-

ing sites for which at least one reading was obtained. The

environmental readings we are focusing on exhibit a spatial

variance. Thus, a user can determine from the coverage value

whether any phenomenon might have been missed or the data

is sufficient. An increased coverage leads to an increased

chance of capturing all properties of the observed variable

and, therefore, to a more meaningful query result as well.

Note that in our definition of coverage we do not consider

k-coverage. As it is impractical to integrate the number of

readings taken at each covered site and our binary notion of

coverage into a meaningful value, we inform the user about the

number of readings taken at each site, so that he can again use

expert knowledge to assign a quality value to these readings.

The distance of a single reading is defined as

δ(postrue(r), s), the distance of the true position postrue(r)
where a reading was taken and the sensing site s the reading

is assigned to. As we assume that a reading may deviate

from the true value at s if δ(postrue(r), s) > 0, knowing

δ(postrue(r), s) indicates to the user the accuracy of the query

result, i.e., how trustworthy the readings are. To determine

the overall quality of a query result, the user is presented with

the full set of reading distances and can then map these to a

quality value according to his own requirements. However, as

we know that the deviation is bounded by a monotonically

increasing error function e, we can conclude that the quality

of a query result increases as the single reading distances

decrease.

VI. SENSOR SELECTION ALGORITHMS

Based on the sensor abstraction and query definition, we can

now present the algorithms for distributed query execution.

The basic problem that we solve is that given a query Q,

for each sensing site s ∈ Q.S, we want to return Q.k

readings ri with i ∈ [1, Q.k] at a location postrue(ri). To

provide a high quality result, we should minimize the distance

δ(s, postrue(ri)) for each s and maximize the overall coverage

as well as matching the number of readings to Q.k. With

perfectly accurate node positions, this goal is easy to achieve.

However, we have to deal with position errors. Our algorithms

Table I
TAXONOMY OF SELECTION SCHEMES

Independent Coordinated

Probabilistic
Nearest-Neighbor Candi-
dates

Coordinated Nearest-
Neighbor Candidates

Deterministic

Deterministic Nearest-
Neighbor

Coordinated Deterministic
Nearest-Neighbor

Naive

execute queries instantly, thus we do not introduce any delay

in waiting for node positions to improve with regard to our

quality metrics.

In addition, we also consider the efficiency of query execu-

tion. To this end, we design our algorithms for taking as few

readings as possible, since every redundant reading increases

the energy consumption on each node (reading the sensor,

potentially processing the reading) and increases network load,

as each reading has to be transmitted to the gateway.

All of our approaches follow the same outline:

1) Gateway sends Q to relevant cluster heads via UMTS

2) Cluster heads relay Q to all cluster members via WiFi

3) Nodes determine their location via GPS

4) Nodes execute selection scheme

5) Selected nodes take a sensor reading and send it back

to the gateway via their cluster head

6) The gateway filters the set of returned readings and

passes the result to the user

In Step 1, a cluster head is considered relevant if there is a

possibility that at least one of its cluster members is covering

any sensing site in Q.S. This can, for example, be evaluated by

computing the potential coverage area (PCA) of a cluster. The

PCA is a circle centered at the position of the CH with a ra-

dius of (WiFi comm. range∗max. clustering hop count)+
Q.δmax. If there is at least one sensing site in the PCA, the

CH of that cluster is considered to be relevant.

To prepare for the sensor selection scheme, nodes determine

their position posvis(n) via GPS in Step 3. If the node later

takes a reading r, we set posvis(r) = posvis(n). In Step

4, every node that received Q executes one of the selection

schemes presented later in this section to determine whether or

not it should take a reading. The implementation of this step is

crucial to minimizing the number of redundant readings while

at the same time ensuring the coverage of the sensing site.

The filtering operation on the gateway in Step 6 is quite

simple. For each sensing site s, the gateway first computes

the set of readings Rs that were taken by nodes covering s.

If Rs contains more than k readings, the reading r′ with the

maximum reported distance δ(r′pos, s) is removed from Rs.

This is repeated until there are only k readings left in Rs.

Finally, for each sensing site s, Rs is returned. To ensure

that every reading is assigned to at most one sensing site,

we require δmax to be chosen accordingly: ∀s, s′ ∈ Q.S :
δ(s, s′) > 2 ∗Q.δmax

In the following subsection we present our different selec-

tion schemes. A taxonomy is depicted in Table I.
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A. Independent Selection Schemes

In a naive approach, the selection scheme is to select every

node to obtain a sensor reading.The gateway can then choose

readings from this set to achieve the best possible coverage

of sensing sites and lowest distance of reading positions to

sensing sites, thus yielding a high quality. The downside to

this approach is that efficiency is very low: Every node has to

take a reading for every query. We will see many redundant

sensor readings in areas where there is more than one node

close to a sensing site.

To improve the efficiency of query execution we present sev-

eral optimized selection schemes. In this section independent

selection schemes are presented, where nodes use only local

knowledge to decide on whether they should take a sensor

reading. Coordinated approaches, where nodes communicate

to determine which nodes should take sensor readings, are

presented in the next subsection.

We present two independent selection schemes where nodes

first form coverage groups, determined by what sensing site

they are covering (see Fig. 2), and then independently decide

whether or not they will take a sensor reading. In all of

our approaches, the nodes in one group have to be able

to communicate directly. Therefore, we require that δmax is

chosen no larger than half the WiFi communication range.

The basic idea of the first algorithm, Nearest-Neighbor

Candidates (NNC), is to probabilistically select nodes from

a set of candidate nodes sNNC for each sensing site s. A

node is included in sNNC , if its distance to s is at most

δlimit = min(δmax, δ(s, posvis(n
k)) + σ), where posvis(n

k)
is the the k’th closest visible position of any covering node

to s. Each node in sNNC computes a sensing probability

psensing = k
|sNNC | . For σ = 0m, sNNC includes exactly the k

nearest neighbors of s. For larger values of σ, sNNC grows to

increase the probability that the true nearest neighbors are in-

cluded, even if other nodes erroneously report closer positions.

We thereby exploit a property of the location uncertainty:

Large errors in positioning are less likely than small errors,

thus it is unlikely that a node at a very long distance is included

in sNNC . The complete algorithm is shown in Fig. 3.

A major problem of this approach is that there is a sig-

nificant probability p∅ = (1 − k
|sNNC | )

n that no node will

Require: Query Q = (S, t, k, δmax)

posvis(r)← GPS fix

s← {s|s ∈ Q.S ∧ δ(s, posvis(r)) ≤ Q.δmax}
broadcast(s, δ(s, posvis(r)))
∆← ∅
repeat

receiveBroadcast(s′, δ(s′, posvis(r
′)))

if s′ = s then

∆← ∆ ∪ δ(s′, posvis(r
′))

end if

until timeout t0 is reached

δlimit ← min(δmax,mink({δ|δ ∈ ∆}) + σ))
if δ(s, posvis(r)) ≤ δlimit then

sNNC ← {δ|δ ∈ ∆ ∧ δ ≤ δlimit}
psensing = Q.k

|sNNC |

return read(t) with probability psensing
end if

Figure 3. Independent Nearest-Neighbor Candidate (NNC) selection scheme.
mink denotes the k’th smallest value from the set.

Require: Query Q = (S, t, k, δmax)

posvis(r)← GPS fix

s← {s|s ∈ Q.S ∧ δ(s, posvis(r)) ≤ Q.δmax}
broadcast(s, δ(s, posvis(r)))
∆← ∅
repeat

receiveBroadcast(s′, δ(s′, posvis(r
′)))

if s′ = s then

∆← ∆ ∪ δ(s′, posvis(r
′))

end if

until timeout t0 is reached

if δ(s, posvis(r)) ≤ mink({δ|δ ∈ ∆}) then

return read(t)
end if

Figure 4. Deterministic Nearest-Neighbor (DNN) selection scheme. mink

denotes the k’th smallest value from the set.

take a sensor reading, e.g., for k = 1 and |sNNC | = 3,

p∅ ≈ 30%. Thus, the overall coverage is reduced. The reason

for this is that the decision for taking a reading is statistically

independent on all nodes. While we could reduce p∅ by

increasing psensing , this would also increase the amount of

redundant sensor readings taken.

To alleviate this problem, we introduce a deterministic

nearest-neighbor selection selection scheme called DNN. For

DNN we choose the nodes that report the k smallest distances

δ(s, posvis(r)) instead of computing a random selection. The

complete algorithm is shown in Fig. 4. By directly using the

reported position of nodes, DNN will be subject to the same

influence of location uncertainty as the naive approach. It will

however provide a better coverage compared to NNC.

B. Coordinated Selection Schemes

Another approach to reduce p∅ is to remove the statistical

independence of the sensor selection. By introducing coordi-



Require: Query Q = (S, t, k, δmax)

posvis(r)← GPS fix

s← {s|s ∈ Q.S ∧ δ(s, posvis(r)) ≤ Q.δmax}
t← δ(s,posvis(r))

Q.δmax
∗ tDCNN + jitter

cnt← 0
repeat

receiveBroadcast(snm(s′))
if s′ = s then

cnt← cnt+ 1
if cnt = Q.k then

Abort timeout and discard query

end if

end if

until timeout t is reached

broadcast(snm(s))
return read(t)

Figure 5. Distance-Coordinated Nearest-Neighbor (DCNN) selection scheme

Table II
VALUES FOR THE VARIABLES CHANGED IN OUR SIMULATIONS

Number of Nodes (#nodes) 200, 500, 1000
σ[m] 0, 1, 3, 5, 10, 30, 50
Minimum distance of sensing sites (2 ∗ δmax) [m] 10, 50, 100
Timeout for grouping nodes (t0) [s] 3
Maximum backoff for CNNC (tCNNC ) [s] 1
Maximum backoff for DCNN (tDCNN ) [s] 0.5
Node speed range [m/s] 0.5 . . . 1.7

nation amongst the nodes, we ensure that at least k nodes in

a group will take a reading.

In the Coordinated Nearest-Neighbor Candidate (CNNC)

selection scheme we first use the technique from NNC to

compute sNNC . Instead of taking a reading at a fixed probabil-

ity, every nearest-neighbor candidate now chooses a backoff

time uniformly at random. When the backoff timer expires,

a node takes a reading and broadcasts a sensing notification

message (SNM) to all other nodes in sNNC . Upon receiving

the k’th SNM for its group, a node aborts the backoff timer

and discards the query. Fig. 6 shows the complete algorithm.

We further introduce a coordinated variant of DNN,

Distance-Coordinated Nearest-Neighbor selection (DCNN).

Similar to CNNC, DCNN uses a backoff timer t and SNMs to

decide which nodes will take a reading. However, in DCNN

t is chosen proportional to δ(s, posvis(r)). Therefore, we do

not need to exchange information about other nodes in the

group prior to taking a reading. To avoid nodes with similar

distances choosing similar backoff timeouts and thus causing

collisions when transmitting SNMs, a random jitter is added

to t. The complete algorithm is shown in Fig. 5.

VII. EVALUATION

We present the methodology used for our evaluation in

subsection VII-A. Subsections VII-B and VII-C present and

discuss the results for quality and efficiency metrics.

Require: Query Q = (S, t, k, δmax)

posvis(r)← GPS fix

s← {s|s ∈ Q.S ∧ δ(s, posvis(r)) ≤ Q.δmax}
broadcast(s, δ(s, posvis(r)))
∆← ∅
repeat

receiveBroadcast(s′, δ(s′, posvis(r
′)))

if s′ = s then

∆← ∆ ∪ δ(s′, posvis(r
′))

end if

until timeout t0 is reached

δlimit ← min(δmax,mink({δ|δ ∈ ∆}) + σ)
if δ(s, posvis(r)) ≤ δlimit then

t← uniform(0, tCNNC)
cnt← 0
repeat

receiveBroadcast(snm(s′))
if s′ = s then

cnt← cnt+ 1
if cnt = Q.k then

Abort timeout and discard query

end if

end if

until timeout t is reached

broadcast(snm(s))
return read(t)

end if

Figure 6. Coordinated Nearest-Neighbor Candidate (CNNC) selection
scheme. mink denotes the k’th smallest value from the set.

A. Methodology

We implemented our sensor selection algorithms for the

OMNeT++ network simulator [31] using the INETMANET

extension. For the ad-hoc WiFi communication we used the

802.11 implementation from INETMANET. To improve the

runtime of our simulation we restricted the maximum WiFi

communication range to 150m. For the mobile internet con-

nection we created a simple model of UMTS with a data rate

of 386 kbps shared amongst all nodes and a delay modeled

according to empirical measurements [32]. Node mobility was

generated using CanuMobiSim [33] on a 1 km2 street graph

fragment of the city-center of Stuttgart.

To create uncertain position fixes, we generate an offset

by picking a direction uniformly at random and drawing a

distance from a normal distribution with standard deviation σ.

This offset is then added to the real position of a node.

Our simulations ran for roughly 10 simulated minutes each.

In all simulations we introduced about one query per minute,

yielding 10 queries per simulation. At most one query was

active at any given time during a simulation run. Sensing

sites were placed on roads only. The parameters chosen for

our simulation are presented in Table II. For every set of

parameters we repeated the simulation ten times.

Simulations with a varying number of nodes and different

values for δmax showed the expected behavior: Coverage goes
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Figure 7. Mean distance of true reading positions to sensing sites

down when there are fewer nodes and the mean distance goes

up when δmax grows. Since these results are obvious, we will

not consider different node numbers and δmax values in the

following simulations, and use the following values instead:

#nodes = 1000, δmax = 100m. k was fixed to 1.

B. Quality of Query Results

The first quality metric we consider is the distance of

readings to sensing sites. To get a more accurate impression

of how well our algorithms perform, we calculate the distance

of each reading based on its true position rtrue rather than

the visible position that would be recorded in a real system.

Our measurements are shown in Fig. 7. Note that each data

point is averaged over all readings returned for any query of

the corresponding parameter set. The average distance of the

naive algorithm for σ = 0m defines the optimum average

distance of 14.4m for our scenario.

The overall increase in average distance of all algorithms is

a direct consequence of location uncertainty. With a growing

error in positioning, the actual distance of the node reporting to

be closest to the sensing site may increase for varying position

uncertainties σ. The deterministic algorithms, which always

use the reading that was reportedly taken closest to the sensing

site – naive, DNN and DCNN – yield the smallest distance for

any σ. For the probabilistic approaches the average distance

of readings quickly increases as σ grows. Since the nearest-

neighbor set grows with σ, these approaches basically select

any covering node at random for large σ.

Second, we look at the coverage of queries. Fig. 8 shows

our measurements for the coverage metric. Each data point is

averaged over all queries for the corresponding parameter set.

The naive algorithm again defines the optimum coverage at a

stable percentage of 79%. Thus 21% of sensing sites were not

covered by any node.

The coverage of all our algorithms degrades compared to

the naive approach as σ increases. Apart from NNC, the reason

for this degradation is that for the coverage we did not include

readings where δ(rtrue, s) > δmax. As the location uncertainty
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Figure 9. Fraction of sensing sites where more than one reading per query
was taken

increases, there is a chance for taking a reading at a distance

larger than δmax, which is what happens for DNN. DCNN

improves over DNN because, as we will see later, it does take

a large amount of redundant readings. It is, therefore, likely

that at least one of the readings for each sensing site was taken

at a distance smaller than δmax. The coverage of CNCC is even

lower than that of DNN since CNNC generally picks readings

at a larger distance, as can also be seen in Fig. 7. NNC clearly

shows the worst coverage. As explained in Section VI-A, there

is a significant probability p∅ that no node in a coverage group

will take a reading. This probability grows with the number

of nodes to pick from. This grows with δlimit, which, in turn,

is dependent on σ.

C. Efficiency of Query Execution

To analyze the efficiency of our algorithms, we use three

performance metrics: The number of redundant readings, the

sensor load, and the network load.

The first measure of efficiency we consider is the amount



38 %

40 %

42 %

44 %

46 %

48 %

50 %

52 %

54 %

56 %

0 0.5 1 1.5 2 2.5 3

F
ra

ct
io

n
o

f
S

en
si

n
g

S
it

es

Maximum Backoff [s]

σ = 0
σ = 1
σ = 3
σ = 5
σ = 10
σ = 30
σ = 50

Figure 10. Influence of maximum backoff time on the fraction of sensing
sites with redundant readings in DCNN.

of redundant sensor readings. Redundant readings occur when

there are more than k readings taken for a sensing site in a

single query execution. They increase the energy consump-

tion on nodes and put additional load on the network for

transmitting these readings, thus an algorithm taking fewer

redundant readings is more efficient. Fig. 9 shows the fraction

of all sensing sites where more than one reading was taken

for a query execution. As we set k = 1 in our simulations,

each additional reading that was taken is redundant. The naive

algorithm shows redundant sensor readings at about 70% of

sensing sites which is the worst case. Comparing this to the

results for the coverage metric in Fig. 8 we see that about 9%

of sensing sites were covered by exactly one node.

Of all our optimized approaches DCNN clearly shows the

largest fraction of sites with redundant readings. The cause of

this is the selection of the backoff time tDCNN . As tDCNN

is directly proportional to the reported distance, nodes with

a similar reported distance will choose tDCNN so that they

will obtain a sensor reading before overhearing each others

notification messages. Fig. 10 shows an analysis of the amount

of sensing sites with redundant readings for different backoff

times in DCNN. Increasing the maximum backoff from 0.1 s
to 0.5 s reduces the amount of sites with redundant sensings

by up to 20%. Increasing the maximum backoff further is

beneficial only in cases of low position uncertainty.

DNN shows an almost constant amount of sensing sites

with redundant readings. Redundant readings are due to nodes

having different views on the number of nodes n′ and the

distances δ(s, posvis(n
′)) in their coverage group sNNC , most

likely caused by message collisions during the grouping phase.

Redundant readings in NNC are caused by multiple nodes

choosing to take a reading for the same sensing site due to

the statistical independence of the nodes decisions. Looking

at CNNC we can see that coordination improves this problem,

as the overall fraction of sensing sites with redundant readings

is lower. Redundant readings in this case are caused by nodes
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Figure 11. Influence of maximum backoff time on distance and redundant
readings in CNNC, σ = 30m. Left y-axis: Percentage of sensing sites with
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choosing similar backoff times. This is shown in detail in

Fig. 11. If the maximum backoff time is increased, the chance

for two nodes choosing a similar backoff time is drastically

reduced, and, in turn, the number of redundant readings is also

reduced. Increasing the maximum backoff time does, however,

have a negative impact on the average distance of readings and,

therefore, the quality of the result, as nodes have more time

to move away from their corresponding sensing site.

Next, we look at the sensor load. Sensor load is defined

as the number of sensor readings a mobile node has acquired

during the whole simulation. It is used as an indicator for

the amount of on-device resources that are used during query

execution, e.g., energy for sampling the sensor and CPU

time for processing the reading. Similar to the number of

redundant readings, the naive algorithm also shows the highest

sensing load (see Fig. 12). About 90% of nodes had to acquire

a reading 10 times. As we introduced 10 queries in each

simulation and set k = 1, we can conclude that 90% of nodes

took part in every query. All of our approaches show a much

lower sensing load. In our approaches, 90% of nodes took part

in only one query except for DCNN, where 95% of nodes took

part in three queries. The large amount of redundant sensor

readings taken by DCNN does also show in the sensor load.

Since more readings are being taken per query, each individual

node also has to take more readings.

Last we look at the network load. Network load is defined

as the number of messages (WiFi and UMTS) sent by each

node (see Fig. 13). Values are cumulated over all simulations

where σ = 0m. By comparison, the naive algorithm causes the

highest network load, where 90% of nodes had to transport up

to 250 messages each, as a reading is reported for every single

node in the system. In each of our algorithms the network load

was reduced to less than 200 messages for 90% of the nodes,

thus yielding a 20% increase in efficiency. Also notice that

under the naive approach nodes had to transport up to 1300
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messages whereas in our approaches no node had to transport

more than 550 messages. We can see that reducing the number

of redundant sensings does also pay off w.r.t. network load.

The increased number of messages required for grouping and

coordinating nodes is easily compensated by the reduced effort

for collecting and transmitting the resulting readings.

We performed a brief analysis of energy consumption for

communication, using empirical energy models [34], [35].

We can see from Fig. 14 that as with the network load, the

added messages for grouping and coordinating nodes are fully

compensated by the reduced number of transmitted results.

Currently, the energy savings resulting from our algorithm are

relatively small. This is due to the ring-based routing algorithm

that we use, which in itself produces duplicate messages. In

the future, using a more efficient multi-hop-routing algorithm

will allow our algorithms to reduce energy usage even further.
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Our evaluation showed that the distance-coordinated

nearest-neighbor algorithm (DCNN) yields the same aver-

age distance as an algorithm using global knowledge and

shows 88% coverage in the worst case compared to the opti-

mum value. However, the independent deterministic nearest-

neighbor (DNN) performs better than DCNN under all effi-

ciency metrics, e.g., up to 80% reduction of redundant readings

over DCNN, while still providing 78% of the optimal coverage

in the worst case. The approaches based on nearest-neighbor

candidates show a significant reduction in quality, however,

they show an improved efficiency over the corresponding

nearest-neighbor approaches. In more detail, the evaluation

showed that the proposed set of algorithms allows the user to

define the trade-off between quality and efficiency by choosing

a suitable algorithm from the proposed ones.

VIII. CONCLUSION

In this paper we presented a flexible sensor network abstrac-

tion layer for general public sensing systems. We showed how

the design of a sensor network can be converted into queries

for a public sensing system using a virtual sensor concept.

To this effect we developed four optimized algorithms to

select mobile nodes for executing the query in the face of

uncertain location information. We analyzed the performance

of our algorithms subject to metrics for result quality and effi-

ciency. Moreover, we proposed different algorithms to collect

sensor readings for these virtual sensors such that the quality

of the result is maximized while the necessary effort w.r.t.

redundant sensings, number of readings, and communication

is minimized. The evaluation showed that the proposed set of

algorithms allows the user to trade-off an increase in quality

for a decrease in efficiency by choosing a suitable algorithm.

In the future, our work may be extended by lifting the as-

sumption that all nodes in a coverage group can communicate

directly to each other, thus allowing for larger values of δmax.

We also plan to evaluate the impact of location uncertainty



on a number of different environmental variables, e.g., light,

sound, temperature, or air pollution. Finally, we plan to test

our algorithms in a real-world deployment.
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