A Sensor Network Abstraction for Flexible Public
Sensing Systems

Damian Philipp, Frank Diirr, Kurt Rothermel
Institute of Parallel and Distributed Systems
University of Stuttgart
Stuttgart, Germany
Email: [damian.philipp,frank.duerr,kurt.rothermel] @ipvs.uni-stuttgart.de

Abstract—Public Sensing is a new paradigm for developing
large-scale sensor networks at low cost by utilizing mobile phones
that are already surrounding us in our everyday lives. In this
paper we present a sensor network abstraction layer for creating
flexible public sensing systems that can execute arbitrary queries.
To this effect we develop several algorithms to select mobile nodes
for executing a query. These algorithms allow a user to define
a trade-off between quality and efficiency of query execution by
choosing an appropriate algorithm. Our evaluations show that we
can achieve a 99% increase in efficiency with the most efficient
approaches and only about 10% decrease in result quality under
worst conditions.

I. INTRODUCTION

Public Sensing (PS) is a new paradigm for developing large-
scale sensor networks at low cost by utilizing mobile phones
that are already surrounding us in our everyday lives [1], [2].
Liu et. al. [3] created a theoretical basis for PS by showing that
the area covered by a sensor network is significantly increased
when the sensor nodes are mobile. In contrast to previous
approaches, where the movement of nodes is controlled by
the system, PS exploits the inherent uncontrolled mobility of
people carrying smartphones.

From a technical perspective, PS is leveraged by the prolif-
eration of commodity smartphones like the Apple iPhone or
the Google Android phones. These devices offer features that
were previously found only in expensive specialized sensing
devices, e.g., Tmote Sky [4]. A WiFi interface allows for fast
short-range communication between nodes, a UMTS interface
allows for internet access at any time. Each node can determine
its location through systems such as GPS, WiFi-Positioning
[5] or ultrasonic positioning systems [6]. Smartphones also
contain environmental sensors — at the very least for measur-
ing light intensity (camera) and volume (microphone). Other
sensors can easily be added via Bluetooth.

In this work we present a novel kind of opportunistic public
sensing system (PSS) [7] that allows for flexible and efficient
acquisition of arbitrary sensor readings in arbitrarily large
areas, limited only by the availability of nodes carrying the
necessary sensors. Our system can handle both one-shot and
periodic queries as well as the acquisition of several types of
sensor readings in parallel. Up to now, research has mostly
focused on either creating large-scale maps of a single kind
of data [8], [9] or on arbitrary sensing tasks in a small area

[10]. We face several challenges in creating a large-scale PSS.

First, an application interface is required that allows for
posting queries to the PSS in an intuitive and flexible manner.

Consider the example of monitoring environmental vari-
ables, e.g., noise levels. Excessive noise is considered to be
an environmental hazard [11]. It may, therefore, be of interest
to people to create maps of noise levels on the streets of their
hometown or their work environment. As noise levels may
vary over a given area, it is important to achieve a good spatial
coverage in the area of interest to get a meaningful result.
However, determining which level of coverage is “good”
highly depends on the application.

From this example, we can identify the following require-
ments: The user must be able to explicitly specify the points of
interest defining the service area of a query, since for example
using simple grid-based approaches to guarantee a certain
coverage may result in readings taken at indoor locations,
which are of no use in our example. This specification must be
independent from the mobility of devices, as the user cannot be
expected to have intimate knowledge on the current state of the
PSS, e.g., where mobile nodes are located. In addition, the user
must be able to specify how many readings shoud be taken
at each point of interest (POI). One reading per POI might
not be enough, e.g., when a user wants to use an aggregation
function to remedy for outliers due to faulty sensor equipment.

Our first contribution is, therefore, an intuitive sensor
network abstraction of a PSS to be presented to the user.
Users give a mobility-transparent description of points that
are relevant to them as the design for a static (wireless)
sensor network comprised of virtual sensors. This specification
includes the number of readings to take at each sensing site,
thus allowing for k-coverage of sensing sites. Our abstraction
layer will select suitable mobile nodes from the PSS to fill the
role of each virtual sensor. Contrary to related work [12]-[14],
our system does not need a training period but will instead start
reporting sensor readings instantly.

The second challenge in creating a large-scale PSS is
selecting the nodes to provide readings for virtual sensors.
The first issue is the mobility of nodes. Consider the noise
monitoring application from the previous example. Sound
levels change when the distance between the source of the
sound and the sensor changes. To obtain accurate readings, it
is, therefore, necessary to chose nodes close to each sensing
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site. Due to the uncontrolled mobility of nodes, we can not
know in advance which node will be close to which site.
Therefore, we developed algorithms for on-demand selection
of nodes to obtain sensor readings.

Determining which node should take a reading for a given
point is further complicated by uncertain position information.
For instance, GPS accuracy is rarely better than 5 meters [15],
while less energy-intensive approaches like WiFi-based or cell-
based positioning are even less accurate [5].

Finally we need to consider the energy consumption of our
system. In traditional sensor networks, energy is a severely
limited resource. While a smartphone has a rechargeable
battery, energy is still a severe limitation. As the public sensing
application will run as a continuous background task on every
node, we must take care to limit energy usage so that the
battery lifetime of the phones is not decreased significantly.
Intuitively speaking, even with our system running, the battery
of a phone should not run out before the end of the day.

To quantify the above issues, we identified several metrics
for the performance of our system as a second contribution.
These metrics can be divided into two classes. Quality metrics,
i.e., coverage of observation area and the distance of readings
to requested sensing sites, measure the quality of the query re-
sult. Efficiency metrics, i.e., the amount of redundant readings
obtained, the sensing load of each individual node, and the
network load, measure the cost of the sensor data acquisition
process. We also give a short discussion on energy cost for
communication. While the overall energy consumption would
be a more powerful efficiency metric, we cannot evaluate it,
since there is no comprehensive energy model available for
the various types of sensors that can be used by our system.

These metrics form the basis for the third contribution:
Distributed algorithms for selecting mobile nodes to obtain
sensor readings. The goal of these algorithms is to ensure a
certain result quality while causing minimum cost as measured
by our efficiency metrics.

The remainder of this work is structured as follows: Sec-
tion II presents related work. Section III will introduce our
system model, followed by the definition of our sensor network
abstraction in Section IV. We present our quality metrics in
Section V. The algorithms for sensor selection we developed
are presented in Section VI and subsequently evaluated in Sec-
tion VII, along with a presentation of our efficiency metrics.
We will conclude with a summary in Section VIII.

II. RELATED WORK

PS has generated a lot of interest in the research community
in recent years [1], [2]. Several prototype systems that have
mobile nodes carrying their own sensors, such as AnonySense
[16], CenceMe [17], MobGeoSen [18], Bubble-Sensing [10],
CO-monitoring [8] and noise pollution monitoring [9] have
been developed. Each of these systems is built for a single
task only, e.g., measuring air quality or sensing social context,
whereas our system allows for performing several of these
tasks in parallel. They all have in common that participating
nodes constantly sample their sensors and upload the samples

to a central server. No coordination or optimization is per-
formed. MetroSense [19] is a general framework that discusses
several high-level topics and optimizations for PS but does not
present actual solutions to algorithmic challenges.

In our previous work on PSS, we considered a system where
mobile nodes carry communication equipment only [20]. In
this system RFID sensors are located at fixed positions and
can be sampled by the mobile nodes. The nodes coordinate
so that sensors are read only once per measurement interval.
Unlike our current work, the queries that can be executed
in this system are limited by the type and number of RFID
sensors that are deployed. In addition, as the position of each
RFID sensor is known exactly, the distance of a node to the
sensing site does not impact the accuracy of the result.

We also presented another system for obtaining measure-
ments along street segments which uses mobility prediction
and coordination between nodes to achieve k-coverage [21].
This system takes continuous readings as opposed to the point-
wise readings in our current work.

MapCorrect [22] presents a system for automatic validation
and correction of road maps from GPS fixes. A gateway uses a
pessimistic algorithm to estimate when nodes should take GPS
fixes, thus reducing the number of redundant sensor readings.

Reddy et. al. [12]-[14] developed a reputation system for
selecting the most suitable nodes for long-running tasks. The
reputation is built over a long time (e.g., several days) from
geographical and temporal availability, derived from mobility
information and from past participation in sensing tasks.
However, the purpose of the system is to aid a human operator
in node selection. No automatic node selection is performed.

In the context of traditional sensor networks, reducing the
number of sensor readings that are taken has been a topic of
interest for quite some time. There are two main approaches:
coverage optimization and model-driven optimization. In cov-
erage optimization approaches sensors are assigned a covered
area and sensors are chosen so that the areas of chosen sensors
have the least overlap [23], [24]. Model-driven approaches
[25]-[28] determine the information value of sensors and
choose only those sensors with the highest information value.
None of these systems have the problem of determining
what node to query for a sensing site, as sensing sites are
predetermined by the sensor deployment.

Works in actuated sensing [29], [30] also focus on networks
of mobile nodes. The main difference to PSS is that the
movement of nodes is controlled by the system. Thus, these
systems achieve the benefit of using fewer sensors to cover a
large area at the additional cost of having to deploy specialized
mobile sensor nodes.

III. SYSTEM MODEL

Next, we present our system components and assumptions.
Our system consists of a gateway and a number of mobile
nodes. The gateway is located somewhere on the internet and
serves as an interface for users and applications to submit
queries to the PSS. It is responsible for distributing queries in
the system and serves as a sink for sensor readings.



Each node consists of a WiFi interface, a UMTS interface
for mobile internet access, a built-in GPS device and a set of
environmental sensors (light, sound, temperature, air pollution,
etc.). We assume that the GPS sensor does not provide perfect
location information. The error for position fixes follows
a two-dimensional normal distribution with zero-mean and
standard deviation o. For each position fix, the GPS sensor
also returns the current o.

Let us now define some terminology. d6(a,b) is used to
denote the Euclidean distance of points a, b in the 2D plane.
We will use posiryue(r) and pos,s(r) to refer to the true
position and visible position of a reading r respectively. These
positions are not necessarily identical, as the system cannot
always determine pos.(r) precisely, e.g., due to uncertain
positioning information or due to node movement in the time
between taking a position fix and taking a sensor reading. We
extend this notation to all other kinds of positions as well.

The variables monitored by the environmental sensors
follow an unknown spatial distribution. Although the con-
crete distribution is unknown, we assume that two read-
ings a and b taken some distance (poSirye(a), POStrue(D))
apart, their difference is limited by an (unknown) monoton-
ically increasing error function of the distance: |a — b| <
e(6(postruc(a), postrue(b))). Readings from an environmental
sensor are returned instantly upon accessing the sensor.

Nodes use their WiFi interface to send one-hop broadcasts
to their neighbors. We assume every node to have continuous
internet access through multi-hop routing in clusters of mobile
nodes. In such a cluster, only the cluster head (CH) uses
its UMTS interface for internet access. Messages from the
gateway are sent to the CH and then relayed via WiFi broad-
cast, messages from cluster members other than the CH are
collected at their respective CH and then sent via UMTS. Intra-
cluster routing is done using a standard ring-based routing
approach. Cluster membership of a node is determined by the
hop count from the node to a CH. Nodes always joins the
cluster of the closest CH, if that CH is closer than some system
defined maximum hop count. If no CH is available, unclustered
nodes elect a new CH, thus forming a new cluster.

For the following considerations we assume that our sys-
tem will be deployed in an urban setting. Nodes move at
walking speed. We also assume that every node has several
other nodes in its one-hop WiFi neighborhood, although our
system operates independently of the actual state of the WiFi
neighborhood.

IV. SENSOR NETWORK ABSTRACTION

The base of our sensor network abstraction is the concept
of a virtual sensor. A virtual sensor has several properties: a
position, called the sensing site s, a type ¢ of reading (light,
temperature, noise, etc.) and a sensing period p, denoting a
time interval at which readings will be taken.

To obtain data from the PSS, a user generates a set of virtual
sensors V, thus defining the service area. She then submits a
query @ = (V, k, dnaz) to the gateway. Apart from the set of
virtual sensors, the query contains two additional parameters
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Figure 1. Overview of the system architecture

that have no resemblance in a static sensor network. k& defines
how many readings should be obtained by the PSS for every
virtual sensor. d,,4 is used to define the covering relationship:
A node n is said to cover s, iff §(n,s) < dpas. For each
sensing site s, our algorithms will obtain readings from nodes
covering s. Thus, the selection of ¢,,,, directly influences the
maximum error of a reading by bounding the error function
e. However, as e is unknown to us, we push the selection
of a suitable d,,,, to the user, so that she can use expert
knowledge to select a suitable value. Note that V' is unique for
every query, thus virtual sensors are not shared across queries.
Queries may be canceled by the user at any time.

To simplify the following descriptions, we assume that all
virtual sensors of a query share the same values for p and
are of same type ¢. With this simplification, we can rewrite
a query as @ = (S,t,p,k,dmas), where set S denotes the
sensing sites of the different virtual sensors. Modifying our
algorithms for executing queries as in the original definition
is straight-forward.

The sensor network abstraction is implemented as a two-
tier architecture, depicted in Fig. 1. The first tier is the
gateway which serves as a user interface to the PSS, performs
filtering of query results and performs temporal decomposition
of queries. The second tier is implemented by all mobile
nodes participating in the system in a distributed way and
is responsible for spatial decomposition of queries.

The PSS only supports the execution of one-shot queries, as
we have to reconsider which nodes to select for taking readings
at the end of each period due to the mobility of nodes. We
thus perform temporal decomposition in the first tier, where the
gateway issues a one-shot query to the PSS at the end of every
period. Notice that our system does not place any restriction
on the amount of queries that are submitted in parallel.

The second tier in our system is responsible for spatial
decomposition of queries, that is, selecting nodes to fill the



role of the virtual sensors, distribute the query to these nodes,
and to transport their readings back to the gateway. Its imple-
mentation is split across the gateway and the mobile nodes as
will become clear when we present the actual algorithms in
Section VI.

V. QUALITY METRICS

Intuitively speaking, a query result is of high quality if
the data gives a sufficiently complete and accurate picture
of the real world, i.e., no phenomenon was missed and
measurements carry a bounded error. Whether or not given
data can be considered complete and accurate is dependent on
the application and thus out of the scope of the PSS. We have,
however, identified two quality metrics that will allow a user
to make this determination: coverage of queries and distance
of readings.

Coverage of a query is defined as the fraction of sens-
ing sites for which at least one reading was obtained. The
environmental readings we are focusing on exhibit a spatial
variance. Thus, a user can determine from the coverage value
whether any phenomenon might have been missed or the data
is sufficient. An increased coverage leads to an increased
chance of capturing all properties of the observed variable
and, therefore, to a more meaningful query result as well.

Note that in our definition of coverage we do not consider
k-coverage. As it is impractical to integrate the number of
readings taken at each covered site and our binary notion of
coverage into a meaningful value, we inform the user about the
number of readings taken at each site, so that he can again use
expert knowledge to assign a quality value to these readings.

The distance of a single reading is defined as
d(posirue(r), s), the distance of the true position posyye(r)
where a reading was taken and the sensing site s the reading
is assigned to. As we assume that a reading may deviate
from the true value at s if d(posirye(r),s) > 0, knowing
3(posirue(r), s) indicates to the user the accuracy of the query
result, i.e., how trustworthy the readings are. To determine
the overall quality of a query result, the user is presented with
the full set of reading distances and can then map these to a
quality value according to his own requirements. However, as
we know that the deviation is bounded by a monotonically
increasing error function e, we can conclude that the quality
of a query result increases as the single reading distances
decrease.

VI. SENSOR SELECTION ALGORITHMS

Based on the sensor abstraction and query definition, we can
now present the algorithms for distributed query execution.
The basic problem that we solve is that given a query @,
for each sensing site s € (.S, we want to return Q.k
readings r; with ¢ € [1,Q.k] at a location posiye(r;). To
provide a high quality result, we should minimize the distance
3(8, p0Stryue(r;)) for each s and maximize the overall coverage
as well as matching the number of readings to @.k. With
perfectly accurate node positions, this goal is easy to achieve.
However, we have to deal with position errors. Our algorithms

Table 1
TAXONOMY OF SELECTION SCHEMES

‘ Independent Coordinated
Probabilistic Nearest-Neighbor Candi-  Coordinated Nearest-
dates Neighbor Candidates
Deterministic Nearest-  Coordinated Deterministic
Deterministic | Neighbor Nearest-Neighbor
Naive

execute queries instantly, thus we do not introduce any delay
in waiting for node positions to improve with regard to our
quality metrics.

In addition, we also consider the efficiency of query execu-
tion. To this end, we design our algorithms for taking as few
readings as possible, since every redundant reading increases
the energy consumption on each node (reading the sensor,
potentially processing the reading) and increases network load,
as each reading has to be transmitted to the gateway.

All of our approaches follow the same outline:

1) Gateway sends @ to relevant cluster heads via UMTS

2) Cluster heads relay @ to all cluster members via WiFi

3) Nodes determine their location via GPS

4) Nodes execute selection scheme

5) Selected nodes take a sensor reading and send it back
to the gateway via their cluster head

6) The gateway filters the set of returned readings and
passes the result to the user

In Step 1, a cluster head is considered relevant if there is a
possibility that at least one of its cluster members is covering
any sensing site in ()..S. This can, for example, be evaluated by
computing the potential coverage area (PCA) of a cluster. The
PCA is a circle centered at the position of the CH with a ra-
dius of (WiFi comm. range* max. clustering hop count)+
Q.6maz- If there is at least one sensing site in the PCA, the
CH of that cluster is considered to be relevant.

To prepare for the sensor selection scheme, nodes determine
their position pos,;s(n) via GPS in Step 3. If the node later
takes a reading r, we set pos,is(r) = pos,s(n). In Step
4, every node that received () executes one of the selection
schemes presented later in this section to determine whether or
not it should take a reading. The implementation of this step is
crucial to minimizing the number of redundant readings while
at the same time ensuring the coverage of the sensing site.

The filtering operation on the gateway in Step 6 is quite
simple. For each sensing site s, the gateway first computes
the set of readings R that were taken by nodes covering s.
If R, contains more than k readings, the reading r’ with the
maximum reported distance §(ry,,s,s) is removed from Rj.
This is repeated until there are only %k readings left in Rj;.
Finally, for each sensing site s, Ry is returned. To ensure
that every reading is assigned to at most one sensing site,
we require d,,4. to be chosen accordingly: Vs,s’ € Q.S :
5(57 S/) > 2 Q-amam

In the following subsection we present our different selec-
tion schemes. A taxonomy is depicted in Table I.
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Figure 2. Nodes in the vicinity of sensing sites form a coverage group. Dots
are nodes, crosses are sensing sites.

A. Independent Selection Schemes

In a naive approach, the selection scheme is to select every
node to obtain a sensor reading.The gateway can then choose
readings from this set to achieve the best possible coverage
of sensing sites and lowest distance of reading positions to
sensing sites, thus yielding a high quality. The downside to
this approach is that efficiency is very low: Every node has to
take a reading for every query. We will see many redundant
sensor readings in areas where there is more than one node
close to a sensing site.

To improve the efficiency of query execution we present sev-
eral optimized selection schemes. In this section independent
selection schemes are presented, where nodes use only local
knowledge to decide on whether they should take a sensor
reading. Coordinated approaches, where nodes communicate
to determine which nodes should take sensor readings, are
presented in the next subsection.

We present two independent selection schemes where nodes
first form coverage groups, determined by what sensing site
they are covering (see Fig. 2), and then independently decide
whether or not they will take a sensor reading. In all of
our approaches, the nodes in one group have to be able
to communicate directly. Therefore, we require that d,,4, is
chosen no larger than half the WiFi communication range.

The basic idea of the first algorithm, Nearest-Neighbor
Candidates (NNC), is to probabilistically select nodes from
a set of candidate nodes sync for each sensing site s. A
node is included in sypn¢, if its distance to s is at most
Stimit = Min(0paz, 5(57p051)is(nk)) + o), where pos,s (nk)
is the the k’th closest visible position of any covering node
to s. Each node in syyc computes a sensing probability
Dsensing = %Ncl For 0 = 0m, sy ¢ includes exactly the k
nearest neighbors of s. For larger values of o, syn¢c grows to
increase the probability that the true nearest neighbors are in-
cluded, even if other nodes erroneously report closer positions.
We thereby exploit a property of the location uncertainty:
Large errors in positioning are less likely than small errors,
thus it is unlikely that a node at a very long distance is included
in sync. The complete algorithm is shown in Fig. 3.

A major problem of this approach is that there is a sig-
nificant probability py = (1 k__)" that no node will

" Tsnncl

Require: Query Q = (S, t, k, Smaz)
POSyis (1) + GPS fix
s {s]s € Q.S NI(8,posyis(1)) < Q.Omax}
broadcast(s, (s, p0syis(r)))
A+
repeat
receive Broadcast(s', 6(s', posyis(1')))
if s’ = s then
A+ AU(S, posyis(r’))
end if
until timeout ¢( is reached
Stimit < Min(Omaz, ming ({86 € A}) + o))
if 0(s,p08yis(r)) < dtimit then
SNNC {5%% A NG < Srimit }

Psensing = Tsnnol
return read(t) with probability psensing
end if

Figure 3. Independent Nearest-Neighbor Candidate (NNC) selection scheme.
miny denotes the k’th smallest value from the set.

Require: Query Q = (5, t, k, dnaz)
POSyis(1r) < GPS fix
s {s]s € Q.S NI(8,p0syis(1)) < Q.Omax}
broadcast(s, d(s, posyis(r)))
A0
repeat
receive Broadcast(s', 6(s', posyis(1')))
if s’ = s then
A +— AUI(S, posyis(r'))
end if
until timeout ¢( is reached
if 9(s,posyis(r)) < ming ({66 € A}) then
return read(t)
end if

Figure 4. Deterministic Nearest-Neighbor (DNN) selection scheme. minyg
denotes the k’th smallest value from the set.

take a sensor reading, e.g., for k = 1 and |sync| = 3,
pg ~ 30%. Thus, the overall coverage is reduced. The reason
for this is that the decision for taking a reading is statistically
independent on all nodes. While we could reduce py by
increasing psensing, this would also increase the amount of
redundant sensor readings taken.

To alleviate this problem, we introduce a deterministic
nearest-neighbor selection selection scheme called DNN. For
DNN we choose the nodes that report the k& smallest distances
5(s, posyis(r)) instead of computing a random selection. The
complete algorithm is shown in Fig. 4. By directly using the
reported position of nodes, DNN will be subject to the same
influence of location uncertainty as the naive approach. It will
however provide a better coverage compared to NNC.

B. Coordinated Selection Schemes

Another approach to reduce py is to remove the statistical
independence of the sensor selection. By introducing coordi-



Require: Query Q = (5, t, k, dmaz)
POS4,is(r) < GPS fix
s {s]s € Q.S N I(8,p084is(1)) < Q.Omax}
t M *tponnN + jitter
ent <+ 0
repeat
receive Broadcast(snm(s'))
if s’ = s then
ent «——cent+ 1
if cnt = @Q.k then
Abort timeout and discard query
end if
end if
until timeout ¢ is reached
broadcast(snm(s))
return read(t)

max

Figure 5. Distance-Coordinated Nearest-Neighbor (DCNN) selection scheme

Table 1T
VALUES FOR THE VARIABLES CHANGED IN OUR SIMULATIONS
Number of Nodes (#nodes) 200, 500, 1000
o[m] 0, 1, 3, 5, 10, 30, 50
Minimum distance of sensing sites (2 * dymaz) [m] 10, 50, 100
Timeout for grouping nodes (to) [s] 3

Maximum backoff for CNNC (tcnne) [s] 1
Maximum backoff for DCNN (¢tponn) [S] 0.5
Node speed range [m/s] 05...1.7

nation amongst the nodes, we ensure that at least £ nodes in
a group will take a reading.

In the Coordinated Nearest-Neighbor Candidate (CNNC)
selection scheme we first use the technique from NNC to
compute sy vc. Instead of taking a reading at a fixed probabil-
ity, every nearest-neighbor candidate now chooses a backoff
time uniformly at random. When the backoff timer expires,
a node takes a reading and broadcasts a sensing notification
message (SNM) to all other nodes in sy x¢c. Upon receiving
the k’th SNM for its group, a node aborts the backoff timer
and discards the query. Fig. 6 shows the complete algorithm.

We further introduce a coordinated variant of DNN,
Distance-Coordinated Nearest-Neighbor selection (DCNN).
Similar to CNNC, DCNN uses a backoff timer ¢t and SNMs to
decide which nodes will take a reading. However, in DCNN
t is chosen proportional to §(s, pos,;s(r)). Therefore, we do
not need to exchange information about other nodes in the
group prior to taking a reading. To avoid nodes with similar
distances choosing similar backoff timeouts and thus causing
collisions when transmitting SNMs, a random jitter is added
to t. The complete algorithm is shown in Fig. 5.

VII. EVALUATION

We present the methodology used for our evaluation in
subsection VII-A. Subsections VII-B and VII-C present and
discuss the results for quality and efficiency metrics.

Require: Query Q = (5, t, k, dmaz)
POSyis(r) « GPS fix
s {s]s € Q.S NI(8,posyis(1)) < Q.Omax}
broadcast(s, (s, p0syis(r)))
A+
repeat
receive Broadcast(s', 6(s', posyis(1')))
if s’ = s then
A+ AUSI(S, posyis(r'))
end if
until timeout ¢( is reached
Stimit  mMin(Smaz, ming ({86 € A}) + o)
if 0(s,p08yis(r)) < dtimit then
t « uniform(0,tocnne)
cent <0
repeat
receiveBroadcast(snm(s’))
if s = s then
ent +——cnt +1
if cnt = Q.k then
Abort timeout and discard query
end if
end if
until timeout ¢ is reached
broadcast(snm(s))
return read(t)
end if

Figure 6. Coordinated Nearest-Neighbor Candidate (CNNC) selection
scheme. miny denotes the k’th smallest value from the set.

A. Methodology

We implemented our sensor selection algorithms for the
OMNeT++ network simulator [31] using the INETMANET
extension. For the ad-hoc WiFi communication we used the
802.11 implementation from INETMANET. To improve the
runtime of our simulation we restricted the maximum WiFi
communication range to 150 m. For the mobile internet con-
nection we created a simple model of UMTS with a data rate
of 386 kbps shared amongst all nodes and a delay modeled
according to empirical measurements [32]. Node mobility was
generated using CanuMobiSim [33] on a 1km? street graph
fragment of the city-center of Stuttgart.

To create uncertain position fixes, we generate an offset
by picking a direction uniformly at random and drawing a
distance from a normal distribution with standard deviation o.
This offset is then added to the real position of a node.

Our simulations ran for roughly 10 simulated minutes each.
In all simulations we introduced about one query per minute,
yielding 10 queries per simulation. At most one query was
active at any given time during a simulation run. Sensing
sites were placed on roads only. The parameters chosen for
our simulation are presented in Table II. For every set of
parameters we repeated the simulation ten times.

Simulations with a varying number of nodes and different
values for 6,4, showed the expected behavior: Coverage goes
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down when there are fewer nodes and the mean distance goes
up when 6,4, grows. Since these results are obvious, we will
not consider different node numbers and J,,,, values in the
following simulations, and use the following values instead:
#nodes = 1000, 6,,4. = 100m. k was fixed to 1.

B. Quality of Query Results

The first quality metric we consider is the distance of
readings to sensing sites. To get a more accurate impression
of how well our algorithms perform, we calculate the distance
of each reading based on its true position 7., rather than
the visible position that would be recorded in a real system.
Our measurements are shown in Fig. 7. Note that each data
point is averaged over all readings returned for any query of
the corresponding parameter set. The average distance of the
naive algorithm for ¢ = 0m defines the optimum average
distance of 14.4m for our scenario.

The overall increase in average distance of all algorithms is
a direct consequence of location uncertainty. With a growing
error in positioning, the actual distance of the node reporting to
be closest to the sensing site may increase for varying position
uncertainties o. The deterministic algorithms, which always
use the reading that was reportedly taken closest to the sensing
site — naive, DNN and DCNN - yield the smallest distance for
any o. For the probabilistic approaches the average distance
of readings quickly increases as o grows. Since the nearest-
neighbor set grows with o, these approaches basically select
any covering node at random for large o.

Second, we look at the coverage of queries. Fig. 8 shows
our measurements for the coverage metric. Each data point is
averaged over all queries for the corresponding parameter set.
The naive algorithm again defines the optimum coverage at a
stable percentage of 79%. Thus 21% of sensing sites were not
covered by any node.

The coverage of all our algorithms degrades compared to
the naive approach as o increases. Apart from NNC, the reason
for this degradation is that for the coverage we did not include
readings where 6(74,ye, S) > Omaz. As the location uncertainty
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was taken

increases, there is a chance for taking a reading at a distance
larger than d,,,4,, Which is what happens for DNN. DCNN
improves over DNN because, as we will see later, it does take
a large amount of redundant readings. It is, therefore, likely
that at least one of the readings for each sensing site was taken
at a distance smaller than §,,,.. The coverage of CNCC is even
lower than that of DNN since CNNC generally picks readings
at a larger distance, as can also be seen in Fig. 7. NNC clearly
shows the worst coverage. As explained in Section VI-A, there
is a significant probability pp that no node in a coverage group
will take a reading. This probability grows with the number
of nodes to pick from. This grows with §;,,4¢, Which, in turn,
is dependent on o.

C. Efficiency of Query Execution

To analyze the efficiency of our algorithms, we use three
performance metrics: The number of redundant readings, the
sensor load, and the network load.

The first measure of efficiency we consider is the amount
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of redundant sensor readings. Redundant readings occur when
there are more than k readings taken for a sensing site in a
single query execution. They increase the energy consump-
tion on nodes and put additional load on the network for
transmitting these readings, thus an algorithm taking fewer
redundant readings is more efficient. Fig. 9 shows the fraction
of all sensing sites where more than one reading was taken
for a query execution. As we set k = 1 in our simulations,
each additional reading that was taken is redundant. The naive
algorithm shows redundant sensor readings at about 70% of
sensing sites which is the worst case. Comparing this to the
results for the coverage metric in Fig. 8 we see that about 9%
of sensing sites were covered by exactly one node.

Of all our optimized approaches DCNN clearly shows the
largest fraction of sites with redundant readings. The cause of
this is the selection of the backoff time tponn. AS tponN
is directly proportional to the reported distance, nodes with
a similar reported distance will choose tponn so that they
will obtain a sensor reading before overhearing each others
notification messages. Fig. 10 shows an analysis of the amount
of sensing sites with redundant readings for different backoff
times in DCNN. Increasing the maximum backoff from 0.1 s
to 0.5 s reduces the amount of sites with redundant sensings
by up to 20%. Increasing the maximum backoff further is
beneficial only in cases of low position uncertainty.

DNN shows an almost constant amount of sensing sites
with redundant readings. Redundant readings are due to nodes
having different views on the number of nodes n’ and the
distances 6(s, pos,;s(n’)) in their coverage group sy n¢, most
likely caused by message collisions during the grouping phase.

Redundant readings in NNC are caused by multiple nodes
choosing to take a reading for the same sensing site due to
the statistical independence of the nodes decisions. Looking
at CNNC we can see that coordination improves this problem,
as the overall fraction of sensing sites with redundant readings
is lower. Redundant readings in this case are caused by nodes
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Figure 11. Influence of maximum backoff time on distance and redundant

readings in CNNC, o = 30 m. Left y-axis: Percentage of sensing sites with
redundant readings. Right y-axis: Average Distance of readings to sensing
sites.

choosing similar backoff times. This is shown in detail in
Fig. 11. If the maximum backoff time is increased, the chance
for two nodes choosing a similar backoff time is drastically
reduced, and, in turn, the number of redundant readings is also
reduced. Increasing the maximum backoff time does, however,
have a negative impact on the average distance of readings and,
therefore, the quality of the result, as nodes have more time
to move away from their corresponding sensing site.

Next, we look at the sensor load. Sensor load is defined
as the number of sensor readings a mobile node has acquired
during the whole simulation. It is used as an indicator for
the amount of on-device resources that are used during query
execution, e.g., energy for sampling the sensor and CPU
time for processing the reading. Similar to the number of
redundant readings, the naive algorithm also shows the highest
sensing load (see Fig. 12). About 90% of nodes had to acquire
a reading 10 times. As we introduced 10 queries in each
simulation and set £ = 1, we can conclude that 90% of nodes
took part in every query. All of our approaches show a much
lower sensing load. In our approaches, 90% of nodes took part
in only one query except for DCNN, where 95% of nodes took
part in three queries. The large amount of redundant sensor
readings taken by DCNN does also show in the sensor load.
Since more readings are being taken per query, each individual
node also has to take more readings.

Last we look at the network load. Network load is defined
as the number of messages (WiFi and UMTS) sent by each
node (see Fig. 13). Values are cumulated over all simulations
where o = 0 m. By comparison, the naive algorithm causes the
highest network load, where 90% of nodes had to transport up
to 250 messages each, as a reading is reported for every single
node in the system. In each of our algorithms the network load
was reduced to less than 200 messages for 90% of the nodes,
thus yielding a 20% increase in efficiency. Also notice that
under the naive approach nodes had to transport up to 1300
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messages whereas in our approaches no node had to transport
more than 550 messages. We can see that reducing the number
of redundant sensings does also pay off w.r.t. network load.
The increased number of messages required for grouping and
coordinating nodes is easily compensated by the reduced effort
for collecting and transmitting the resulting readings.

We performed a brief analysis of energy consumption for
communication, using empirical energy models [34], [35].
We can see from Fig. 14 that as with the network load, the
added messages for grouping and coordinating nodes are fully
compensated by the reduced number of transmitted results.
Currently, the energy savings resulting from our algorithm are
relatively small. This is due to the ring-based routing algorithm
that we use, which in itself produces duplicate messages. In
the future, using a more efficient multi-hop-routing algorithm
will allow our algorithms to reduce energy usage even further.
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Figure 14. Cumulated Energy Consumption for WiFi and UMTS. Plot shows
fraction of nodes where energy usage < total energy used. Image is truncated
at 50 kJ.

Our evaluation showed that the distance-coordinated
nearest-neighbor algorithm (DCNN) yields the same aver-
age distance as an algorithm using global knowledge and
shows 88% coverage in the worst case compared to the opti-
mum value. However, the independent deterministic nearest-
neighbor (DNN) performs better than DCNN under all effi-
ciency metrics, e.g., up to 80% reduction of redundant readings
over DCNN, while still providing 78% of the optimal coverage
in the worst case. The approaches based on nearest-neighbor
candidates show a significant reduction in quality, however,
they show an improved efficiency over the corresponding
nearest-neighbor approaches. In more detail, the evaluation
showed that the proposed set of algorithms allows the user to
define the trade-off between quality and efficiency by choosing
a suitable algorithm from the proposed ones.

VIII. CONCLUSION

In this paper we presented a flexible sensor network abstrac-
tion layer for general public sensing systems. We showed how
the design of a sensor network can be converted into queries
for a public sensing system using a virtual sensor concept.

To this effect we developed four optimized algorithms to
select mobile nodes for executing the query in the face of
uncertain location information. We analyzed the performance
of our algorithms subject to metrics for result quality and effi-
ciency. Moreover, we proposed different algorithms to collect
sensor readings for these virtual sensors such that the quality
of the result is maximized while the necessary effort w.r.t.
redundant sensings, number of readings, and communication
is minimized. The evaluation showed that the proposed set of
algorithms allows the user to trade-off an increase in quality
for a decrease in efficiency by choosing a suitable algorithm.

In the future, our work may be extended by lifting the as-
sumption that all nodes in a coverage group can communicate
directly to each other, thus allowing for larger values of §,,45-
We also plan to evaluate the impact of location uncertainty



on a number of different environmental variables, e.g., light,
sound, temperature, or air pollution. Finally, we plan to test
our algorithms in a real-world deployment.
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