
FlexCon – Robust Context Handling in Human-oriented
Pervasive Flows

Hannes Wolf, Klaus Herrmann, and Kurt Rothermel

Institute of Parallel and Distributed Systems,

Universitätsstraße 38, D-70569 Stuttgart, Germany

{hannes.wolf|klaus.herrmann|kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract. Workflows are increasingly becoming a universal means for driving

and coordinating complex processes, not only in the business world but also in

areas like pervasive computing. Pervasive flows run in parallel with the user’s

real-world actions and are synchronized using automatically collected context

information about her current activities (context events). Respective workflows

cannot be rigidly defined since the user needs to retain her flexibility and must

not be obstructed by the workflow. However, if the order of activities is not de-

fined until the activities are actually executed, correctly assigning the uncertain

context events becomes a major challenge. We propose FlexCon – a novel event

assignment approach for such human-oriented workflows that is based on hybrid

workflow models and Dynamic Bayesian Networks. FlexCon exploits the depen-

dency between context events to provide more accurate information as to which

events need to be consumed by which workflow activities. Our evaluations show

that FlexCon improves the event accuracy on average by 54% and the number

of successful completed flows on average by 88%. Thus, FlexCon represents a

major step towards unobtrusive pervasive applications.

1 Introduction

Workflows are an adequate means for modeling the functionality and the temporal flow

of complex activities in many areas of information technology. Traditionally, they are

rooted in business applications [1], where processes span diverse departments of the

same company or different companies. In recent years, however, an influx of workflow

technologies into the domain of pervasive systems has started. They have been proposed

as useful tool for environments with intensive human interaction [2]. Gradually, work-

flows have become more flexible, supporting [3] and also gained context-awareness [4].

In the ALLOW project [5], we investigated the concept of Adaptable Pervasive
Flows (in short flows) as a means for rendering complex applications and the environ-

ment (technical equipment, information systems etc.) adaptive to the mobile user. The

basic idea of flows is that a process that a user has to execute is modeled as a flow. This

flow is running in the background in parallel to the actual real-world actions of the user

and can support her in different ways. The key to this is that the flow requires as little

explicit input from the user as possible in order to offer unobtrusive support. First, the

flow can guide the user through the process by giving her feedback in critical situations

(e.g. visual or audio). Second, it may take over certain routine tasks automatically (e.g.

Published in Meersman, Robert and Dillon, Tharam and Herrero,
et al. On the Move to Meaningful Internet Systems: OTM 2011,
LNCS 7044, pp. 236-255 2011.
© Springer-Verlag 2011
The original publication is available at www.springerlink.com:
http://www.springerlink.com/content/2245482r612336ln/

documenting the actual process for legal or quality-related reasons). Third, the flow may

prepare the environment (e.g. configuring electronic devices etc.) in advance to mini-

mize disturbances and the work load of the user. Fourth, the flow may automatically

adapt itself in case it recognizes that the planned execution will fail (e.g. due to lack

of a required resource). All of this is possible since the flow “knows” the prospective

future activities associated with the process – they are part of the flow model.

To achieve this with minimal explicit input, the flow system monitors what the user

does in the real world in order to automatically synchronize with her actions and drive

the flow forward respectively. This monitoring, which provides the majority of the in-

put to the flow, is done by means of activity recognition [6, 7] using different types of

sensors. The respective data is provided to the flow as so-called context events.

As an example, consider a nurse in a hospital that has a flow modeling the morn-

ing routine of a patient. That flow involves different activities like washing, dressing,

measuring blood pressure, and disinfecting hands. The actions associated with

these activities in the real world are detected by the activity recognition system and pro-

vided to the flow as context events. Some of the activities have a clear ordering relation,

e.g. she has to wash the patient before she dresses him. Others are mandatory but may

occur at different stages of the flow (e.g. measuring blood pressure). Yet other ac-

tivities like disinfecting hands may be carried out multiple times as needed. Thus,

a respective flow must not be defined rigidly with a fixed predefined order between ac-

tivities. It must allow the nurse the flexibility of executing the process in her own way

and in the way required by the specific situation.

When the flow arrives at a certain activity, there may be different ways of continuing

(different possible next activities). Depending on the context events received, the flow

has to decide which of these paths the user took. Supplying the correct context events to

the right flow activities is a tough challenge under these conditions. First, events may be

noisy, duplicated, deleted due to failure or delayed. This is a fundamental problem that

occurs irrespectively of the flexibility in the flow models [8]. Second, due to the gained

flexibility, it may not be completely clear which activity is actually executed next and

thus awaits a respective event.

To solve this fundamental problem of pervasive flow technology in general, we pro-

pose FlexCon, a system that leverages a combination of imperative (rigid) and declar-

ative (flexible) flow models, Dynamic Bayesian Networks (DBN), and particle filters

to reduce the uncertainty of context events. FlexCon builds probabilistic models of the

dependencies between events and uses this information to improve the processing of

probabilistic context events. We evaluated FlexCon based on a real-world hospital study

and found that it decreases the context event uncertainty by up to 73%. While standard

flow technology exhibits a high flow failure rate1 of 82% under the conditions explained

above, the failure rate of FlexCon is only 65% on average of all flows. This presents a

major step forward in the areas of workflow-based pervasive computing.

The rest of the paper is structured as follows: In Section 2 we will investigate the

related work in relevant areas. We present the basic models of context and workflows

in Section 4. After that we introduce our FlexCon approach in Section 5 and evaluate

1 A flow fails if context events are assigned to false activities or are discarded due to false

recognition results.

it based on a real-world scenario in Section 6. Finally, we present our conclusions in

Section 7.

2 Related Work

In the following, we will investigate the state-of-the-art in the relevant areas of research.

We will first discuss activity recognition systems and how they deal with context uncer-

tainties. While our work is not directly associated with this area, it does provide a new

approach for handling the uncertainties perceived in activity recognition systems on a

higher layer by exploiting application knowledge. Subsequently, we will take a closer

look at the field of context-aware workflows.

There have been numerous studies on activity recognition in the health-care domain

[9–11]. The major factors for decreasing the uncertainty in the recognition results are

the selection of appropriate sensors and exploiting available application models. Biswas

et al. [11] specifically remark that the recognition process can benefit from the knowl-

edge of domain experts. A flow is a very detailed representation of expert application

knowledge, that FlexCon uses to increase the accuracy of events.

Barger et al. [9] studied a health status monitoring application that learns behavioral

patterns of a user from his daily activities using a number of motion sensors. But their

system lacks an application model too, leading to missed events and false positives and

a rather low recognition accuracy for uncommon situations.

Najafi et al. [10] have built a monitoring system for elderly people using one accel-

eration sensor, and detecting position transitions and mode of locomotion. While this

approach performs very well for single transitions in a specific test scenario, the sensing

quality decreases over extended periods of time due to the lack of an application model.

The presented approaches all use sophisticated activity recognition techniques, but

do not consider the kind of application knowledge a flow provides, thus, neglecting the

huge potential.

The integration of context information into classic workflows used in enterprises

has first been suggested by Wieland et al. [4], who provide interfaces for accessing con-

text information from within a workflow. This approach was later extended to deal with

Quality of Context [12]. Here, a policy language is used to define the acceptable amount

of uncertainty in context information and to filter out information that does not match

the specified criteria. This approach is based on the idea to simply prevent the work-

flow from receiving uncertain information. However, if a workflow does not receive the

information at all, this can be just as detrimental as receiving false information. We go

one important step further by improving the information such that it becomes useful for

the flow.

Adam et al. [13] proposed fuzzy logic to enable soft decisions in workflows based

on the input provided to the workflow. However, they did not consider uncertainties or

ambiguities in the input information. Their approach aims at making a better decisions

from the business perspective.

PerFlows, presented by Urbanski et al. [14], are context-aware workflows that are

suitable for pervasive scenarios and provide flexible activity scheduling and processing.

However, they require heavy user interaction to work properly. This is disadvantageous

in scenarios where the workflows shall run in the background in order not to obstruct

the user. In our own previous work [15], we presented an approach for dynamic context-

awareness suited for pervasive flow-based applications. But this approach also neglects

the handling of uncertain context information.

In 2010, we have proposed FlowCon [15], the first system that was able to decrease

the uncertainty of events by learning the dependencies between events and by explic-

itly exploiting the temporal structure encoded in imperative flows (flows with a strict

temporal ordering among activities). FlowCon can increase the number of successfully

executed flows by a factor of 6 to 8 under normal conditions. With the FlexCon sys-

tem presented in this paper, we build on this work and apply related technologies to

hybrid flow models that are more flexible and allow users to act more freely. Overall,

this represents a significant step forward in this field.

3 Scenario

The application scenario we use to evaluate FlexCon is from the health care domain. We

studied the processes conducted by nurses in a geriatric ward in Mainkofen, Germany

over a period of 14 days.

Through a mining process, we extracted workflows from the observations made at

the ward. The respective processes have not been defined as workflows before. How-

ever, in this highly structured working environment, workflows are implicitly followed

in order to fulfill a number of standards in terms of patient care. In total we collected 32

datasets from 15 different nurses, where each dataset covers the care of 3 to 5 patients,

yielding a total of 130 observed workflow executions.

The purpose of applying a system of adaptable pervasive flows in this institution is

twofold: First, the activities shall be automatically documented for the records for qual-

ity control, process improvement, and legal reasons. Second, the flow system shall give

guidance in case the standard procedures are not followed in order to avoid mistakes

and help inexperienced personnel in learning the procedures.

A typical workflow, e.g. from the morning routine, consists of 30 to 50 activities

of which about 20% have no strict order. The entire navigation in such a flow depends

on context events (i.e. the correct next activity is chosen based on the context events

received). An example fragment is depicted in Figure 1. Solid boxes depict mandatory

activities that need to be executed unconditionally while dashed boxes are optional. For

example, a2 and a3 are optional activities. The execution of a flow instance is valid if,

one of the optional activities, both or non of them have been executed, while a1, a4,

and a6 need to be executed for the flow to be successful. Solid arrows are transitions
that imply a strict ordering between the activities: a1 must be followed by either a2

or a3 and a4 must follow both a1 and a2. The dashed lines are constraints that define

certain restrictions on the execution order of the related activities. The figure depicts

two examples: the semantics of the not succession constraint between a3 and a5 is that

a valid flow execution must not contain both activities. It may contain either one or none

of them, and if one is executed, it can be executed arbitrarily often. As we will explain

in Section 4, constraints can be arbitrary linear temporal logic expressions. Some of

them have been translated into a graphical representation.

TransitionOptional
Activity

Mandatory
activity

Not succession
constraint

Response
constraint

…… a1 Note
results

a2 Wash at
sink

a4 Dress
patient

a3 Wash in
Bed

a6 Disinfect
hands

a5 Change
Bedding

Fig. 1. Example workflow from a hospital scenario

The flow shown in Figure 1 is a fragment of a larger flow that models the actual

processes found in the Mainkofen nursing ward. Its overall semantics is the following:

When a nurse arrives at this fragment, she must document the results (a1) of the preced-

ing steps, which include some regular morning examinations, such as measuring blood

pressure. As these examinations are carried out without assistance of an electronic de-

vice, the flow ensures that the nurse will not forget the results during the following

steps. Then she has to take a decision: she may wash the patient at the sink (a2) or in

his bed (a3), depending on the patients condition and mood. In FlexCon actually both

activities are entered as soon as a1 has completed. Depending on the incoming context

events, either one or both are executed. If the nurse decides to wash the patient in his

bed (a3), she cannot change the bedding (a5) since the patient still never leaves his bed

during the whole procedure (this is done in a different flow). After the nurse has com-

pleted the washing activity, she needs to dress the patient (a4). When she dressed him,

she must disinfect her hands (a6) at some later point in time, possibly after a number

of other intermediate activities. But, she may disinfect her hands at any point in time,

while the flow is being executed. This is beneficial in two ways. First, the nurse can

flexibly decide to disinfect her hands multiple times, e.g. during washing the patient,

also allowing the system to keep track of her personal hygiene as well as the patients.

Second, the flow can guide the nurse to disinfect her hands before she continues to care

for another patient, this way enforcing the hospitals hygiene rules.

4 Flow and Context Models

In this section, we will first define our model of context information before we give a

definition of hybrid flows.

4.1 Context Model

As the flows should not obstruct the nurse in her daily routine, they are solely driven

by context events. Therefore, adequate sensors and an activity recognition and con-

text management system (CMS), must be available to gather context information and

provide the context events. However, state of the art activity recognition systems have

some drawbacks. Either, they require the precise deployment of (expensive) sensors, or

the setup and training of the system is tedious. Cheaper activity recognition systems,

e.g. based on standard smart phones, only provide moderate recognition rates, at best.

While the former technology might be applicable in high-cost environments such as an

operating room, we have to rely on the latter kind in the area of cost-sensitive every-day

patient care.

In the scope of our scenario, we assume that in practice the type of different events

FlexCon is interested in, is a finite set.

Definition 1 (Event Type). A type of situation that can be recognized in the real world
is referred to as an event type u ∈ U, where U denotes the universe of all event types
that the CMS can measure.

An event type describes the abstract semantics of an context event. For example,

nurse walking could be an event type. Events of this type are created whenever a nurse

changes her mode of locomotion to walking. Event types that represent semantically

similar context can belong to a common event type set, and each event type belongs to

at least one event type set.

Definition 2 (Event Type Set). An event type set E ⊂ U contains a number of event
types E � {u1, . . . , um},m > 0. A single event type can be a member of different event
type sets.

The event type set containing all event types for a nurse’s locomotion modes could

be, e.g. {nurse walking, nurse sitting, nurse standing}. The purpose of an event type

set is twofold: First, it allows the flow modeler to simply select the most appropriate

context the activity should respond to. As seen below, a flow model defines a function

that maps every activity to a number of distinct event type sets. Second, the related

semantics of all event types in an event type set allows for a more accurate recognition:

Event types that are not contained in one of the expected event type sets of the current

flow activity are likely to be out of scope. When executed the flow registers the event

type sets of a running activity at the CMS and receives event instances.

Definition 3 (Event Instance). An event instance e ∈ Ue is an instance of a specific
event type u ∈ U. Ue is the universe of all event instances occurring in the system. e
belongs to a specific event type u ∈ E, and the uncertainty about which exact event
type in E e belongs to is given by a probability distribution Ie

E : E �→ [0, 1], where
∑

u∈E Ie
E(u) = 1.

Ie
E is our basic model of uncertainty. Instead of saying that an event instance is of

type u, the CMS provides the distribution Ie
E , and Ie

E(u) is the probability that e is of

type u ∈ E. For example if u = nursewalking and u ∈ E then Ie
E(nursewalking) = 0.52

indicates that the probability of e being of type nurse walking is 52%.

4.2 Hybrid Flow Model

A flow model is a template for a specific type of flow. A runnable instance of such

a model must be created whenever a flow is to be executed. We call this a flow in-
stance. In the following, we also refer to such an instance simply as a flow. The flow

instance is executed by a flow engine. In our work we employ hybrid flow models that

contain transitions as well as constraints between activities and, thus, are a mixture of

classical imperative production workflows [1] and declarative flexible [16] workflows.

Transitions are annotated with boolean conditions over the possible set of context events

while constraints consist of linear temporal logic expressions that describe the accept-

able temporal relation of two or more tasks (e.g. a must be executed before b). If a flow

modeler currently wants to use a mixture of both modeling paradigms he is required

to add this flexibility in a hierarchical way [17]. He must decompose the application

into a number of hierarchical layers, usually representing a different level of abstraction

and choose the best modeling paradigm for each layer. Our hybrid flow model, allows

the use of both paradigms directly on all abstraction levels and can also be applied to

applications where the hierarchical decomposition is not possible or introduces further

complexity.

Definition 4 (Hybrid Flow Model). A hybrid flow modelF is a 4-tupleF � (A,T,C, L),
consisting of a set of activities A, a set of transitions T , a set of conditions C, and a set
of constraints L.

Definition 5 (Activity). An activity a represents an atomic piece of work within a flow.
This includes invoking web services, internal computations, notifying a human about
a task, or receiving context events indicating changes in the real world.. The set A �
{a1, . . . , an} defines all activities of a flow. An arbitrary number of event types can be
added to each activity. Let εa : N �→ P(U) be the event type assignment function for a,
where P(U) denotes the powerset over the universe of events types. Further, let k be the
number of event types associated with a, then εa(i) yields the i-th event type for i ≤ k,
and ∅ for i > k. We write εa for short when referring to the set of all event type sets
assigned to a. Furthermore activities may be marked as mandatory.

Activities in a flow may be executed arbitrarily often and in any order, such as

a6. A flow can successfully complete its execution when all mandatory activities have

been executed at least once. Transitions and constraints limit this flexibility and impose

structural ordering on the flow activities, such as the response constraint between a4

and a5. When an activity is started it registers at the CMS for context events of its event

types εa. As example, let e ∈ Ue be an event instance of type u that the activity a1 note

results in the flow requires to complete its execution. Let u = write and u ∈ Eα,
where Eα contains the event types {wash, dry, write, fetch, disinfect} representing some

activities of the nurse. When the engine enters the execution of a1, Eα is registered at

the CMS.

Definition 6 (Transition). Given a set of activities A, the set of all transitions within a
flow is T ⊆ A×A. A transition t = (ax, ay) represents a directed control flow dependency
from ax to ay with ax, ay ∈ A. A transition is annotated with exactly one transition

condition, that is referred to as c(t). Further, we define din(ai) � |{(ax, ay) ∈ T |ai = ay}|
and dout(ai) � |{(ax, ay) ∈ T |ai = ax}| as degree of incoming and outgoing transitions
for an activity.

The transitions allow certain control flow variants (cf. Figure 1): linear sequences

(dout(a4) = 1), parallel branching (dout(a1) > 1) and joins like for (din(a4) > 1), and

combinations of those. Conditional decisions can be made taking the transition condi-

tions into account.

Definition 7 (Context Condition). A context condition c is inductively defined as c→
u|(c1 ∨ c2)|(c1 ∧ c2)|¬(c1) with u ∈ U and c1, c2 are already valid conditions and the
common semantics for the probabilistic logical operators.

The condition c(t) for t = (ax, ay) is evaluated when ax has received an event in-

stance e for every εa. We insert the received event instances and check c[u/Ie
E(u)] ≥ tn

against the navigation threshold tn. If the equation is fulfilled, the condition evaluates to

true and the activity ay is executed.

Definition 8 (Constraint). A constraint l is an expression in linear temporal logic
(LTL) that defines the temporal ordering of one or more activities in the flow. l is in-
ductively defined as l → a|(l1 ∨ l2)(logical or)|(l1 ∧ l2) (logical and)|¬(l1) (logical
negation)|(l1 → l2) (logical implication)|�(l1) (eventually)| �(l1)(globally)| l1Ul2(strong
until), where a ∈ A and l1, l2 are already valid constraints. The literals given in the ex-
pression l denote the completion of the respective activity a in the flow.

Constraints can be grouped in different classes of constraints such as existence,

(negative) relation, (negative) order [16] and provided in a graphical representation (c.f.

Figure 1). At runtime they are converted to finite state machines (FSM) [18] and can be

checked online for violations. If the FSM is in an accepting state the constraint is valid.

When the FSM is not in an accepting state the constraint is temporary violated. The

subsequent execution of further activities can eventually lead to a valid constraint. For

example consider the response constraint for a4 and a6. It is valid as long as a4 has never

been executed. After a4 has been executed, the constraint becomes temporary violated
until a6 has been executed. A constraint is permanently violated if the FSM reaches an

error state and no sequence of activities can fulfill the constraint anymore. The response

constraint can never be permanently violated. In contrast, the not succession constraint

becomes permanently violated if both a3 and a5 have both been executed in the same

flow instance. A flow can successfully complete its execution iff all constraints are valid.

Arbitrary constraints are possible, but the common constraints are given in a graphical

notation for the ease of modeling. For example, the not-succession constraint depicted

in Figure 1 would be defined as �(a3 → ¬(�(a5))).

The execution of the flow model yields a flow trace. When an activity is completed,

this is recorded in the flow trace along with the event instances it received.

Definition 9 (Flow Trace). A flow trace T is a sequence of completed activities T �
(a1, . . . , a j) in ascending order of completion times. The event instances each activity
has received are also stored within the trace. Let θ(T , a, u) �→ e be a function that yields
the event instance e ∈ u associated with activity a in trace T .

From a single trace, it is possible to reconstruct the actual execution of a flow in-

stance and which context information, i.e. event instances, lead to this execution. All

traces are stored in a flow history documenting the executions for later analysis. We use

the flow history of a flow model as the data set for training the FlexCon algorithm later.

5 FlexCon

We will first provide an overview of the working principle and architecture of FlexCon

using a concrete example based on the scenario and flow we presented. Following that,

we explain our method to create the DBN from the flow in detail and how we adopted

particle filtering techniques for our approach.

5.1 Overview

The main goal of FlexCon is to decrease the uncertainty of an event instance e. This

means, if e is of type u, then FlexCon shall collect additional evidence for this fact

and increase the probability p = Ie
E(u) for the event type u in the given distribution.

To achieve this we use the flow as additional source of information. The flow model

provides information concerning the structure (activities, transitions, constraints) of the

flow and, thus, about the expected temporal relation of respective context events. The

flow instance provides information given by its execution state, i.e. the current state of

the activities and the already received context events.

Let us assume that the flow engine has started the execution of a1, and receives

the event of the types associated with a1, including Eα (c.f. Section 4.2). In a system

without FlexCon, the flow engine would simply compare the probability p = Ie
Eα

(u)

with the engine’s navigation threshold tn and execute the respective transition if p > tn.

This simple approach is depicted in Figure 2 on the left. FlexCon, in the other hand,

uses the information encoded in the flow model and the flow instance to infer additional

evidence for the fact that e is of type u. Thus, it improves the probability distribution Ie
Eα

that is the basis for the threshold comparison, leading to a more robust flow navigation.

FlexCon uses Dynamic Bayesian Networks to interpret context events depending

on the current state of the flow. A DBN is a probabilistic data structure that is flexible

enough to represent the current flow state, the already received events, and the relation

between the events according to the transitions and constraints of the flow model. Flex-

Con builds the structure of the DBN from the flow model and trains the DBN using

traces of previously executed flows. This is shown in Figure 2 on the lower right. We

explain the details of the construction algorithm in the next section.

When a flow instance is executed, every incoming context event e is sent to the

DBN. Any such event is associated with a probability distribution Ie
E (cf. Definition 3).

The DBN infers an additional conditional probability distribution I′eE for e over E. The

distribution Ie
E given by the CMS and I′eE given by the DBN are combined, yielding an

overall distribution I′′eEα
which is then used by the flow engine to make its navigation

decision. Our evaluations show that if e ∈ u then, on average, I′′eE (u) > Ie
E(u). Hence,

FlexCon reduces the uncertainty contained in the original distribution such that the flow

engine can make more correct threshold decisions.

Flow Engine

Events

Flow Engine

~
p = IeE(u)

p‘= I’eE(u)

p‘‘= I’’eE(u)

a) simple event usage b) flow based event usage

p = IeE(u)

DBNEvents

HistoryFlow Structure

Fig. 2. Architecture overview

Using exact inference to get I′eE from a complex DBN, such as the one built from

the flow model, is computationally infeasible. Therefore, we use an approach based on

particle filters [19] to increase the performance. We adapted the standard particle filter

approach to reduce the computational effort, which allows us to use more particles on

a more sparse DBN network and achieve more accurate inference results. We present a

detailed description of the inference algorithm in Section 5.3.

5.2 Dynamic Bayesian Network - Structure and Learning

A Bayesian Network BN = (X̄,D) is a directed acyclic graph representing a joint

probability distribution over a number of random variables (RVs) {X1, ...Xn} = X̄. X̄
represents the nodes and the edges D ⊆ X̄ × X̄ define a conditional dependency from

the source RV to the target RV. In FlowCon, we used BNs as the flows where based

on imperative models that specify the complete execution order. Therefore, the simple

static BNs were sufficient. The hybrid model in FlexCon, however, introduces much

more freedom for the users to drive the flow forward in different ways and, thus, more

dynamics. The static BN model does not support such a dynamically changing proba-

bilistic process. Therefore, FlexCon employs Dynamics Bayesian Networks which are

tailored for dynamically changing systems.

In a DBN [19, 20], the state of the RV changes over time and the observed values for

the RV in the current time slice X̄t depend on the observations of one or more previous

time slices. This dependency is expressed by the transition model TM = P(X̄t |X̄t−1).

When we write X1,0, we refer to the RV X1 in the time slice t = 0. Additionally, a DBN

has a prior distribution PD = P(X̄0) for time t = 0, such that the definition of a DBN is

given as follows:DBN = (X̄,TM,PD)2.

DBN Construction Let F1 = (A,T,C, L) be the flow model from our example in

Section 3. For each a ∈ A and each E ∈ εa, FlexCon creates a node in the DBN. More

formally, the function χ : A × P(U) → X̄ maps an activity a and an event type set E

2 Since FlexCon has no hidden variables, there is no need for a sensor model as it is usually

found in the DBN definition

to a unique RV X of the DBN. Let further χ̄(a, εa) be the set of all RVs associated with

activity a. χ(a, E) = X with E ∈ εa is discrete and can assume the same values present

in the event type set E plus a null class, represented by ⊥. For example, let us consider

a1 and Eα ∈ εa1
(c.f. Section 4.2). The respective random variable χ(a1, Eα) = Xα can

assume any value from {wash, dry, write, fetch, disinfect,⊥}. χ(a, E)t and χ̄(a, εa)t refer

to the respective RVs in time slice t.
The time slices in our DBN are defined with respect to the execution state of the

flow: Every time an activity completes its execution and the flow state is changed ac-

cordingly, we enter the next time slice in the DBN. FlexCon creates the transition model

(the time dependencies) from the transitions and constraints in the flow model. Both of

them enforce an execution order on the set of activities. We map these order relations

to the transition model, introducing directed edges (dependencies) from one time slice

to the next. The strength of these dependencies in learned from flow traces (past flow

executions) in a subsequent step. In the following, we describe the construction and

learning phases first for transitions and then for constraints.

A transition t = (ax, ay) ∈ T between two activities represents a very strong depen-

dency as ay can only be executed when ax has been completed. Therefore, we create a

dependency in the network for a pair of RVs if a transition exists between the respective

activities as follows.

(χ(ax, Ex)t, χ(ay, Ey)t+1) ∈ P(X̄t+1|X̄t) ⇐⇒ ((ax, ay) ∈ T) ∧ (Ex ∈ εax) ∧ (Ey ∈ εay).

For example, consider the activities a1 and a2 in Figure 1: They have a transition and,

therefore, each X ∈ χ̄(a2, εa2
)t+1 would have χ(a1, Eα)t as parent node, because Eα ∈ εa1

.

As constraints usually provide a less strict ordering of activities it is more difficult

to derive the correct dependencies for the transition model. These dependencies can be

different for each execution trace of the same flow. Let l1 = �(a3 → ¬(�(a5))) represent

the not-succession constraint in the example in Figure 1. First, FlexCon assumes that

there is a bidirectional dependency between all the activities that are contained as literals

in the expression (a3 and a5 in the example). Hence, FlexCon adds (X3,t, X5,t+1) and

(X5,t, X3,t+1), with X3 ∈ χ̄(a3, εa3
) and X5 ∈ χ̄(a5, εa5

) as dependencies in the DBN.

In a second step, FlexCon determines the type of dependency that has to be included

in the transition model TM. If the sequential execution of the originating activity a3

and the the target activity a5 of the dependency permanently violates the constraint

(as is the case in the example), FlexCon marks this dependency as negative. Negative

dependencies are handled differently in the learning process as described below. If the

sequential execution leads to a valid or temporarily violated constraint (c.f. Section

4.2), the dependency is handled like a transition. If the subsequent execution of the two

activities has no influence on the constraint, we do not add a dependency at all. The

latter is the case for the response constraint between a4 and a6 in Figure 1, where the

execution of a6 has absolutely no dependency on the execution of a4.

DBN Learning In order to learn the strength of dependencies in the DBN, we use the

flow history as training data, counting the occurrences of all event pairs and learning

their joint probability distribution. The portion of the flow history that is relevant for

the learning is controlled by a sliding window algorithm taking only a number of recent

traces into account. This helps in controlling the effectiveness of the learning procedure

in the face of a changing behavior of the flow system.

For dependencies originating from flow transitions, the simple counting algorithm

as explained above is sufficient. For constraints, we have to apply a different mecha-

nism: In order to learn the strength of negative relations, we increase the count of the

null-class for every trace where no such event sequence could be observed. This leads

to a reduced probability of any other event type of the respective event type set. As an

example, consider the not succession constraint of a3 and a5 again. The execution of a3

will indicate that a5 is never going to happen in any valid execution of this flow instance.

Therefore, we reduce the belief of the DBN that any of the events associated with a5

is likely to be recognized. An inexperienced nurse may execute the activity sequence

a3, a5 nonetheless, but the flow can provide guidance for this case, preventing the nurse

from violating the constraint l1.

DBN Initialization Finally, we need to initialize the DBN for t = 0, and provide the

prior distribution PD = P(X̄0). This distribution is also extracted from the flow history:

We search for traces of the respective flow model and create individual distributions for

all the activities the flow has been started with at least once. For F1, this includes a1, a5

and a6, and the distribution for Eα ∈ εa1
could have the following values: P(wash) =

0.01, P(dry) = 0.01, P(write) = 0.85, P(fetch) = 0.05, P(disinfect) = 0.01 and P(⊥) =

0.07. In most of the cases the correct writing activity has been recorded. In some cases,

fetch has been misinterpreted, while sometimes there was no meaningful evidence at all

(⊥). The rates for the uncommon activities (wash, dry, disinfect) are even lower.

5.3 Clustered Particle Filtering

In order to exploit the knowledge encoded in the DBN for a specific flow model, a

process called inference has to be executed. That is, the posteriori distribution of the

variables (nodes) has to be calculated given real evidence. In our case, the evidence are

the real context events received from the CMS in time slice t, and the inference is done

by computing all the conditional probabilities for the variables in time slice t+ 1. Exact

inference is infeasible for complex DBNs like the ones generated from flows. Even more

so, as this process is running in parallel to the flow execution: Whenever new evidence

is available, the inference has to be done to get the probability distributions for the

upcoming context events. Therefore, FlexCon uses a heuristic approach that is based on

particle filters [19]. That is, we use a large number of random samples (the particles)

from the distribution of the DBN at a certain time slice t and propagate them through

the DBN to approximate the individual distributions associated with each node in the

following time slice of the DBN. A particle filter approximates the exact distribution by

generating a set of particles N(X̄) for all random variables. The higher the number of

particles the better the approximation of the real distribution. But the computation time

grows linearly with the number of particles.

To propagate and calculate probabilities in the DBN the filter executes the following

four steps. To initialize the filter, it first generates an initial particle set N(X̄0) sampled

from the prior distribution PD = P(X̄0) given by the DBN. In a second step each parti-

cle is propagated to the next time slice (t = 1 in this case) according to the distribution

given by the conditional probability table. In the third step, the particles are weighted

with the evidence available at the current time slice. Each particle is multiplied with the

probability of the current observation. In the final step, the set of particles is resampled

according to the weight of the individual particles. A detailed description of the basic

principles has been published by Russel and Norvig [19].

We modified this standard algorithm as explained in the following, to accommodate

it to the needs of FlexCon. The result is a clustered particle filter that is similar to the

F3 filter presented by Ng et al. [21]. First of all, a single particle in FlexCon does not

represent a full sample of X̄ but only a sample of a subset of the variables
⋃

E∈εa χ(a, E),

i.e. all variables of a single activity. Therefore, we call it clustered particle filtering,

where each cluster can also be identified by N(χ̄(a, εa)). This is an useful abstraction

for a number of reasons. Each time slice in the DBN covers the completion of a single

activity in the flow. Therefore, it is enough to process particles of that activity. All other

particles are only propagated as they may be needed later on. This allows us to increase

the total number of particles as the average processing load per particle is decreased.

The unprocessed particles can be directly transferred to the same node in the next time

slice, without the need for a dependency between these nodes.

For example, consider the trace T1 = (a1, a6, a3, a4, a6). After executing a1, the

particles from χ̄(a1, εa1
)0 are propagated to χ̄(a3, εa3

)1 since there is a transition (a1, a3),

while χ̄(a6, εa6
)0 are just passed to χ̄(a6, εa6

)1, without further processing.

The second modification changes the propagation and weighting steps. Usually the

full set of evidence, i.e. P(χ̄(a′, εa′)t+1|X̄t), is available for propagating the particles in

time slice t. As we only process the particles for a single activity a and only observe

the received events for this activity as evidence, we can only rely on the conditional

probability P(χ̄(a′, εa′)t+1|χ̄(a, εa)t), instead. This means that we cannot use the evidence

of events that have been observed ”outside” of the current cluster N(χ̄(a, εa)t). As a

consequence we introduce an small error in the inference. However, the majority of X ∈
X̄ will be independent from the variables in χ̄(a′, εa′), because there is no dependency

defined by the flow. Therefore the introduced error is rather low and we actually discuss

in Section 6 that not using this evidence makes FlexCon a bit more robust. Alternatively,

it would also be possible to sample the evidence from the current distribution N(X̄ \
χ̄(a, εa)) of the other activities, but this also introduces inference errors.

After the propagation phase, the actual observations (i.e. the received event in-

stances) become available to the DBN. We can then weight the particles multiplying

the number of particles |N(χ(a, E) = u)| for a specific event type u with the actual prob-

ability of the event type given by Ie
E(u). Based on the computed weights all the particles

for χ̄(a, εa) are resampled according to the distribution of the weighted particles.

The third modification is the actual processing of the received event instance e in

order to decrease its uncertainty. This step is accomplished after the propagation of the

particles and before the weighting. We compute the conditional probability weights for

I′eE from the particles in χ(a, E), where the weight

p′ =
|N(χ(a, E) = u)|
|N(χ(a, E))|

for I′eE (u) is just the relative particle frequency, as the distribution in the sample N(χ̄(a, εa))

represents a sufficient approximation of the correct conditional probability distribution.

All probabilities p = Ie
E(u) are added to the respective p′ and the resulting distribution

is normalized again, yielding I′′eE (u)

Algorithm 1 Clustered Particle Filter Algorithm

Input:DBN = (X̄,TM,PD), a, e[]

if N(X̄) = ∅ then
N(χ̄(a, εa))← createInitialParticleS et(PD)

end if
5: for all e ∈ e[] do

weightEvent(e, Ie
E , χ(a, E))

weightParticles(N(χ(a, E)), Ie
E)

N(χ(a, E))← resampleParticles(N(χ(a, E)))

end for
10: propagateParticles(N(χ̄(a, εa)),TM)

Algorithm 1 depicts the standard particle filter algorithm including the changes in-

troduced by FlexCon. The input to the algorithm includes theDBN , the currently com-

pleted activity a and the set of event instances e[], a has received.

6 Evaluation

For our evaluation, we have generated flows according to a probabilistic pattern-based

model [22] that has the same properties as the flows observed in the real-world hospital

scenario. We do this to get a number of flows that is large enough to achieve statistical

relevance. The flows we generate have the same average number of activities and the

same structural properties. Essentially, the ratio between activities that have normal

transitions and activities that are connected to other activities by constraints is equal.

Use of flow patterns [23] allows us to generate imperative flows based on structures

commonly found in human-centric flows. We generate these flows and randomly add a

respective portion of unconnected constraint-based activities (CBAs) to the flow. Next,

we randomly generate constraints and use these to connect the CBAs to the impera-

tive parts of a flow. Finally, the resulting flows are validated by generating traces from

them. Flows that produce deadlocks (two or more activities blocking each other due to

conflicting constraints) are discarded.

Overall, we generated 165 structurally different flows and 200 traces per flow for

our evaluations.

The simulation has three important independent parameters. The first one is the nav-
igation threshold tn of the flow engine as defined in Section 4. For a higher navigation

threshold the flow engine accepts less uncertainty in the context events it receives. We

tested tn from 0.4 to 0.6 in steps of 0.05.

The second parameter is the average recognition rate arr of the CMS. When a

context event e is created in the CMS, arr is the average probability assigned to the

correct event type in the distribution Ie
E by the CMS. The remaining probability 1 − arr

is geometrically distributed to the other event types of the respective event type set E.

The variance v is the third simulation parameter. It represents the noise added to the

distribution Ie
E created by the CMS. The probability of each event type u ∈ E is varied by

±v/2, and Ie
E is normalized again. We evaluated the system for variance values between

0.05 and 0.6 in steps of 0.05.

To assess the performance of FlexCon we use the relative event improvement and

the number of completed flows as our two metrics. The relative event improvement r is

defined as r = I′′eE (u)/Ie
E(u) for the correct event type u. If r > 1.0, then FlexCon was

able to provide additional evidence for the occurrence of the correct event type u, and

the flow engine has a higher chance of making the correct navigation decision.

The number of completed flows is simply the percentage of all traces that did com-

plete their execution successfully. We did include the learning of the model in the sim-

ulations and the execution starts without a flow history. To put our system further into

perspective, we directly compare the results with our previous measurement of the same

metrics in FlowCon. Note that the flows in FlowCon are purely imperative. That is, ac-

tivities are connected by transitions and there are no constraints that leave the decision

about the ordering of the activities to the user. Thus, the task of FlowCon is much easier

than that of FlexCon due to the additional flexibility of the flows.

6.1 Results and Discussion

The evaluation results are depicted in Figure 3. We only show the results for tn = 0.4

and arr = 0.45 for clarity. Furthermore, these conditions closely resemble the situation

in the hospital and they can be compared best to our previous work.

Figure 3(a) depicts the comparison of the relative event improvement rates for Flow-

Con and FlexCon. The average event improvement is better for almost all variance val-

ues. Even for the higher variances of v ≥ 0.4, where the improvement of FlowCon

declines, FlexCon is able to maintain a good improvement, mainly due to the changed

method of accuracy improvement: While FlowCon uses all the observed event instances

as evidence for calculating the probability of the current event, FlexCon only applies the

evidence for the current particle for particle propagation, i.e. independently from other

particles. When we misinterpret an event instance from a preceding node this has less

impact on the particle filter, as only the propagated particles from this node are influ-

enced, but not the particles from other preceding nodes. Where in FlowCon the whole

conditional probability for the current event can be distorted, in FlexCon only a partial

result suffers from the misinterpretation. However, if only one parent exists for a given

node in the DBN, FlexCon is also sensitive to this kind of misinterpretation, leading to

r < 1.0 making the result worse.

The high standard deviation for the event improvement on the flows can be ex-

plained by the flows’ flexible structure. If two subsequently executed activities are not

connected by a constraint or transition, we cannot improve the event in any way as

there will be no connection in the DBN between the respective nodes. So according to

the flow structure, we have a very high improvement for the dependent events but none

for the independent ones.

Figure 3(b) shows the comparison of the flow completion rates, between FlowCon,

FlexCon and the respective basic flow engines which do not take any action to decrease

the event uncertainty. FlowCon - Basic and FlexCon - Basic simply execute the same

(a) Comparision of event improvement

(b) Comparision of flow completion

Fig. 3. Simulation Results - Comparision between FlowCon and FlexCon

flows without uncertainty reduction. Both basic systems fail at very low variance val-

ues. For v ≥ 0.15 less than 6% of the flows can be completed successfully for both

basic flow engines. The high values for the basic FlexCon flow engine compared to the

basic FlowCon flow engine for v = 0.05 and v = 0.1 result from a changed method of

generating the event instance distribution.

The FlexCon DBN-Engine manages to complete 45% of the flows at v = 0.15 and

this performance decreases slowly for higher v ≥ 0.2. It is still able to complete 20% of

the flows at v = 0.6.

Again, the standard deviation on the number of completed flows is rather high, for

the same reason as above. Some of the flows allow a very good event improvement

leading to a reliable execution, after the training phase of the DBN is complete. Those

flows (about 5% of the tested flows) exhibit an completion rate of well over 80% and

are the main reason for the high standard deviation. Most of the flows are close to the

average, and can complete their execution in about 30% of the cases.

7 Conclusions and Future Work

We have proposed FlexCon – a system that leverages the application knowledge en-

coded in workflows to make them more robust against inaccurate and noisy input data.

FlexCon uses Dynamic Bayesian Networks and particle filters to reduce the uncertainty

of the real-world context events received by pervasive flows. Our evaluations show that

the uncertainty of an event received by a flow is reduced by 54% on average and the

percentage of successfully completed flows is increased by 23-40%.

FlexCon is an important step towards applying flow technology as a part of perva-

sive systems. In real-world scenarios, found e.g. in the health care domain, users need

to be supported in their activities without obstructing them. Thus, the flows need to

automatically synchronize with their activities based on collected data such that users

are not required to communicate with the flow explicitly. Especially in the health care

domain, any explicit interaction (using touch screens etc.) may have severe implications

in terms of hygiene.

The sensor data that is used to infer the current activity of a user is characterized

by a high level of noise and inaccuracy. FlexCon offers a way to infer more reliable

information from this data and, thus, render the respective flows more robust.

In our future work, we will investigate, if more sophisticated approaches to map

the flow to a DBN yield a better event improvement. Furthermore we will optimize the

number of particles used during the execution to speed up performance of the approach.

Depending on the success we will adapt the prototype for a smart-phone, deploy in

the hospital and study the usefulness. Furthermore we study the impact of a different

uncertainty model on the recognition accuracy and the algorithm performance.

References

1. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice Hall PTR

(2000)

2. Dadam, P., Reichert, M., Kuhn, K.: Clinical Workflows - The Killer Application for Process-

oriented Information Systems? In: Proc. 4th Int’l Conference on Business Information Sys-

tems, Springer (April 2000) 36–59

3. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between

flexibility and support. Computer Science-Research and Development 23(2) (2009) 99–113

4. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware workflows. In Per-

nici, B., Gulla, J.A., eds.: CAiSE07 Proceedings of the Workshops and Doctoral Consortium.

Volume 2., Trondheim Norway, Tapir Acasemic Press (Juni 2007)

5. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows–An

Emerging Technology for Pervasive Adaptation. In: Proceedings of the 2008 Second IEEE

International Conference on Self-Adaptive and Self-Organizing Systems Workshops, IEEE

Computer Society (2008) 108–113

6. Kunze, K., Lukowicz, P.: Dealing with sensor displacement in motion-based onbody activity

recognition systems. In: Proceedings of the 10th international conference on Ubiquitous

computing. UbiComp ’08, New York, NY, USA, ACM (2008) 20–29

7. Bahle, G., Kunze, K., Lukowicz, P.: On the use of magnetic field disturbances as features for

activity recognition with on body sensors. In: Proceedings of the 5th European conference on

Smart sensing and context. EuroSSC’10, Berlin, Heidelberg, Springer-Verlag (2010) 71–81

8. Wolf, H., Herrmann, K., Rothermel, K.: Robustness in Context-Aware mobile computing. In:

IEEE International Conference on Wireless and Mobile Computing, Networking and Com-

munications (WiMob’2010), Niagara Falls, Canada (10 2010)

9. Barger, T., Brown, D., Alwan, M.: Health-status monitoring through analysis of behavioral

patterns. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions

on 35(1) (2005) 22 – 27

10. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C., Robert, P.: Ambulatory

system for human motion analysis using a kinematic sensor: monitoring of daily physical

activity in the elderly. Biomedical Engineering, IEEE Transactions on 50(6) (2003) 711

–723

11. Biswas, J., Tolstikov, A., Jayachandran, M., Fook, V.F.S., Wai, A.A.P., Phua, C., Huang, W.,

Shue, L., Gopalakrishnan, K., Lee, J.E.: Health and wellness monitoring through wearable

and ambient sensors: exemplars from home-based care of elderly with mild dementia. An-

nales des Télécommunications 65(9-10) (2010) 505–521

12. Wieland, M., Käppeler, U.P., Levi, P., Leymann, F., Nicklas, D.: Towards Integration of Un-

certain Sensor Data into Context-aware Workflows. In: Tagungsband INFORMATIK 2009

Im Focus das Leben, 39. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Lübeck,

Lecture Notes in Informatics (LNI) (September 2009)

13. Adam, O., Thomas, O.: A fuzzy based approach to the improvement of business pro-

cesses. In: First International Workshop on Business Process Intelligence (BPI05). (Septem-

ber 2005) 25–35

14. Urbanski, S., Huber, E., Wieland, M., Leymann, F., Nicklas, D.: Perflows for the computers

of the 21st century. In: Pervasive Computing and Communications, 2009. PerCom 2009.

IEEE International Conference on. (March 2009) 1 –6

15. Wolf, H., Herrmann, K., Rothermel, K.: Modeling dynamic context awareness for situated

workflows. In R. Meersman, P.H., (Eds.), T.D., eds.: OTM 2009 Workshops. Volume 5872

of LNCS., Vilamoura, Springer-Verlag Berlin Heidelberg (November 2009) 98–107

16. Pesic, M., Schonenberg, H., van der Aalst, W.M.: Declare: Full support for loosely-structured

processes. Enterprise Distributed Object Computing Conference, IEEE International 0
(2007) 287

17. Aalst, W.M., Adams, M., Hofstede, A.H., Pesic, M., Schonenberg, H. In: Flexibility as a

Service. Springer-Verlag, Berlin, Heidelberg (2009) 319–333

18. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on

running programs. In: In Proceedings, International Conference on Automated Software

Engineering (ASE01), IEEE Computer Society (2001) 412–416

19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition edn. Pren-

tice Hall (2002)

20. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD

thesis, UNIVERSITY OF CALIFORNIA, BERKELEY (2002)

21. Ng, B., Peshkin, L., Pfeffer, A.: Factored particles for scalable monitoring. In: In Proceedings

of the Eighteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann

(2002) 370–377

22. Chiao, C., Iochpe, C., Thom, L.H., Reichert, M.: Verifying existence, completeness and

sequences of semantic process patterns in real workflow processes. In: Proc. of the Simpsio

Brasileiro de Sistemas de Informao. Rio de Janeiro: UNIRIO, Brazil (2008) p. 164–175.

23. Lau, J.M., Iochpe, C., Thom, L.H., Reichert, M.: Discovery and analysis of activity pattern

co-occurrences in business process models. In: ICEIS (3). (2009) 83–88

