FlexCon — Robust Context Handling in Human-oriented
Pervasive Flows

Hannes Wolf, Klaus Herrmann, and Kurt Rothermel

Institute of Parallel and Distributed Systems,
Universititsstraie 38, D-70569 Stuttgart, Germany
{hannes.wolf|klaus.herrmann|kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract. Workflows are increasingly becoming a universal means for driving
and coordinating complex processes, not only in the business world but also in
areas like pervasive computing. Pervasive flows run in parallel with the user’s
real-world actions and are synchronized using automatically collected context
information about her current activities (context events). Respective workflows
cannot be rigidly defined since the user needs to retain her flexibility and must
not be obstructed by the workflow. However, if the order of activities is not de-
fined until the activities are actually executed, correctly assigning the uncertain
context events becomes a major challenge. We propose FlexCon — a novel event
assignment approach for such human-oriented workflows that is based on hybrid
workflow models and Dynamic Bayesian Networks. FlexCon exploits the depen-
dency between context events to provide more accurate information as to which
events need to be consumed by which workflow activities. Our evaluations show
that FlexCon improves the event accuracy on average by 54% and the number
of successful completed flows on average by 88%. Thus, FlexCon represents a
major step towards unobtrusive pervasive applications.

1 Introduction

Workflows are an adequate means for modeling the functionality and the temporal flow
of complex activities in many areas of information technology. Traditionally, they are
rooted in business applications [1], where processes span diverse departments of the
same company or different companies. In recent years, however, an influx of workflow
technologies into the domain of pervasive systems has started. They have been proposed
as useful tool for environments with intensive human interaction [2]. Gradually, work-
flows have become more flexible, supporting [3] and also gained context-awareness [4].

In the ALLOW project [5], we investigated the concept of Adaptable Pervasive
Flows (in short flows) as a means for rendering complex applications and the environ-
ment (technical equipment, information systems etc.) adaptive to the mobile user. The
basic idea of flows is that a process that a user has to execute is modeled as a flow. This
flow is running in the background in parallel to the actual real-world actions of the user
and can support her in different ways. The key to this is that the flow requires as little
explicit input from the user as possible in order to offer unobtrusive support. First, the
flow can guide the user through the process by giving her feedback in critical situations
(e.g. visual or audio). Second, it may take over certain routine tasks automatically (e.g.

Published in Meersman, Robert and Dillon, Tharam and Herrero,
et al. On the Move to Meaningful Internet Systems: OTM 2011,
LNCS 7044, pp. 236-255 2011.

© Springer-Verlag 2011

The original publication is available at www.springerlink.com:
http://www.springerlink.com/content/2245482r612336In/

documenting the actual process for legal or quality-related reasons). Third, the flow may
prepare the environment (e.g. configuring electronic devices etc.) in advance to mini-
mize disturbances and the work load of the user. Fourth, the flow may automatically
adapt itself in case it recognizes that the planned execution will fail (e.g. due to lack
of a required resource). All of this is possible since the flow “knows” the prospective
future activities associated with the process — they are part of the flow model.

To achieve this with minimal explicit input, the flow system monitors what the user
does in the real world in order to automatically synchronize with her actions and drive
the flow forward respectively. This monitoring, which provides the majority of the in-
put to the flow, is done by means of activity recognition [6, 7] using different types of
sensors. The respective data is provided to the flow as so-called context events.

As an example, consider a nurse in a hospital that has a flow modeling the morn-
ing routine of a patient. That flow involves different activities like washing, dressing,
measuring blood pressure, anddisinfecting hands. The actions associated with
these activities in the real world are detected by the activity recognition system and pro-
vided to the flow as context events. Some of the activities have a clear ordering relation,
e.g. she has to wash the patient before she dresses him. Others are mandatory but may
occur at different stages of the flow (e.g. measuring blood pressure). Yet other ac-
tivities like disinfecting hands may be carried out multiple times as needed. Thus,
a respective flow must not be defined rigidly with a fixed predefined order between ac-
tivities. It must allow the nurse the flexibility of executing the process in her own way
and in the way required by the specific situation.

When the flow arrives at a certain activity, there may be different ways of continuing
(different possible next activities). Depending on the context events received, the flow
has to decide which of these paths the user took. Supplying the correct context events to
the right flow activities is a tough challenge under these conditions. First, events may be
noisy, duplicated, deleted due to failure or delayed. This is a fundamental problem that
occurs irrespectively of the flexibility in the flow models [8]. Second, due to the gained
flexibility, it may not be completely clear which activity is actually executed next and
thus awaits a respective event.

To solve this fundamental problem of pervasive flow technology in general, we pro-
pose FlexCon, a system that leverages a combination of imperative (rigid) and declar-
ative (flexible) flow models, Dynamic Bayesian Networks (DBN), and particle filters
to reduce the uncertainty of context events. FlexCon builds probabilistic models of the
dependencies between events and uses this information to improve the processing of
probabilistic context events. We evaluated FlexCon based on a real-world hospital study
and found that it decreases the context event uncertainty by up to 73%. While standard
flow technology exhibits a high flow failure rate! of 82% under the conditions explained
above, the failure rate of FlexCon is only 65% on average of all flows. This presents a
major step forward in the areas of workflow-based pervasive computing.

The rest of the paper is structured as follows: In Section 2 we will investigate the
related work in relevant areas. We present the basic models of context and workflows
in Section 4. After that we introduce our FlexCon approach in Section 5 and evaluate

U'A flow fails if context events are assigned to false activities or are discarded due to false
recognition results.

it based on a real-world scenario in Section 6. Finally, we present our conclusions in
Section 7.

2 Related Work

In the following, we will investigate the state-of-the-art in the relevant areas of research.
We will first discuss activity recognition systems and how they deal with context uncer-
tainties. While our work is not directly associated with this area, it does provide a new
approach for handling the uncertainties perceived in activity recognition systems on a
higher layer by exploiting application knowledge. Subsequently, we will take a closer
look at the field of context-aware workflows.

There have been numerous studies on activity recognition in the health-care domain
[9-11]. The major factors for decreasing the uncertainty in the recognition results are
the selection of appropriate sensors and exploiting available application models. Biswas
et al. [11] specifically remark that the recognition process can benefit from the knowl-
edge of domain experts. A flow is a very detailed representation of expert application
knowledge, that FlexCon uses to increase the accuracy of events.

Barger et al. [9] studied a health status monitoring application that learns behavioral
patterns of a user from his daily activities using a number of motion sensors. But their
system lacks an application model too, leading to missed events and false positives and
a rather low recognition accuracy for uncommon situations.

Najafi et al. [10] have built a monitoring system for elderly people using one accel-
eration sensor, and detecting position transitions and mode of locomotion. While this
approach performs very well for single transitions in a specific test scenario, the sensing
quality decreases over extended periods of time due to the lack of an application model.

The presented approaches all use sophisticated activity recognition techniques, but
do not consider the kind of application knowledge a flow provides, thus, neglecting the
huge potential.

The integration of context information into classic workflows used in enterprises
has first been suggested by Wieland et al. [4], who provide interfaces for accessing con-
text information from within a workflow. This approach was later extended to deal with
Quality of Context [12]. Here, a policy language is used to define the acceptable amount
of uncertainty in context information and to filter out information that does not match
the specified criteria. This approach is based on the idea to simply prevent the work-
flow from receiving uncertain information. However, if a workflow does not receive the
information at all, this can be just as detrimental as receiving false information. We go
one important step further by improving the information such that it becomes useful for
the flow.

Adam et al. [13] proposed fuzzy logic to enable soft decisions in workflows based
on the input provided to the workflow. However, they did not consider uncertainties or
ambiguities in the input information. Their approach aims at making a better decisions
from the business perspective.

PerFlows, presented by Urbanski et al. [14], are context-aware workflows that are
suitable for pervasive scenarios and provide flexible activity scheduling and processing.
However, they require heavy user interaction to work properly. This is disadvantageous

in scenarios where the workflows shall run in the background in order not to obstruct
the user. In our own previous work [15], we presented an approach for dynamic context-
awareness suited for pervasive flow-based applications. But this approach also neglects
the handling of uncertain context information.

In 2010, we have proposed FlowCon [15], the first system that was able to decrease
the uncertainty of events by learning the dependencies between events and by explic-
itly exploiting the temporal structure encoded in imperative flows (flows with a strict
temporal ordering among activities). FlowCon can increase the number of successfully
executed flows by a factor of 6 to 8 under normal conditions. With the FlexCon sys-
tem presented in this paper, we build on this work and apply related technologies to
hybrid flow models that are more flexible and allow users to act more freely. Overall,
this represents a significant step forward in this field.

3 Scenario

The application scenario we use to evaluate FlexCon is from the health care domain. We
studied the processes conducted by nurses in a geriatric ward in Mainkofen, Germany
over a period of 14 days.

Through a mining process, we extracted workflows from the observations made at
the ward. The respective processes have not been defined as workflows before. How-
ever, in this highly structured working environment, workflows are implicitly followed
in order to fulfill a number of standards in terms of patient care. In total we collected 32
datasets from 15 different nurses, where each dataset covers the care of 3 to 5 patients,
yielding a total of 130 observed workflow executions.

The purpose of applying a system of adaptable pervasive flows in this institution is
twofold: First, the activities shall be automatically documented for the records for qual-
ity control, process improvement, and legal reasons. Second, the flow system shall give
guidance in case the standard procedures are not followed in order to avoid mistakes
and help inexperienced personnel in learning the procedures.

A typical workflow, e.g. from the morning routine, consists of 30 to 50 activities
of which about 20% have no strict order. The entire navigation in such a flow depends
on context events (i.e. the correct next activity is chosen based on the context events
received). An example fragment is depicted in Figure 1. Solid boxes depict mandatory
activities that need to be executed unconditionally while dashed boxes are optional. For
example, a, and a3 are optional activities. The execution of a flow instance is valid if,
one of the optional activities, both or non of them have been executed, while a;, as,
and ag need to be executed for the flow to be successful. Solid arrows are transitions
that imply a strict ordering between the activities: a; must be followed by either a,
or az and a4 must follow both a; and a,. The dashed lines are constraints that define
certain restrictions on the execution order of the related activities. The figure depicts
two examples: the semantics of the not succession constraint between a3 and as is that
a valid flow execution must not contain both activities. It may contain either one or none
of them, and if one is executed, it can be executed arbitrarily often. As we will explain
in Section 4, constraints can be arbitrary linear temporal logic expressions. Some of
them have been translated into a graphical representation.

sink
. a, Note
results
a; Wash in
l Bed
= _,. —
==

(TTIE T
| asChange 1 | agDisinfect
| Bedding I' hands

LT .
Ma‘nx‘iatory ! 1 OptAlgnaI —> Transition
activity | — _ _ J Activity

Not succession Response
°o-|-o , ®---- hespons
constraint constraint

Fig. 1. Example workflow from a hospital scenario

The flow shown in Figure 1 is a fragment of a larger flow that models the actual
processes found in the Mainkofen nursing ward. Its overall semantics is the following:
When a nurse arrives at this fragment, she must document the results (a;) of the preced-
ing steps, which include some regular morning examinations, such as measuring blood
pressure. As these examinations are carried out without assistance of an electronic de-
vice, the flow ensures that the nurse will not forget the results during the following
steps. Then she has to take a decision: she may wash the patient at the sink (a,) or in
his bed (a3), depending on the patients condition and mood. In FlexCon actually both
activities are entered as soon as a; has completed. Depending on the incoming context
events, either one or both are executed. If the nurse decides to wash the patient in his
bed (a3), she cannot change the bedding (as) since the patient still never leaves his bed
during the whole procedure (this is done in a different flow). After the nurse has com-
pleted the washing activity, she needs to dress the patient (a4). When she dressed him,
she must disinfect her hands (a¢) at some later point in time, possibly after a number
of other intermediate activities. But, she may disinfect her hands at any point in time,
while the flow is being executed. This is beneficial in two ways. First, the nurse can
flexibly decide to disinfect her hands multiple times, e.g. during washing the patient,
also allowing the system to keep track of her personal hygiene as well as the patients.
Second, the flow can guide the nurse to disinfect her hands before she continues to care
for another patient, this way enforcing the hospitals hygiene rules.

4 Flow and Context Models

In this section, we will first define our model of context information before we give a
definition of hybrid flows.

4.1 Context Model

As the flows should not obstruct the nurse in her daily routine, they are solely driven
by context events. Therefore, adequate sensors and an activity recognition and con-
text management system (CMS), must be available to gather context information and
provide the context events. However, state of the art activity recognition systems have
some drawbacks. Either, they require the precise deployment of (expensive) sensors, or
the setup and training of the system is tedious. Cheaper activity recognition systems,
e.g. based on standard smart phones, only provide moderate recognition rates, at best.
While the former technology might be applicable in high-cost environments such as an
operating room, we have to rely on the latter kind in the area of cost-sensitive every-day
patient care.

In the scope of our scenario, we assume that in practice the type of different events
FlexCon is interested in, is a finite set.

Definition 1 (Event Type). A type of situation that can be recognized in the real world
is referred to as an event type u € U, where U denotes the universe of all event types
that the CMS can measure.

An event type describes the abstract semantics of an context event. For example,
nurse walking could be an event type. Events of this type are created whenever a nurse
changes her mode of locomotion to walking. Event types that represent semantically
similar context can belong to a common event type set, and each event type belongs to
at least one event type set.

Definition 2 (Event Type Set). An event type set E C U contains a number of event
types E = {uy,...,u,},m > 0. A single event type can be a member of different event

type sets.

The event type set containing all event types for a nurse’s locomotion modes could
be, e.g. {nurse walking, nurse sitting, nurse standing}. The purpose of an event type
set is twofold: First, it allows the flow modeler to simply select the most appropriate
context the activity should respond to. As seen below, a flow model defines a function
that maps every activity to a number of distinct event type sets. Second, the related
semantics of all event types in an event type set allows for a more accurate recognition:
Event types that are not contained in one of the expected event type sets of the current
flow activity are likely to be out of scope. When executed the flow registers the event
type sets of a running activity at the CMS and receives event instances.

Definition 3 (Event Instance). An event instance e € U, is an instance of a specific
event type u € U. U, is the universe of all event instances occurring in the system. e
belongs to a specific event type u € E, and the uncertainty about which exact event
type in E e belongs to is given by a probability distribution I}, : E + [0,1], where
Ser 15) = 1.

I}, is our basic model of uncertainty. Instead of saying that an event instance is of
type u, the CMS provides the distribution [, and I7.(u) is the probability that e is of
type u € E. For example if u = nursewalking and u € E then Ij,(nursewalking) = 0.52
indicates that the probability of e being of type nurse walking is 52%.

4.2 Hybrid Flow Model

A flow model is a template for a specific type of flow. A runnable instance of such
a model must be created whenever a flow is to be executed. We call this a flow in-
stance. In the following, we also refer to such an instance simply as a flow. The flow
instance is executed by a flow engine. In our work we employ hybrid flow models that
contain transitions as well as constraints between activities and, thus, are a mixture of
classical imperative production workflows [1] and declarative flexible [16] workflows.
Transitions are annotated with boolean conditions over the possible set of context events
while constraints consist of linear temporal logic expressions that describe the accept-
able temporal relation of two or more tasks (e.g. @ must be executed before b). If a flow
modeler currently wants to use a mixture of both modeling paradigms he is required
to add this flexibility in a hierarchical way [17]. He must decompose the application
into a number of hierarchical layers, usually representing a different level of abstraction
and choose the best modeling paradigm for each layer. Our hybrid flow model, allows
the use of both paradigms directly on all abstraction levels and can also be applied to
applications where the hierarchical decomposition is not possible or introduces further
complexity.

Definition 4 (Hybrid Flow Model). A hybrid flow model F is a 4-tuple ¥ = (A, T, C, L),
consisting of a set of activities A, a set of transitions T, a set of conditions C, and a set
of constraints L.

Definition 5 (Activity). An activity a represents an atomic piece of work within a flow.
This includes invoking web services, internal computations, notifying a human about
a task, or receiving context events indicating changes in the real world.. The set A =
{ai,...,a,} defines all activities of a flow. An arbitrary number of event types can be
added to each activity. Let €, : N = P(U) be the event type assignment function for a,
where P(U) denotes the powerset over the universe of events types. Further, let k be the
number of event types associated with a, then €,(i) yields the i-th event type for i < k,
and O for i > k. We write €, for short when referring to the set of all event type sets
assigned to a. Furthermore activities may be marked as mandatory.

Activities in a flow may be executed arbitrarily often and in any order, such as
ag. A flow can successfully complete its execution when all mandatory activities have
been executed at least once. Transitions and constraints limit this flexibility and impose
structural ordering on the flow activities, such as the response constraint between ay
and as. When an activity is started it registers at the CMS for context events of its event
types €,. As example, let e € U, be an event instance of type u that the activity ¢; note
results in the flow requires to complete its execution. Let u = write and u € E,,
where E, contains the event types {wash, dry, write, fetch, disinfect} representing some
activities of the nurse. When the engine enters the execution of a;, E, is registered at
the CMS.

Definition 6 (Transition). Given a set of activities A, the set of all transitions within a
flowis T C AXA. A transition t = (ay, ay) represents a directed control flow dependency
from ay to a, with ay,a, € A. A transition is annotated with exactly one transition

condition, that is referred to as c(t). Further, we define d;,(a;) = |{(ay, ay) € Tla; = a,}|
and dy,(a;) = {(ax,ay) € Tla; = ay}| as degree of incoming and outgoing transitions
for an activity.

The transitions allow certain control flow variants (cf. Figure 1): linear sequences
(dpus(ag) = 1), parallel branching (d,,(a;) > 1) and joins like for (d;,(as) > 1), and
combinations of those. Conditional decisions can be made taking the transition condi-
tions into account.

Definition 7 (Context Condition). A context condition c is inductively defined as ¢ —
ul(cy V e)l(cr A ¢2)|=(cy) with u € U and ¢y, cp are already valid conditions and the
common semantics for the probabilistic logical operators.

The condition c(¢) for t = (ay, ay) is evaluated when a, has received an event in-
stance e for every €,. We insert the received event instances and check clu/I5.(w)] > t,
against the navigation threshold #,. If the equation is fulfilled, the condition evaluates to
true and the activity a, is executed.

Definition 8 (Constraint). A constraint | is an expression in linear temporal logic
(LTL) that defines the temporal ordering of one or more activities in the flow. [is in-
ductively defined as | — al(ly vV L)(logical or)|(l; A L) (logical and)|=(l}) (logical
negation)|(ly — b) (logical implication)|o(ly) (eventually)| O(ly)(globally)| I, Ul,(strong
until), where a € A and 1, 1, are already valid constraints. The literals given in the ex-
pression | denote the completion of the respective activity a in the flow.

Constraints can be grouped in different classes of constraints such as existence,
(negative) relation, (negative) order [16] and provided in a graphical representation (c.f.
Figure 1). At runtime they are converted to finite state machines (FSM) [18] and can be
checked online for violations. If the FSM is in an accepting state the constraint is valid.
When the FSM is not in an accepting state the constraint is temporary violated. The
subsequent execution of further activities can eventually lead to a valid constraint. For
example consider the response constraint for a4 and ae. It is valid as long as a4 has never
been executed. After as has been executed, the constraint becomes temporary violated
until a¢ has been executed. A constraint is permanently violated if the FSM reaches an
error state and no sequence of activities can fulfill the constraint anymore. The response
constraint can never be permanently violated. In contrast, the not succession constraint
becomes permanently violated if both a3 and as have both been executed in the same
flow instance. A flow can successfully complete its execution iff all constraints are valid.
Arbitrary constraints are possible, but the common constraints are given in a graphical
notation for the ease of modeling. For example, the not-succession constraint depicted
in Figure 1 would be defined as O(az — —(o(as))).

The execution of the flow model yields a flow trace. When an activity is completed,
this is recorded in the flow trace along with the event instances it received.

Definition 9 (Flow Trace). A flow trace T is a sequence of completed activities T =
(ai,...,a;) in ascending order of completion times. The event instances each activity
has received are also stored within the trace. Let (7, a, u) — e be a function that yields
the event instance e € u associated with activity a in trace T .

From a single trace, it is possible to reconstruct the actual execution of a flow in-
stance and which context information, i.e. event instances, lead to this execution. All
traces are stored in a flow history documenting the executions for later analysis. We use
the flow history of a flow model as the data set for training the FlexCon algorithm later.

5 FlexCon

We will first provide an overview of the working principle and architecture of FlexCon
using a concrete example based on the scenario and flow we presented. Following that,
we explain our method to create the DBN from the flow in detail and how we adopted
particle filtering techniques for our approach.

5.1 Overview

The main goal of FlexCon is to decrease the uncertainty of an event instance e. This
means, if e is of type u, then FlexCon shall collect additional evidence for this fact
and increase the probability p = I7.(u) for the event type u in the given distribution.
To achieve this we use the flow as additional source of information. The flow model
provides information concerning the structure (activities, transitions, constraints) of the
flow and, thus, about the expected temporal relation of respective context events. The
flow instance provides information given by its execution state, i.e. the current state of
the activities and the already received context events.

Let us assume that the flow engine has started the execution of @;, and receives
the event of the types associated with a;, including E, (c.f. Section 4.2). In a system
without FlexCon, the flow engine would simply compare the probability p = I (u)
with the engine’s navigation threshold t, and execute the respective transition if p > t,.
This simple approach is depicted in Figure 2 on the left. FlexCon, in the other hand,
uses the information encoded in the flow model and the flow instance to infer additional
evidence for the fact that e is of type u. Thus, it improves the probability distribution /7.
that is the basis for the threshold comparison, leading to a more robust flow navigation.

FlexCon uses Dynamic Bayesian Networks to interpret context events depending
on the current state of the flow. A DBN is a probabilistic data structure that is flexible
enough to represent the current flow state, the already received events, and the relation
between the events according to the transitions and constraints of the flow model. Flex-
Con builds the structure of the DBN from the flow model and trains the DBN using
traces of previously executed flows. This is shown in Figure 2 on the lower right. We
explain the details of the construction algorithm in the next section.

When a flow instance is executed, every incoming context event e is sent to the
DBN. Any such event is associated with a probability distribution /7, (cf. Definition 3).
The DBN infers an additional conditional probability distribution 7} for e over E. The
distribution /%, given by the CMS and /¢ given by the DBN are combined, yielding an
overall distribution 7} which is then used by the flow engine to make its navigation
decision. Our evaluations show that if e € u then, on average, I;/°(u) > I}.(u). Hence,
FlexCon reduces the uncertainty contained in the original distribution such that the flow
engine can make more correct threshold decisions.

Flow Engine J Flow Engine
T p = 1%(u) t e e
Events J p=IeE(V'_)'\:= reg(u)

p
Events J—> DBN J

Flow Structure J History J

a) simple event usage b) flow-based event usage

Fig. 2. Architecture overview

Using exact inference to get /7 from a complex DBN, such as the one built from
the flow model, is computationally infeasible. Therefore, we use an approach based on
particle filters [19] to increase the performance. We adapted the standard particle filter
approach to reduce the computational effort, which allows us to use more particles on
a more sparse DBN network and achieve more accurate inference results. We present a
detailed description of the inference algorithm in Section 5.3.

5.2 Dynamic Bayesian Network - Structure and Learning

A Bayesian Network BN = (X, D) is a directed acyclic graph representing a joint
probability distribution over a number of random variables (RVs) {X{,..X,} = X. X
represents the nodes and the edges D € X x X define a conditional dependency from
the source RV to the target RV. In FlowCon, we used BNs as the flows where based
on imperative models that specify the complete execution order. Therefore, the simple
static BNs were sufficient. The hybrid model in FlexCon, however, introduces much
more freedom for the users to drive the flow forward in different ways and, thus, more
dynamics. The static BN model does not support such a dynamically changing proba-
bilistic process. Therefore, FlexCon employs Dynamics Bayesian Networks which are
tailored for dynamically changing systems.

In a DBN [19, 20], the state of the RV changes over time and the observed values for
the RV in the current time slice X; depend on the observations of one or more previous
time slices. This dependency is expressed by the transition model T M = P(XX,_1).
When we write X o, we refer to the RV X| in the time slice # = 0. Additionally, a DBN
has a prior distribution P9 = P(X,) for time ¢ = 0, such that the definition of a DBN is
given as follows: DBN = (X, T M, PD)>.

DBN Construction Let 71 = (A,T,C, L) be the flow model from our example in
Section 3. For each a € A and each E € ¢,, FlexCon creates a node in the DBN. More
formally, the function y : A X P(U) — X maps an activity a and an event type set E

2 Since FlexCon has no hidden variables, there is no need for a sensor model as it is usually
found in the DBN definition

to a unique RV X of the DBN. Let further y(q, €,) be the set of all RVs associated with
activity a. y(a, E) = X with E € ¢, is discrete and can assume the same values present
in the event type set E plus a null class, represented by L. For example, let us consider
a; and E, € ¢, (c.f. Section 4.2). The respective random variable y(a;, E,) = X, can
assume any value from {wash, dry, write, fetch, disinfect, L}. y(a, E), and y(a, €,), refer
to the respective RVs in time slice 7.

The time slices in our DBN are defined with respect to the execution state of the
flow: Every time an activity completes its execution and the flow state is changed ac-
cordingly, we enter the next time slice in the DBN. FlexCon creates the transition model
(the time dependencies) from the transitions and constraints in the flow model. Both of
them enforce an execution order on the set of activities. We map these order relations
to the transition model, introducing directed edges (dependencies) from one time slice
to the next. The strength of these dependencies in learned from flow traces (past flow
executions) in a subsequent step. In the following, we describe the construction and
learning phases first for transitions and then for constraints.

A transition ¢ = (ay, ay) € T between two activities represents a very strong depen-
dency as a, can only be executed when a, has been completed. Therefore, we create a
dependency in the network for a pair of RVs if a transition exists between the respective
activities as follows.

(x(ay, Ex)t’)((aya Ey)t+l) € P(Xt+1|)_(t) — ((ax, ay) eT)N(E, € Eax) A (Ey € an)-

For example, consider the activities a; and a; in Figure 1: They have a transition and,
therefore, each X € y(ay, €,,):+1 would have y(a,, E,), as parent node, because E, € €.

As constraints usually provide a less strict ordering of activities it is more difficult
to derive the correct dependencies for the transition model. These dependencies can be
different for each execution trace of the same flow. Let /; = O(as — —(o(as))) represent
the not-succession constraint in the example in Figure 1. First, FlexCon assumes that
there is a bidirectional dependency between all the activities that are contained as literals
in the expression (az and as in the example). Hence, FlexCon adds (X3;, X5,.1) and
(Xs54,X3.41), wWith X3 € j(as, €,) and Xs € ¥(as, €,;) as dependencies in the DBN.
In a second step, FlexCon determines the type of dependency that has to be included
in the transition model 7M. If the sequential execution of the originating activity as
and the the target activity as of the dependency permanently violates the constraint
(as is the case in the example), FlexCon marks this dependency as negative. Negative
dependencies are handled differently in the learning process as described below. If the
sequential execution leads to a valid or temporarily violated constraint (c.f. Section
4.2), the dependency is handled like a transition. If the subsequent execution of the two
activities has no influence on the constraint, we do not add a dependency at all. The
latter is the case for the response constraint between a4 and ae in Figure 1, where the
execution of ag has absolutely no dependency on the execution of as.

DBN Learning In order to learn the strength of dependencies in the DBN, we use the
flow history as training data, counting the occurrences of all event pairs and learning
their joint probability distribution. The portion of the flow history that is relevant for
the learning is controlled by a sliding window algorithm taking only a number of recent

traces into account. This helps in controlling the effectiveness of the learning procedure
in the face of a changing behavior of the flow system.

For dependencies originating from flow transitions, the simple counting algorithm
as explained above is sufficient. For constraints, we have to apply a different mecha-
nism: In order to learn the strength of negative relations, we increase the count of the
null-class for every trace where no such event sequence could be observed. This leads
to a reduced probability of any other event type of the respective event type set. As an
example, consider the not succession constraint of a3 and as again. The execution of a3
will indicate that as is never going to happen in any valid execution of this flow instance.
Therefore, we reduce the belief of the DBN that any of the events associated with as
is likely to be recognized. An inexperienced nurse may execute the activity sequence
as, as nonetheless, but the flow can provide guidance for this case, preventing the nurse
from violating the constraint /;.

DBN Initialization Finally, we need to initialize the DBN for ¢ = 0, and provide the
prior distribution P9 = P(X,). This distribution is also extracted from the flow history:
We search for traces of the respective flow model and create individual distributions for
all the activities the flow has been started with at least once. For ¥, this includes ay, as
and ae, and the distribution for E, € ¢, could have the following values: P(wash) =
0.01, P(dry) = 0.01, P(write) = 0.85, P(fetch) = 0.05, P(disinfect) = 0.01 and P(L) =
0.07. In most of the cases the correct writing activity has been recorded. In some cases,
fetch has been misinterpreted, while sometimes there was no meaningful evidence at all
(L). The rates for the uncommon activities (wash, dry, disinfect) are even lower.

5.3 Clustered Particle Filtering

In order to exploit the knowledge encoded in the DBN for a specific flow model, a
process called inference has to be executed. That is, the posteriori distribution of the
variables (nodes) has to be calculated given real evidence. In our case, the evidence are
the real context events received from the CMS in time slice 7, and the inference is done
by computing all the conditional probabilities for the variables in time slice 7 + 1. Exact
inference is infeasible for complex DBNs like the ones generated from flows. Even more
so, as this process is running in parallel to the flow execution: Whenever new evidence
is available, the inference has to be done to get the probability distributions for the
upcoming context events. Therefore, FlexCon uses a heuristic approach that is based on
particle filters [19]. That is, we use a large number of random samples (the particles)
from the distribution of the DBN at a certain time slice # and propagate them through
the DBN to approximate the individual distributions associated with each node in the
following time slice of the DBN. A particle filter approximates the exact distribution by
generating a set of particles N(X) for all random variables. The higher the number of
particles the better the approximation of the real distribution. But the computation time
grows linearly with the number of particles.

To propagate and calculate probabilities in the DBN the filter executes the following
four steps. To initialize the filter, it first generates an initial particle set N(X;) sampled
from the prior distribution P9 = P(X,) given by the DBN. In a second step each parti-
cle is propagated to the next time slice (r = 1 in this case) according to the distribution

given by the conditional probability table. In the third step, the particles are weighted
with the evidence available at the current time slice. Each particle is multiplied with the
probability of the current observation. In the final step, the set of particles is resampled
according to the weight of the individual particles. A detailed description of the basic
principles has been published by Russel and Norvig [19].

We modified this standard algorithm as explained in the following, to accommodate
it to the needs of FlexCon. The result is a clustered particle filter that is similar to the
F3 filter presented by Ng et al. [21]. First of all, a single particle in FlexCon does not
represent a full sample of X but only a sample of a subset of the variables (g, x(a, E),
i.e. all variables of a single activity. Therefore, we call it clustered particle filtering,
where each cluster can also be identified by N(y(a, €,)). This is an useful abstraction
for a number of reasons. Each time slice in the DBN covers the completion of a single
activity in the flow. Therefore, it is enough to process particles of that activity. All other
particles are only propagated as they may be needed later on. This allows us to increase
the total number of particles as the average processing load per particle is decreased.
The unprocessed particles can be directly transferred to the same node in the next time
slice, without the need for a dependency between these nodes.

For example, consider the trace 71 = (ay, a¢, a3, as,ag). After executing a;, the
particles from jy(ay, €,,)o are propagated to j(as, ;) since there is a transition (a;, a3),
while y(as, €,)o are just passed to j(as, €,)1, wWithout further processing.

The second modification changes the propagation and weighting steps. Usually the
full set of evidence, i.e. P((a’, €):+11X,), is available for propagating the particles in
time slice #. As we only process the particles for a single activity a and only observe
the received events for this activity as evidence, we can only rely on the conditional
probability P(y(a’, €):+1lk(a, €,),), instead. This means that we cannot use the evidence
of events that have been observed “outside” of the current cluster N(y(a, €,);). As a
consequence we introduce an small error in the inference. However, the majority of X €
X will be independent from the variables in y(a’, €,), because there is no dependency
defined by the flow. Therefore the introduced error is rather low and we actually discuss
in Section 6 that not using this evidence makes FlexCon a bit more robust. Alternatively,
it would also be possible to sample the evidence from the current distribution N(X \
X(a, €,)) of the other activities, but this also introduces inference errors.

After the propagation phase, the actual observations (i.e. the received event in-
stances) become available to the DBN. We can then weight the particles multiplying
the number of particles |N(y(a, E) = u)| for a specific event type u with the actual prob-
ability of the event type given by /}.(u). Based on the computed weights all the particles
for y(a, €,) are resampled according to the distribution of the weighted particles.

The third modification is the actual processing of the received event instance e in
order to decrease its uncertainty. This step is accomplished after the propagation of the
particles and before the weighting. We compute the conditional probability weights for
I} from the particles in y(a, E), where the weight

s _ IN&(a, E) = u)
IN(x(a, E))|

for I} (u) is just the relative particle frequency, as the distribution in the sample N(¥(a, €,))
represents a sufficient approximation of the correct conditional probability distribution.

All probabilities p = I}.(u) are added to the respective p’ and the resulting distribution
is normalized again, yielding 1;/(u)

Algorithm 1 Clustered Particle Filter Algorithm
Input: DBN = (X, T M, PD), a,e[]
if N(X) = 0 then
N(x(a, €,)) « createlnitial ParticleS et(PD)
end if
5: foralle € ¢[] do
weightEvent(e, I}, x(a, E))
weightParticles(N(x(a, E)), I},)
N(x(a, E)) « resampleParticles(N(x(a, E)))
end for
10: propagateParticles(N(x(a, €,)), T M)

Algorithm 1 depicts the standard particle filter algorithm including the changes in-
troduced by FlexCon. The input to the algorithm includes the DBN, the currently com-
pleted activity a and the set of event instances e[], a has received.

6 Evaluation

For our evaluation, we have generated flows according to a probabilistic pattern-based
model [22] that has the same properties as the flows observed in the real-world hospital
scenario. We do this to get a number of flows that is large enough to achieve statistical
relevance. The flows we generate have the same average number of activities and the
same structural properties. Essentially, the ratio between activities that have normal
transitions and activities that are connected to other activities by constraints is equal.

Use of flow patterns [23] allows us to generate imperative flows based on structures
commonly found in human-centric flows. We generate these flows and randomly add a
respective portion of unconnected constraint-based activities (CBAs) to the flow. Next,
we randomly generate constraints and use these to connect the CBAs to the impera-
tive parts of a flow. Finally, the resulting flows are validated by generating traces from
them. Flows that produce deadlocks (two or more activities blocking each other due to
conflicting constraints) are discarded.

Overall, we generated 165 structurally different flows and 200 traces per flow for
our evaluations.

The simulation has three important independent parameters. The first one is the nav-
igation threshold t, of the flow engine as defined in Section 4. For a higher navigation
threshold the flow engine accepts less uncertainty in the context events it receives. We
tested t, from 0.4 to 0.6 in steps of 0.05.

The second parameter is the average recognition rate arr of the CMS. When a
context event e is created in the CMS, arr is the average probability assigned to the
correct event type in the distribution [, by the CMS. The remaining probability 1 — arr
is geometrically distributed to the other event types of the respective event type set E.

The variance v is the third simulation parameter. It represents the noise added to the
distribution [, created by the CMS. The probability of each event type u € E is varied by
+v/2, and I, is normalized again. We evaluated the system for variance values between
0.05 and 0.6 in steps of 0.05.

To assess the performance of FlexCon we use the relative event improvement and
the number of completed flows as our two metrics. The relative event improvement r is
defined as r = I;°(w)/I},(u) for the correct event type u. If r > 1.0, then FlexCon was
able to provide additional evidence for the occurrence of the correct event type u, and
the flow engine has a higher chance of making the correct navigation decision.

The number of completed flows is simply the percentage of all traces that did com-
plete their execution successfully. We did include the learning of the model in the sim-
ulations and the execution starts without a flow history. To put our system further into
perspective, we directly compare the results with our previous measurement of the same
metrics in FlowCon. Note that the flows in FlowCon are purely imperative. That is, ac-
tivities are connected by transitions and there are no constraints that leave the decision
about the ordering of the activities to the user. Thus, the task of FlowCon is much easier
than that of FlexCon due to the additional flexibility of the flows.

6.1 Results and Discussion

The evaluation results are depicted in Figure 3. We only show the results for 7, = 0.4
and arr = 0.45 for clarity. Furthermore, these conditions closely resemble the situation
in the hospital and they can be compared best to our previous work.

Figure 3(a) depicts the comparison of the relative event improvement rates for Flow-
Con and FlexCon. The average event improvement is better for almost all variance val-
ues. Even for the higher variances of v > 0.4, where the improvement of FlowCon
declines, FlexCon is able to maintain a good improvement, mainly due to the changed
method of accuracy improvement: While FlowCon uses all the observed event instances
as evidence for calculating the probability of the current event, FlexCon only applies the
evidence for the current particle for particle propagation, i.e. independently from other
particles. When we misinterpret an event instance from a preceding node this has less
impact on the particle filter, as only the propagated particles from this node are influ-
enced, but not the particles from other preceding nodes. Where in FlowCon the whole
conditional probability for the current event can be distorted, in FlexCon only a partial
result suffers from the misinterpretation. However, if only one parent exists for a given
node in the DBN, FlexCon is also sensitive to this kind of misinterpretation, leading to
r < 1.0 making the result worse.

The high standard deviation for the event improvement on the flows can be ex-
plained by the flows’ flexible structure. If two subsequently executed activities are not
connected by a constraint or transition, we cannot improve the event in any way as
there will be no connection in the DBN between the respective nodes. So according to
the flow structure, we have a very high improvement for the dependent events but none
for the independent ones.

Figure 3(b) shows the comparison of the flow completion rates, between FlowCon,
FlexCon and the respective basic flow engines which do not take any action to decrease
the event uncertainty. FlowCon - Basic and FlexCon - Basic simply execute the same

.1
oL 4
1.9F q
= 1.8 B
5
é 1N b
£ s
= 1.5
2
© 1.4
2
= 1.3
=
s 12
1.1
1
0.9 I I I I I I I I I I
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0.5 0.6
Variance on individual event probability
(a) Comparision of event improvement
1 T T T T T
FlexCon - DBN-Engine t=0.4 —&—
0.9] FlexCon - Basic-Engine t=0.4 —A— |
. FlowCon - Bayesian Engine t=0.4 —ll—
0.g4 FlowCon - Basic Engine t=0.4 —H— |
E
= 0.7F q
]
3
s 0.6 4
= y::
S 05+ 1
S 04l L
g
5 031 B
5]
=02k B
0.10 -
. o o

0
0.05 0.1 0.15 0.2 0.25 0.3 035 04 0.45 0.5 0.5 0.6
Variance on individual event probability

(b) Comparision of flow completion

Fig. 3. Simulation Results - Comparision between FlowCon and FlexCon

flows without uncertainty reduction. Both basic systems fail at very low variance val-
ues. For v > 0.15 less than 6% of the flows can be completed successfully for both
basic flow engines. The high values for the basic FlexCon flow engine compared to the
basic FlowCon flow engine for v = 0.05 and v = 0.1 result from a changed method of
generating the event instance distribution.

The FlexCon DBN-Engine manages to complete 45% of the flows at v = 0.15 and
this performance decreases slowly for higher v > 0.2. It is still able to complete 20% of
the flows at v = 0.6.

Again, the standard deviation on the number of completed flows is rather high, for
the same reason as above. Some of the flows allow a very good event improvement
leading to a reliable execution, after the training phase of the DBN is complete. Those
flows (about 5% of the tested flows) exhibit an completion rate of well over 80% and
are the main reason for the high standard deviation. Most of the flows are close to the
average, and can complete their execution in about 30% of the cases.

7 Conclusions and Future Work

We have proposed FlexCon — a system that leverages the application knowledge en-
coded in workflows to make them more robust against inaccurate and noisy input data.
FlexCon uses Dynamic Bayesian Networks and particle filters to reduce the uncertainty
of the real-world context events received by pervasive flows. Our evaluations show that
the uncertainty of an event received by a flow is reduced by 54% on average and the
percentage of successfully completed flows is increased by 23-40%.

FlexCon is an important step towards applying flow technology as a part of perva-
sive systems. In real-world scenarios, found e.g. in the health care domain, users need
to be supported in their activities without obstructing them. Thus, the flows need to
automatically synchronize with their activities based on collected data such that users
are not required to communicate with the flow explicitly. Especially in the health care
domain, any explicit interaction (using touch screens etc.) may have severe implications
in terms of hygiene.

The sensor data that is used to infer the current activity of a user is characterized
by a high level of noise and inaccuracy. FlexCon offers a way to infer more reliable
information from this data and, thus, render the respective flows more robust.

In our future work, we will investigate, if more sophisticated approaches to map
the flow to a DBN yield a better event improvement. Furthermore we will optimize the
number of particles used during the execution to speed up performance of the approach.
Depending on the success we will adapt the prototype for a smart-phone, deploy in
the hospital and study the usefulness. Furthermore we study the impact of a different
uncertainty model on the recognition accuracy and the algorithm performance.

References

1. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice Hall PTR
(2000)

2. Dadam, P., Reichert, M., Kuhn, K.: Clinical Workflows - The Killer Application for Process-
oriented Information Systems? In: Proc. 4th Int’l Conference on Business Information Sys-
tems, Springer (April 2000) 36-59

3. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between
flexibility and support. Computer Science-Research and Development 23(2) (2009) 99-113

4. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware workflows. In Per-
nici, B., Gulla, J.A., eds.: CAiSEO7 Proceedings of the Workshops and Doctoral Consortium.
Volume 2., Trondheim Norway, Tapir Acasemic Press (Juni 2007)

5. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows—An
Emerging Technology for Pervasive Adaptation. In: Proceedings of the 2008 Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems Workshops, IEEE
Computer Society (2008) 108-113

6. Kunze, K., Lukowicz, P.: Dealing with sensor displacement in motion-based onbody activity
recognition systems. In: Proceedings of the 10th international conference on Ubiquitous
computing. UbiComp *08, New York, NY, USA, ACM (2008) 20-29

7. Bahle, G., Kunze, K., Lukowicz, P.: On the use of magnetic field disturbances as features for
activity recognition with on body sensors. In: Proceedings of the Sth European conference on
Smart sensing and context. EuroSSC’ 10, Berlin, Heidelberg, Springer-Verlag (2010) 71-81

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Wolf, H., Herrmann, K., Rothermel, K.: Robustness in Context-Aware mobile computing. In:

IEEE International Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob’2010), Niagara Falls, Canada (10 2010)

. Barger, T., Brown, D., Alwan, M.: Health-status monitoring through analysis of behavioral

patterns. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 35(1) (2005) 22 - 27

Najafi, B., Aminian, K., Paraschiv-lonescu, A., Loew, F., Bula, C., Robert, P.: Ambulatory
system for human motion analysis using a kinematic sensor: monitoring of daily physical
activity in the elderly. Biomedical Engineering, IEEE Transactions on 50(6) (2003) 711
-723

Biswas, J., Tolstikov, A., Jayachandran, M., Fook, V.E.S., Wai, A.A.P., Phua, C., Huang, W.,
Shue, L., Gopalakrishnan, K., Lee, J.E.: Health and wellness monitoring through wearable
and ambient sensors: exemplars from home-based care of elderly with mild dementia. An-
nales des Télécommunications 65(9-10) (2010) 505-521

. Wieland, M., Képpeler, U.P., Levi, P, Leymann, F., Nicklas, D.: Towards Integration of Un-

certain Sensor Data into Context-aware Workflows. In: Tagungsband INFORMATIK 2009
Im Focus das Leben, 39. Jahrestagung der Gesellschaft fiir Informatik e.V. (GI), Liibeck,
Lecture Notes in Informatics (LNI) (September 2009)

Adam, O., Thomas, O.: A fuzzy based approach to the improvement of business pro-
cesses. In: First International Workshop on Business Process Intelligence (BPI0S5). (Septem-
ber 2005) 25-35

Urbanski, S., Huber, E., Wieland, M., Leymann, F., Nicklas, D.: Perflows for the computers
of the 21st century. In: Pervasive Computing and Communications, 2009. PerCom 2009.
IEEE International Conference on. (March 2009) 1 -6

Wolf, H., Herrmann, K., Rothermel, K.: Modeling dynamic context awareness for situated
workflows. In R. Meersman, P.H., (Eds.), T.D., eds.: OTM 2009 Workshops. Volume 5872
of LNCS., Vilamoura, Springer-Verlag Berlin Heidelberg (November 2009) 98—107

Pesic, M., Schonenberg, H., van der Aalst, W.M.: Declare: Full support for loosely-structured
processes. Enterprise Distributed Object Computing Conference, IEEE International 0
(2007) 287

Aalst, WM., Adams, M., Hofstede, A.H., Pesic, M., Schonenberg, H. In: Flexibility as a
Service. Springer-Verlag, Berlin, Heidelberg (2009) 319-333

Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on
running programs. In: In Proceedings, International Conference on Automated Software
Engineering (ASEO1), IEEE Computer Society (2001) 412-416

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition edn. Pren-
tice Hall (2002)

Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, UNIVERSITY OF CALIFORNIA, BERKELEY (2002)

Ng, B., Peshkin, L., Pfeffer, A.: Factored particles for scalable monitoring. In: In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
(2002) 370-377

Chiao, C., Iochpe, C., Thom, L.H., Reichert, M.: Verifying existence, completeness and
sequences of semantic process patterns in real workflow processes. In: Proc. of the Simpsio
Brasileiro de Sistemas de Informao. Rio de Janeiro: UNIRIO, Brazil (2008) p. 164—175.
Lau, J.M., Iochpe, C., Thom, L.H., Reichert, M.: Discovery and analysis of activity pattern
co-occurrences in business process models. In: ICEIS (3). (2009) 83-88

