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Abstract—The on-line processing of high volume data
streams is a prerequisite for many modern applications relying
on real-time data such as global sensor networks or multime-
dia streaming. In order to achieve efficient data processing
and scalability w.r.t. the number of distributed data sources
and applications, in-network processing of data streams in
an overlay network of data processing operators has been
proposed. For such stream processing overlay networks, the
placement of operators onto physical hosts plays an important
role for the resulting quality of service—in particular, the end-
to-end latency—and network load. To this end, we present an
enhanced placement algorithm that minimizes the network load
put onto the system by a stream processing task under user-
defined delay constraints in this paper. Our algorithm finds
first the optimal solution in terms of network load and then
degrades this solution to find a constrained optimum. In order
to reduce the overhead of the placement algorithm, we included
mechanisms to reduce the search space in terms of hosts that
are considered during operator placement. Our evaluations
show that this approach leads to an operator placement of
high quality solution while inducing communication overhead
proportional only to a small percentage of the total hosts.

I. INTRODUCTION

Many modern applications relying on real time data such

as network monitoring [6], multimedia streaming [10], and

global sensor networks [3, 4], require the on-line processing

of large streams of data from a distributed set of data

sources. Imagine, for instance, a large-scale camera network

that processes images from distributed data sources to detect

activities inside buildings or across road segments. In this

use case, large chunks of data are to be transmitted from

the sources in order to get processed and finally delivered

to the application. For such applications, the amount of data

that is in transit in the network can be a hindrance for

the scalability of the system since it could lead to traffic

congestion and bottlenecks. Therefore, reducing the data

load put onto the network is important for alleviating the

system from unnecessary network load. Furthermore, many

applications have stringent quality of service constraints, in

particular with respect to end-to-end latency.

Distributed in-network processing of data streams in oper-

ator overlay networks is a promising method to solve these

challenges. With this method, stream processing is modelled

as a logical graph of operators that are placed on a set of

hosts for execution. Data is streamed from the distributed

data sources via chains of operators to the applications

(sinks), and every operator performs a certain processing

step on the data. Obviously, the placement of operators onto

physical hosts affects the performance of the system with

respect to scalability and the quality of service offered to the

application. As already mentioned above, in particular the

network load and end-to-end latency are important factors,

which are in the focus of this paper. Formally, we consider

operator placement as a constrained optimization problem,

where the network load has to be minimized while fulfilling

a given latency constraint defined by the application.

Operator placement is not a completely novel problem,

and several placement algorithms have already been de-

scribed in the literature. On the one hand, algorithms such

as [11] and our previous work in [13] try to solve an un-

constrained optimization problem without considering QoS

constraints. Obviously, these approaches are only suitable

for certain applications without stringent latency constraints.

On the other hand, placement algorithms considering la-

tency constraints and an optimization criteria have been

proposed. Some approaches such as [8] consider different

optimization criteria, in particular fair load balancing. Al-

though load balancing also strives to improve scalability,

it does not explicitly minimize network load. Instead we

directly minimize network load using the available resources

without striving for strict fair load balancing (only avoiding

overloaded resources). In our previous work [12], we have

already introduced an algorithm fulfilling latency constraints

while optimizing for network usage. However, the previous

algorithm only considered network delays in the calculation

of the end-to-end latency, making it only suitable for appli-

cations where the processing delay can be neglected.

Our approach first optimizes for network usage and then

applies a constraint satisfaction algorithm that fulfils the end-

to-end latency constraints. The computing resources are used

in an efficient way in the sense that nodes with more residual

resources are preferred against others, only if they reduce the

processing delay of the corresponding operators to be placed.

Our evaluations show that by the use of simple heuristics

that restrict the search space, we can achieve good quality

solutions by considering only 5% of the total hosts.

The rest of the paper is structured as follows. In Section 2

we discuss the related work. In Section 3, we introduce our

system model and define formally our problem. In Section 4

we describe the general course of actions of our placement

algorithm. Finally, in Section 5 we present our experimental

results, before we conclude in Section 6.
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II. RELATED WORK

The operator placement problem has been investigated

in different contexts. In [4] an approach to serve multiple

queries with different resolutions has been proposed. This

work focuses on the reuse of operators and the different

levels of data granularity. An optimized strategy for sharing

operators is out of the scope of this paper.

Closer to our specific goals, the minimization of the

network load without considering QoS constraints has been

one of the main goals of other existing placement algorithms.

Network load is frequently expressed as the network usage

of inter-operator data streams based on the bandwidth re-

quirements of inter-operator data streams and the delay be-

tween operators. Pietzuch et al. presented the first approach,

called SBON, to optimize network usage using a spring

relaxation model [11]. In [13], we presented a different

algorithm to minimize the bandwidth-delay product of inter-

operator data streams that further reduced the network usage.

This approach first tries to find an optimal solution in a

continuous search space (latency space; see below) and then

maps this solution to the discrete set of hosts. We apply

this algorithm in the enhanced algorithm of this paper to

calculate an unconstrained optimum that is then modified to

satisfy the latency constraint.

Since latency is a crucial QoS parameter, many place-

ment algorithms try to achieve latency guarantees. From

the complex event processing field, Cordies [9] has been

proposed for efficient distributed event correlation. Cordies

focuses on the fulfilment of latency constraints and does

not consider network load as an optimization goal. Other

approaches combine latency guarantees with load balancing.

Gu et al. presented an algorithm that uses global knowledge

to checks exhaustively all hosts in order to identify some

candidate hosts [8]. Then, it selects the hosts that minimize a

congestion aggregation metric modelling the processing and

network residual resources. Such an optimization metric can

be useful for cases where the network is heavily loaded, but

it is less efficient for other situations.

In contrast to these approaches that consider latency

constraints together with load balancing, we do not strive for

fair load distribution, but only try to avoid overloaded hosts

while defining minimal network usage as our primary opti-

mization goal. In our previous work [12], we have already

considered the problem of optimizing network usage while

providing latency guarantees. However, in this previous work

we only targeted a subset of applications, for which the

processing delay does not contribute significantly to the total

end-to-end latency. Here, we overcome this restriction by

new placement algorithms explicitly taking the processing

delay into consideration.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Next, we introduce our system model. Then, we give a

formal definition of our operator placement problem.

A. Execution and Data Model

In our execution model, a stream processing task is

modelled as a directed operator graph G = {Ω, S, A,E}. Ω
denotes the set of operators. Operators include data sources,

applications (sinks), and processing operators. S ⊆ Ω and

A ⊆ Ω denote the sets of data sources and applications

(sinks), respectively. E ∈ Ω × Ω is a set of links (directed

edges) that connect operators.

In order to define the end-to-end latencies (see below), we

need to introduce the notion of an end-to-end path ωiωj .

Each end-to-end path connects a source operator ωi ∈ S
with one of the sinks ωj ∈ A. Φ(G) = {ω1ωi, . . . , ωjωn}
denotes the set of all end-to-end paths of the operator graph

G. Note that an end-to-end path contains all the operators

on that path as well as the links between these operators.

We write ω ∈ ωiωj if operator ω is part of the path ωiωj ;

we write ωkωl ∈ ωiωj if the link ωkωl is part of path ωiωj .

In our data model, data is organized in minimal discrete

data units called tuples, denoted as τ . A sequence of tuples

forms a data stream. Tuples can be as small as a single

number, e.g. a temperature value, or as big as a chunk of

several megabyte of data, e.g. an image from a camera. We

define sτ as the size of tuple τ . A tuple forms the basic unit

of processing for each operator. Sources generate typically

sequences of tuples in intervals that are then processed by

operators and finally consumed by the sinks.

Operators are placed on physical hosts, denoted as ν. We

assume that sources and applications are pinned to certain

hosts, whereas every other operator can be placed freely

on any hosts. After operator placement, the operator graph

can be interpreted as an operator overlay network. Next,

we define the end-to-end latency and network load resulting

from a certain placement.

B. End-to-End Latency

We define the end-to-end latency L(τ, ωiωj) of path ωiωj as

the time that tuple τ needs to get transmitted and processed

along a path between source ωi and sink ωj :

L(τ, ωiωj) =
∑

ωkωl∈ωiωj

{N(νkνl) + T (τ, ν)}+
∑

ωk∈ωiωj

P (ωk, ν)

In this equation, N(νkνl) defines the propagation delay
of a link (νkνl) on the path, i.e. the time it takes to

transmit a single bit via UDP/IP or TCP/IP between the two

physical hosts hosting operator ωk and ωl. For modelling

the propagation delay, we use a model of the physical

network called latency space introduced by Pietzuch et al.

in [11]. According to this model, each physical host ν
is assigned a set of coordinates in Euclidean space, such

that the distance d(νiνj) between two physical hosts νi, νj
models the propagation delay N(νiνj). The model is created

and constantly updated using round trip time measurements
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between hosts. In that sense, the distance of two operators

in the latency space models the expected propagation delay

after the mapping of operators to physical hosts. We assume

this latency model to be available to every host running our

distributed placement algorithm, for instance, using a cen-

tralized service or distributed peer-to-peer system managed

by the physical hosts. This systems has to support queries for

the coordinates of individual hosts as well as range queries

for all hosts in a certain part of the latency space.

T (τ, ν) defines the transmission delay for putting a tuple

on the wire at host ν hosting ωk. In order to estimate T (τ, ν),
we measure the transmission delay T (τ ′, ν) of a real tuple

τ ′ of size s′τ on a physical host ν and we calculate the

transmission delay as T (τ, ν) = (sτ/s
′
τ )T (τ

′, ν).
P (ωk, ν) defines the processing delay that a tuple expe-

riences at host ν hosting operator ωk. As presented next,

we use a simple processing model that assumes that the

processing power of a host is equally distributed to all

operators running on this host. We have evaluated this pro-

cessing model on different machine types, and the approach

was able to keep the relative error lower than 17% on

average—a value sufficient for our purpose. However, due

to space limitations, we leave out the evaluation results of

the processing model. Alternatively, other processing models

can also be applied.

For the local host where the operator is currently located,

P (ωk, ν) could be measured directly. However, determining

P (ωk, ν) is not a trivial task for other hosts where the oper-

ator is currently not located at. Note that the placement al-

gorithm needs information about P (ωk, ν) before it actually

places the operator on host ν to make a decision which host

is suitable w.r.t. processing delay before actually migrating

an operator. Therefore, the basic problem is to estimate the

processing delay of an operator ω when executed on host

ν taking into consideration the fact that host have dynamic

processing load and different processing power.

Our estimation is based on two metrics to define the

processing power and load of each host, respectively. On the

one hand, we use the bogomips metric to define the speed of

a machine. Bogomips expresses the number of iterations per

second of a loop with empty body. Obviously, this metric

cannot capture every aspect of the speed of a host such

as different relative speeds for integers and floating point

operations. However, it gives a coarse estimate to compare

two machines and proved to be sufficiently accurate in our

measurements. On the other hand, we use the run queue

length of the processor to express the load of an host. The

run queue length defines the number of processes waiting

for the CPU. Intuitively, the share of processing time an

operator receives will shrink proportional to the number of

processes running on the host (here, a process can be another

operator as well as any other process running on the host).

Assume that the operator is currently running on host

νi and we want to estimate the processing delay of that

operator if it migrates to host νj . The current capacity

cνi of host νi with processing speed mipsνi and run

queue length qνi is given by the following formula: cνi =

min {mipsνi
,
mipsνi

qνi
}. The capacity of the other host is

given by: cνj
= min {mipsνj

,
mipsνj
qνj+1 }. Here, mips/q

defines the bogomips that one process receives if q processes

are competing for the CPU. On host νi where the operator is

currently placed, qνi already includes the operator. On the

(potential) host νj we have to add 1 to qνj to reflect the

queue size after the migration to νj . The minimum function

ensures that on an unloaded host and short processing times

with longer idle periods between tuples the operator cannot

receive more than 100% of the CPU. We also designed

extensions of these formulas for multi-core CPUs, which are

not further discussed here due to space restrictions. As an

indicator of the current relative performance of the two hosts

we define the speedup factor: speedupij =
cνi
cνj

. Finally, we

approximate the remote time to run the operator on host νj
as the product of the speedup factor and the local processing

time at hoste νi: P (ω, νi) = speedupij ∗ P (ω, νj).
Based on the previous definitions, we can define the

latency of an operator graph as the maximum end-to-end

latency contained in operator graph G, i.e. the maximum

latency that a tuple experiences traversing the longest path in

the operator graph. Formally speaking, the latency of an op-

erator graph G is defined by:L(G) = maxωiωj∈Φ L(τ, ωiωj)

C. Network Usage

Apart from the end-to-end latency specifying the de-

sired QoS, we need to formally define the network usage

that represents our optimization metric. The network usage

U(ωiωj) of a single link is defined by the bandwidth-delay

product of that link: U(ωiωj) = r(ωiωj)N(ωiωj). Here,

r(ωiωj) denotes the data rate between two operators ωi

and ωj and N(ωiωj) the propagation delay of that link.

Intuitively, this product indicates the load of an overlay link

in bits that are in transit in the network on that link. The

network usage of a complete operator graph G is defined

as the sum of the network usage of all links of the graph:

U(G) =
∑

ωiωj∈Φ r(ωiωj)N(ωiωj).

D. Problem Statement

Based on the end-to-end latency and network usage defi-

nitions, we can now formally define our placement prob-

lem. This problem is defined as constrained optimization

problem where a user defined maximum end-to-end latency

restriction R has to be fulfilled while minimizing the induced

network usage:

U(G) =
∑

ωiωj∈Λ

r(ωiωj)N(ωiωj) = min (1)

s.t. L(G) ≤ R (2)
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IV. PLACEMENT ALGORITHM

In this section, we present the operator placement algo-

rithm to solve the above constrained optimization problem.

We start with an overview of the algorithm and then present

further details in the following subsection.

A. Overview of Algorithm

The basic idea of the algorithm is to use a two-step

placement process. In the optimization step, we search for

an optimal placement w.r.t. network usage. In the second

step, we modify this unconstrained solution such that the

latency constraint is satisfied and the network usage is only

increased as few as possible compared to the unconstrained

solution. Both steps are executed in two sequential phases.

Firstly, in the initial operator placement phase to obtain an

initial mapping of operators to hosts. Then both steps might

be repeated during the adaptation phase to adapt to changing

network conditions either violating the QoS constraint or

rendering the initial solution suboptimal.

Although the optimization step and constraint satisfaction

step are both executed in both phases, the hosts respon-

sible for the execution of these steps are different for

the initial placement phase and adaptation phase. For the

initial placement, a coordinator node is responsible to find

an initial placement for each operator and deploying the

operators on hosts. The coordinator node can be any node,

e.g., the node that initially received the query. During the

runtime of the subsequent adaptation phase, the operators

are monitored, and particular network changes trigger the

re-placement of operators. In this case, the solution of the

unconstrained optimization problem is found in a distributed

manner by the nodes hosting operators of the graph, while

after the optimization step the solution of the constrained

optimization problem is calculated again on a coordinator

node. For the adaptation phase, the coordinator node is the

node that hosts the root of the operator graph such that

communication overhead is reduced.

For solving the unconstrained optimization problem, we

use the algorithm presented in [13]. This algorithm can either

be executed centrally on the coordinator node (Phase 1) or

in a distributed manner (Phase 2) based on a local view

of each operator onto data rates of incoming and outgoing

streams and propagation delays to graph neighbours. After

a number of iterations, the algorithms converges to an

optimal solution of the whole operator graph. The output

of the algorithm, is the optimal position of the operators

in the latency space. For a more detailed description of the

unconstrained optimization algorithm, we refer to [13].

Starting from this optimal placement, we distort the op-

timal solution minimally to satisfy the latency requirements

of the user. Intuitively, this means that the operators should

be placed on hosts that reduce the end-to-end latency, either

by moving to faster nodes (reducing processing delay) or by

reducing the network latency. Theoretically, we could find

the optimal solution of the constraint placement problem by

an exhaustive search that considers every host in the system.

However, obviously this would lead to high overhead for

larger sets of hosts and operators. Therefore our solution is

based on the idea to find some candidate hosts that reduce

the end-to-end latency. We find promising nodes by a search

in certain areas of the latency space—later we will show

in detail how to find a good set of candidates. Then, we

communicate with the candidates to get their processing and

transmission delay. Finally as we see later, in order to keep

the network usage as low as possible, we iterate over the

candidate nodes and we select those that reduce the end-to-

end latency while increasing the network usage minimally.

Depending on the phase, the output of the constraint

satisfaction algorithm will be either an initial placement or

a new placement of the operators. In the latter case, the

operators are migrated to the new hosts.

B. Constraint Satisfaction Algorithm

Next, we describe the details of the constraint satisfaction

step. As mentioned, the constraint satisfaction algorithm

depicted in Algorithm 2 is invoked after the optimization

step. Therefore, before the execution of this algorithm all

operators are placed on hosts such that Equation 1 is min-

imal. For the explanations below, it is important to realize

that U(G) is a function that depends on the coordinates of

the hosts hosting operators in the latency space since the

Euclidean distance between hosts in the latency space de-

fines the propagation delay (Function N ) between hosts and

therefore their operators. In the beginning, U(G) = Umin

where Umin denotes the minimal network usage, which is

found by the optimization step. However, although U(G)
is minimal after the optimization step, the latency of the

longest path of the graph might be higher than the requested

maximum latency, i.e., Equation 2 is not fulfilled in general.

Algorithm 2 now tries to distort this optimal solution to stay

as close as possible to Umin and fulfill the latency constraint.

Algorithm 2 gets as input an initial mapping of the

operators to hosts such that the network usage of the op-

erator graph is minimal [13]. Firstly, the algorithm finds the

longest path in the operator graph, and checks if the latency

restriction is already fulfilled. In that case, it simply returns

the current mapping. Otherwise, it enters the main body of

the algorithm, where it checks for alternative mappings. For

each operator on the longest path, the algorithm finds a set

of candidate hosts where the operator could be migrated to.

The candidate set is calculated once in the beginning for each

operator on a path. The candidates are selected such that

moving an operator to a candidate host decreases the latency

of the longest path. In the next subsection, we are going to

discuss in detail how this candidate set is determined. If

the candidate set is empty, the latency cannot be decreased

any further and the algorithm stops without finding a valid

solution. In this case, the application is notified that the
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Algorithm 1 Constraint Satisfaction Algorithm

Require: U(�xω1
, . . . , �xωn

) is minimal

Ensure: Finds a mapping (ν1, . . . , νn) such that L(G) ≤ R
and U(�xω1

, . . . , �xωn
) is minimal

1: while (L(G) > R) do
2: find maximum latency path ωiωj

3: if candidate set candidates(ω) does not exist then
4: for all operator ω ∈ ωiωj do
5: find candidate set candidates(ω)
6: sort candidates(ω) by distance to Umin

7: end for
8: end if
9: if candidates = ∅ then {latency minimum}

10: notify application

11: else
12: for all operator ω ∈ ωiωj do
13: get next candidate ν′ in candidates(ω)
14: calculate the difference in network usage ΔU(ω)
15: end for
16: end if
17: assign operator ω with minimal ΔU(ω) to ν′

18: delete candidate ν′ from candidates(ω)
19: end while
20: return current mapping (ν1, . . . , νn)

latency constraint cannot be fulfilled, and the application

might choose to decrease its requirements or simply stop.

If the candidate set is not empty, latency can be further

decreased by migrating to any candidate host. The idea is,

not to choose an arbitrary candidate but a candidate that

increases the network usage the least in order to distort the

optimal solution w.r.t. to network usage the least. To this

end, the hosts of the candidate set are sorted according to

the distance to Umin, and the host with the minimal distance

leading to the minimal network usage increase ΔU(ω) is

chosen as new host for operator ω.

C. Selection of Candidates

Calculating the candidate set is a crucial operation during

the constraint satisfaction step. If the candidate set is too

big, the overhead increases since every candidate has to be

contacted and checked with respect to its processing and

network delay. If the candidate set is small and misses some

valid hosts that would decrease latency, no valid solution

might be found although it exists in the network. In order

to find a good trade-off between overhead and success rate,

we considered different candidate selection strategies.

First, we restrict the search space by filtering out the

physical hosts according to their location in the latency

space. Next, we illustrate this idea through a simple example

and we prove an optimal pruning criterion that reduces

further the search space. Firstly, it is important to observe

that all suitable candidates are restricted inside ellipsoidal
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Figure 1. Candidate set for one unpinned operator.

shapes in the Euclidean latency space. Figure 1 visualizes

a simple example of an operator ω with one source ωi and

one sink ωj . The end-to-end delay L for this simple example

is the sum of the propagation delays of the operator to its

neighbours N = N(ωω1) + N(ωω2), plus the processing

delay P = P (ω, ν) at the host ν of operator ω, and the

transmission delays T = T (τ, ν) + T (τ ′, ν) of the input

tuple τ and output tuple τ ′. Each value of the end-to-end

delay L represents an ellipse in the latency space with foci

points the positions of the two neighbours ωi and ωj . Note

that according to the definition of the ellipse, all points on

the ellipse have the same distance to the foci points, i.e.,

they lead to the same end-to-end delay. It is straightforward

to see that only the nodes that reside inside the ellipse

L = N + P + T , can lead to better solutions since for

nodes outside the ellipse even if the processing delay is zero,

the network delay would still exceed the current latency L.

Thus, the candidate nodes are restricted inside the ellipse L.

In order to find the candidate hosts within L, we perform

a range query in the latency space using the latency space

service and query range L.

Checking all nodes inside the ellipse cannot be a valid se-

lection strategy, since the set of nodes might be significantly

large and as a result would lead to high communication

overhead. Moreover, since in a real system the load of the

system changes frequently, asking a large set of nodes could

degrade the information about the current load of nodes due

to long delays. Thus, in order to limit the candidate nodes

to a reasonable size, we select only k hosts in the ellipse

to contact. Straightforward solutions to that problem are to

choose the k closest nodes with respect to network usage

minimum that reside in the ellipse, or to select k random

hosts inside the ellipse. Random selection of hosts could be

beneficial in case the suitable hosts do not lie in the direct

vicinity of the current host. A more sophisticated method

could be to use a pruning criterion that can filter out some

of the nodes inside the ellipse. To this end, we introduce the

following pruning criterion for the processing delay of the

candidate hosts:
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Algorithm 2 Candidate Selection Algorithm

Require: Bounding box for ellipse E
Ensure: Candidate set candidates of size k

1: find all hosts hosts inside ellipse E [range query]

2: sort hosts hosts by distance to Umin

3: while #candidates < k do
4: contact next host ν′ in hosts
5: if P (ω, ν′) < P (ω, ν) + T +N −Nmin then
6: candidates← ν′

7: end if
8: end while
9: return candidates

Pruning Criterion Let ω be an operator placed on a host

ν with network latency N to two neighbouring operators

and with processing delay P . Assume also a tuple τ with

transmission delay T . An host ν′ can only lead to a better so-

lution than that of ν w.r.t. latency, if and only if the following

condition is fulfilled: P (ω, ν′) < P (ω, ν) + T +N −Nmin,

where Nmin represents the minimum network delay of

operator ω to its two neighbours.

Proof: Assume that host ν′ lies on the line segment

between the two neighbouring operators ω1 and ω2. Note

that a host on this line segment leads to the minimum

possible propagation delay Nmin. Furthermore, in the best

case, ν′ will have negligible transmission delay, i.e., T = 0.

In this case, the latency L′ for a placement on ν′ is equal to

P (ω, ν′) + Nmin. The latency L for the current placement

on ν is P (ω, ν) + N + T . If it should hold L′ < L,

then P (ω, ν′) + Nmin < P (ω, ν) + N + T → P (ω, ν′) <
P (ω, ν) + T +N −Nmin

Algorithm 2 shows the pseudocode for the candidate

selection strategy using the pruning criterion. According to

this method, we first get all the hosts that reside in the

ellipse by performing a range query at latency space. Then

we contact one by one the next nearest host with respect

to network usage minimum inside the ellipse and we check

if it satisfies the pruning criterion. In that case, the host

is included to the candidate set. The process is repeated

until k hosts that satisfy the pruning criterion are found.

Obviously, this method induces higher overhead, than the

naive solutions proposed earlier, but it is expected to give

better quality results, since it takes also into consideration

the processing delay. Thus, if the current host is quite fast,

the criterion tends to filter out more hosts, while in case of

a slow current host, less candidate hosts will be filtered out.

In our evaluation, we show how these different strategies

perform in terms of overhead and result quality.

V. EVALUATION

In this section, we present our evaluation results. We start

with a description of the evaluation setup. Then we evaluate

in detail the performance of the placement algorithm in

terms of optimality w.r.t. network load and its capability

to satisfy latency constraints.

A. Setup

To evaluate our algorithms, we have implemented them

for the NET cluster [7], an emulation environment de-

veloped at the University of Stuttgart. NET provides an

emulation environment for testing distributed systems and

communication protocols. It combines the benefits of real-

time experiments and network simulation. NET consists of

a compute cluster, where every cluster node hosts several

virtual nodes (in our case the operator hosts) that execute

real implementation of the “software under test”. Nodes

are connected by an emulated communication network that

can be parametrized such that it resembles a given network

(including network topology and link characteristics such

as latency and bandwidth). Using emulation instead of

simulation gives us the chance to test a real implementation

of our placement algorithm under realistic conditions.

Our emulated system consists of 200 hosts. Each host has

a capacity of 4, 800 bogomips. To define the latencies and

bandwidth between every pair of hosts, we used real mea-

surements between PlanetLab[2]. To construct the latency

space model containing the virtual network coordinates of

hosts, we used the Pyxida system running on each host

[1]. Pyxida implements the Vivaldi algorithm [5] in order

to calculate accurate coordinates where the distance closely

matches the propagation delay.

In order to vary the processing load induced by operators,

we used operators implementing a matrix multiplication with

different sizes. Besides giving us the opportunity to easily

manipulate the processing load of operators, matrix multi-

plication also is a realistic operator is used, for instance, for

traffic matrices in network monitoring, or image recognition.

We varied the size of matrices in the range from 50 to 500 by

defining four discrete sizes of {50, 100, 200, 500} elements.

Thus, we cover a large spectrum of heterogeneous operators

in terms of processing load. Consequently, the size of the

tuple is defined by the size of the matrices.

For our experiments, an operator graph, has typically

two free operators to be placed. The data sources feed the

operators with data every 20 up to 120 seconds following

a uniform distribution, leading to heterogeneous data rates.

Moreover, the data sources and sinks, are uniformly dis-

tributed on random hosts in the network. The parameter k
that defines the size of the candidate set is set to 5 hosts,

i.e. 2.5% of the total number of hosts in the network. We

evaluated our placement algorithm with the four different

candidate selection strategies presented in Section IV. El-
lipse (EL) represents the strategy that checks all nodes inside

the search ellipse. K-Nearest Neighbour (kNN) implements

the k-nearest neighbour search for hosts inside the ellipse

in the latency space. K-Random (kRand) implements the

random selection strategy, which selects random hosts that
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Figure 2. End-to-End Latency for increasing number of operators.

reside inside the ellipse. Finally, Conditional K-Nearest
Neighbor (CkNN) implements the pruned search according

to the pruning criterion presented earlier. For each candidate

selection strategy, we measure the resulting end-to-end la-

tency, the network usage and the communication overhead

to discover the candidate hosts.

B. End-to-End Latency

In the first experiment, we evaluate the QoS capabilities

of our placement algorithm with the different candidate

selection strategies. In order to explore the limitations of the

different strategies, we consider an extreme case with very

hard latency constraints: By setting the latency constraint to

zero, we let the placement algorithm search for the operator

placement with minimum possible latency. We deployed

up to 240 operators gradually and measured the achieved

latency for each candidate selection strategy.

Figure 2 shows the achieved latency over the number

of deployed operators. As expected the latency increases

with the number of deployed operators since the system

load increases. Initially all methods almost perform similarly

since initially the system has no load and all hosts can

execute the operators with the same expected (low) delay.

In this case, the solution is mainly defined by the network

latency and not by the processing delay.

As the number of operators increases, some hosts get

more load and become slower in comparison to other hosts.

In that case, the latency of the random strategy kRand

increases faster compared to the other strategies since it

selects randomly hosts inside the ellipse. The greedy strategy

kNN is more resilient to the load but finally deviates also sig-

nificantly from the CkNN up to 38% since it only considers

a limited set of hosts in the vicinity of the network usage

minimum. Another interesting result is that the approach

with the optimal restriction (EL) performs similar to the

greedy kNN strategy, without achieving the best result.

There are multiple reasons that could have degraded the
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Figure 3. Resulting network usage for candidate selection.

performance of the expected optimal strategy. First, the

processing and network model are designed to give a rough

estimation of the delays and not very accurate estimations

that the search of an optimal solution would need. Second,

as we see later this method queries many hosts to decide

on the next host and as a result it reacts slowly to network

changes and it might even use outdated delay measurements.

C. Network Usage

Next, we analyse the optimality of the different candidate

selection strategies in terms of network usage. As already

mentioned before, the different strategies try to strike a

balance between latency constraint fulfillment and optimal-

ity. Therefore, we expect the approaches with better QoS

performance to have the higher costs in terms of network

usage. For the same experiment as before, we calculate the

average network load of the deployed operator graphs. In

order to measure the network load, we have taken snapshots

of the data that were in transit at certain points in time. Thus,

we have calculated the amount of data that are in transit in

KBytes. Finally, we have calculated the average data load

over the time for the different strategies. Figure 3 shows

the absolute values in KBytes of the network load for the

different candidate selection strategies.

As we see in Figure 3 the network usage is low for

the greedy kNN strategy and the random strategy. That is

expected, since these approaches do not fulfill optimally

the latency constraints and therefore can achieve a lower

network usage. Moreover, CkNN induces more network

load, achieving although a good balance between the net-

work usage minimization and the fulfillment of the latency

constraints. Finally, EL does not manage to find good

candidate hosts and it induces also high network load.

D. Communication Overhead

Finally, we discuss the communication overhead induced

by each candidate selection strategy. Figure 4 shows the
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Figure 4. Communication Overhead for candidate selection.

average number of messages communicated between the

coordinator and other hosts in order to define a candidate

set. For kNN and kRand the number of messages are 10,

since by default these strategies communicate with only

k = 5 hosts and therefore they need for each contact two

messages (request/response). For the EL algorithm using the

optimal restriction in the latency space, the average number

of messages is 288. This means that a host should contact

on average 144 out of 200 hosts to decide on a placement.

In practice, this method cannot be used not only because

of the high communication overhead that induces, but also

because it cannot guarantee high quality solutions, since it

would react extremely slow at each network change using

possibly outdated delay measurements.

Finally, for CkNN the number of messages is 18. Thus, we

see that the strategy that uses the pruning criterion not only

performs better in terms of constraint satisfaction problem,

but also keeps the number of messages very low querying

on average about 5% of the total hosts. In other words, we

see that it is sufficient to check only a small subset of all

hosts that reside in the ellipse.

VI. SUMMARY AND FUTURE WORK

In this paper, we focused on data stream processing

systems that need to process high-volume data streams from

distributed data sources under certain latency constraints. We

motivated to use an overlay network of processing operators

for the online processing of streams. As main contribution,

we proposed a novel operator placement algorithm that

distributes operators among a set of hosts such that the

induced network usage is reduced and the given latency

constraint is fulfilled. We first formulated the problem as

a constrained optimization problem. We proposed a method

for estimating the processing time of operators as a nec-

essary prerequisite for finding suitable operator hosts in

order to fulfill the latency constraint. Then, we proposed

different selection strategies to restrict efficiently the search

space. Our evaluations showed that the heuristic that uses

the pruning criterion performs better in terms of quality of

the solution over a greedy and a random selection strategy,

while it invokes a small communication overhead.

As future work, it would be interesting to investigate the

trade-off between migrating operators and achieving good

quality solutions in highly dynamic environments. Thus, we

could increase the resilience of our solution to frequent

changes of the environment.
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