Fulfilling End-to-End Latency Constraints in Large-scale Streaming Environments

Stamatia Rizou, Frank Diirr, Kurt Rothermel
Universitdt Stuttgart, Institute of Parallel and Distributed Systems, Universitdtstrafie 38, 70569 Stuttgart, Germany
<firstname.lastname> @ ipvs.uni-stuttgart.de

Abstract—The on-line processing of high volume data
streams is a prerequisite for many modern applications relying
on real-time data such as global sensor networks or multime-
dia streaming. In order to achieve efficient data processing
and scalability w.r.t. the number of distributed data sources
and applications, in-network processing of data streams in
an overlay network of data processing operators has been
proposed. For such stream processing overlay networks, the
placement of operators onto physical hosts plays an important
role for the resulting quality of service—in particular, the end-
to-end latency—and network load. To this end, we present an
enhanced placement algorithm that minimizes the network load
put onto the system by a stream processing task under user-
defined delay constraints in this paper. OQur algorithm finds
first the optimal solution in terms of network load and then
degrades this solution to find a constrained optimum. In order
to reduce the overhead of the placement algorithm, we included
mechanisms to reduce the search space in terms of hosts that
are considered during operator placement. OQur evaluations
show that this approach leads to an operator placement of
high quality solution while inducing communication overhead
proportional only to a small percentage of the total hosts.

I. INTRODUCTION

Many modern applications relying on real time data such
as network monitoring [6], multimedia streaming [10], and
global sensor networks [3, 4], require the on-line processing
of large streams of data from a distributed set of data
sources. Imagine, for instance, a large-scale camera network
that processes images from distributed data sources to detect
activities inside buildings or across road segments. In this
use case, large chunks of data are to be transmitted from
the sources in order to get processed and finally delivered
to the application. For such applications, the amount of data
that is in transit in the network can be a hindrance for
the scalability of the system since it could lead to traffic
congestion and bottlenecks. Therefore, reducing the data
load put onto the network is important for alleviating the
system from unnecessary network load. Furthermore, many
applications have stringent quality of service constraints, in
particular with respect to end-to-end latency.

Distributed in-network processing of data streams in oper-
ator overlay networks is a promising method to solve these
challenges. With this method, stream processing is modelled
as a logical graph of operators that are placed on a set of
hosts for execution. Data is streamed from the distributed
data sources via chains of operators to the applications
(sinks), and every operator performs a certain processing

Published in International Performance
Computing and Communications Conference
@IEEE 2011

step on the data. Obviously, the placement of operators onto
physical hosts affects the performance of the system with
respect to scalability and the quality of service offered to the
application. As already mentioned above, in particular the
network load and end-to-end latency are important factors,
which are in the focus of this paper. Formally, we consider
operator placement as a constrained optimization problem,
where the network load has to be minimized while fulfilling
a given latency constraint defined by the application.

Operator placement is not a completely novel problem,
and several placement algorithms have already been de-
scribed in the literature. On the one hand, algorithms such
as [11] and our previous work in [13] try to solve an un-
constrained optimization problem without considering QoS
constraints. Obviously, these approaches are only suitable
for certain applications without stringent latency constraints.
On the other hand, placement algorithms considering la-
tency constraints and an optimization criteria have been
proposed. Some approaches such as [8] consider different
optimization criteria, in particular fair load balancing. Al-
though load balancing also strives to improve scalability,
it does not explicitly minimize network load. Instead we
directly minimize network load using the available resources
without striving for strict fair load balancing (only avoiding
overloaded resources). In our previous work [12], we have
already introduced an algorithm fulfilling latency constraints
while optimizing for network usage. However, the previous
algorithm only considered network delays in the calculation
of the end-to-end latency, making it only suitable for appli-
cations where the processing delay can be neglected.

Our approach first optimizes for network usage and then
applies a constraint satisfaction algorithm that fulfils the end-
to-end latency constraints. The computing resources are used
in an efficient way in the sense that nodes with more residual
resources are preferred against others, only if they reduce the
processing delay of the corresponding operators to be placed.
Our evaluations show that by the use of simple heuristics
that restrict the search space, we can achieve good quality
solutions by considering only 5% of the total hosts.

The rest of the paper is structured as follows. In Section 2
we discuss the related work. In Section 3, we introduce our
system model and define formally our problem. In Section 4
we describe the general course of actions of our placement
algorithm. Finally, in Section 5 we present our experimental
results, before we conclude in Section 6.

rizousa
Textfeld
Published in International Performance Computing and Communications Conference
@IEEE 2011

II. RELATED WORK

The operator placement problem has been investigated
in different contexts. In [4] an approach to serve multiple
queries with different resolutions has been proposed. This
work focuses on the reuse of operators and the different
levels of data granularity. An optimized strategy for sharing
operators is out of the scope of this paper.

Closer to our specific goals, the minimization of the
network load without considering QoS constraints has been
one of the main goals of other existing placement algorithms.
Network load is frequently expressed as the network usage
of inter-operator data streams based on the bandwidth re-
quirements of inter-operator data streams and the delay be-
tween operators. Pietzuch et al. presented the first approach,
called SBON, to optimize network usage using a spring
relaxation model [11]. In [13], we presented a different
algorithm to minimize the bandwidth-delay product of inter-
operator data streams that further reduced the network usage.
This approach first tries to find an optimal solution in a
continuous search space (latency space; see below) and then
maps this solution to the discrete set of hosts. We apply
this algorithm in the enhanced algorithm of this paper to
calculate an unconstrained optimum that is then modified to
satisfy the latency constraint.

Since latency is a crucial QoS parameter, many place-
ment algorithms try to achieve latency guarantees. From
the complex event processing field, Cordies [9] has been
proposed for efficient distributed event correlation. Cordies
focuses on the fulfilment of latency constraints and does
not consider network load as an optimization goal. Other
approaches combine latency guarantees with load balancing.
Gu et al. presented an algorithm that uses global knowledge
to checks exhaustively all hosts in order to identify some
candidate hosts [8]. Then, it selects the hosts that minimize a
congestion aggregation metric modelling the processing and
network residual resources. Such an optimization metric can
be useful for cases where the network is heavily loaded, but
it is less efficient for other situations.

In contrast to these approaches that consider latency
constraints together with load balancing, we do not strive for
fair load distribution, but only try to avoid overloaded hosts
while defining minimal network usage as our primary opti-
mization goal. In our previous work [12], we have already
considered the problem of optimizing network usage while
providing latency guarantees. However, in this previous work
we only targeted a subset of applications, for which the
processing delay does not contribute significantly to the total
end-to-end latency. Here, we overcome this restriction by
new placement algorithms explicitly taking the processing
delay into consideration.

IIT. SYSTEM MODEL AND PROBLEM STATEMENT

Next, we introduce our system model. Then, we give a
formal definition of our operator placement problem.

A. Execution and Data Model

In our execution model, a stream processing task is
modelled as a directed operator graph G = {Q), S, A, E}. Q
denotes the set of operators. Operators include data sources,
applications (sinks), and processing operators. S C §2 and
A C) denote the sets of data sources and applications
(sinks), respectively. E € 2 x €) is a set of links (directed
edges) that connect operators.

In order to define the end-to-end latencies (see below), we
need to introduce the notion of an end-to-end path w;wj.
Each end-to-end path connects a source operator w; € S
with one of the sinks w; € A. ®(G) = {wiw;, ..., w;w,}
denotes the set of all end-to-end paths of the operator graph
G. Note that an end-to-end path contains all the operators
on that path as well as the links between these operators.
We write w € w;w; if operator w is part of the path w;wy;
we write wyw; € w;wj if the link wyw; is part of path w;w;.

In our data model, data is organized in minimal discrete
data units called fuples, denoted as 7. A sequence of tuples
forms a data stream. Tuples can be as small as a single
number, e.g. a temperature value, or as big as a chunk of
several megabyte of data, e.g. an image from a camera. We
define s as the size of tuple 7. A tuple forms the basic unit
of processing for each operator. Sources generate typically
sequences of tuples in intervals that are then processed by
operators and finally consumed by the sinks.

Operators are placed on physical hosts, denoted as v. We
assume that sources and applications are pinned to certain
hosts, whereas every other operator can be placed freely
on any hosts. After operator placement, the operator graph
can be interpreted as an operator overlay network. Next,
we define the end-to-end latency and network load resulting
from a certain placement.

B. End-to-End Latency

We define the end-to-end latency L(7,w;w;) of path w;w; as
the time that tuple 7 needs to get transmitted and processed
along a path between source w; and sink w;:

L(Tv wiwj) =

S AN@m) +T(mv)}+ > Plwk,v)

WEW]EWW; Wk EWW;

In this equation, N (7;7;) defines the propagation delay
of a link (7x77) on the path, ie. the time it takes to
transmit a single bit via UDP/IP or TCP/IP between the two
physical hosts hosting operator w; and w;. For modelling
the propagation delay, we use a model of the physical
network called latency space introduced by Pietzuch et al.
in [11]. According to this model, each physical host v
is assigned a set of coordinates in Euclidean space, such
that the distance d(7;77;) between two physical hosts v;, v;
models the propagation delay N (7;77;). The model is created
and constantly updated using round trip time measurements

between hosts. In that sense, the distance of two operators
in the latency space models the expected propagation delay
after the mapping of operators to physical hosts. We assume
this latency model to be available to every host running our
distributed placement algorithm, for instance, using a cen-
tralized service or distributed peer-to-peer system managed
by the physical hosts. This systems has to support queries for
the coordinates of individual hosts as well as range queries
for all hosts in a certain part of the latency space.

T(7,v) defines the transmission delay for putting a tuple
on the wire at host v hosting wy,. In order to estimate T'(7, v),
we measure the transmission delay T'(7',v) of a real tuple
7/ of size s/ on a physical host ¥ and we calculate the
transmission delay as T'(7,v) = (s, /s.)T (7', v).

P(wg, V) defines the processing delay that a tuple expe-
riences at host v hosting operator wy. As presented next,
we use a simple processing model that assumes that the
processing power of a host is equally distributed to all
operators running on this host. We have evaluated this pro-
cessing model on different machine types, and the approach
was able to keep the relative error lower than 17% on
average—a value sufficient for our purpose. However, due
to space limitations, we leave out the evaluation results of
the processing model. Alternatively, other processing models
can also be applied.

For the local host where the operator is currently located,
P(wg, v) could be measured directly. However, determining
P(wg, v) is not a trivial task for other hosts where the oper-
ator is currently not located at. Note that the placement al-
gorithm needs information about P(wy, v) before it actually
places the operator on host v to make a decision which host
is suitable w.r.t. processing delay before actually migrating
an operator. Therefore, the basic problem is to estimate the
processing delay of an operator w when executed on host
v taking into consideration the fact that host have dynamic
processing load and different processing power.

Our estimation is based on two metrics to define the
processing power and load of each host, respectively. On the
one hand, we use the bogomips metric to define the speed of
a machine. Bogomips expresses the number of iterations per
second of a loop with empty body. Obviously, this metric
cannot capture every aspect of the speed of a host such
as different relative speeds for integers and floating point
operations. However, it gives a coarse estimate to compare
two machines and proved to be sufficiently accurate in our
measurements. On the other hand, we use the run queue
length of the processor to express the load of an host. The
run queue length defines the number of processes waiting
for the CPU. Intuitively, the share of processing time an
operator receives will shrink proportional to the number of
processes running on the host (here, a process can be another
operator as well as any other process running on the host).

Assume that the operator is currently running on host
v; and we want to estimate the processing delay of that

operator if it migrates to host v;. The current capacity
cy; of host v; with processing speed mips,, and run

queue length g, is given by the following formula: ¢,;, =

min {mips,, m;p °vi}. The capacity of the other host is

given by: c,, = min{mips,,, %} Here, mips/q
defines the bogomips that one process]receives if ¢ processes
are competing for the CPU. On host v; where the operator is
currently placed, g,, already includes the operator. On the
(potential) host v; we have to add 1 to q,, to reflect the
queue size after the migration to v;. The minimum function
ensures that on an unloaded host and short processing times
with longer idle periods between tuples the operator cannot
receive more than 100% of the CPU. We also designed
extensions of these formulas for multi-core CPUs, which are
not further discussed here due to space restrictions. As an
indicator of the current relative performance of the two hosts

we define the speedup factor: speedup;; = z“i Finally, we

approximate the remote time to run the operator on host v;
as the product of the speedup factor and the local processing
time at hoste v;: P(w,v;) = speedup;j * P(w,v;).

Based on the previous definitions, we can define the
latency of an operator graph as the maximum end-to-end
latency contained in operator graph G, i.e. the maximum
latency that a tuple experiences traversing the longest path in
the operator graph. Formally speaking, the latency of an op-
erator graph G is defined by: L(G) = maxg;57ee L(T,Wiw;))

C. Network Usage

Apart from the end-to-end latency specifying the de-
sired QoS, we need to formally define the network usage
that represents our optimization metric. The network usage
U (w;w;) of a single link is defined by the bandwidth-delay
product of that link: U(w,w;) = r(wiw;j)N(w;w;). Here,
r(w;w;) denotes the data rate between two operators w;
and w; and N(w;w;) the propagation delay of that link.
Intuitively, this product indicates the load of an overlay link
in bits that are in transit in the network on that link. The
network usage of a complete operator graph G is defined
as the sum of the network usage of all links of the graph:

U(G) = 20, ca T(@iwy) N (witw;).
D. Problem Statement

Based on the end-to-end latency and network usage defi-
nitions, we can now formally define our placement prob-
lem. This problem is defined as constrained optimization
problem where a user defined maximum end-to-end latency
restriction R has to be fulfilled while minimizing the induced
network usage:

UG)= > r(ww;)N(ww,) = min (1)
wiw; EA
st. L(G) <R)

IV. PLACEMENT ALGORITHM

In this section, we present the operator placement algo-
rithm to solve the above constrained optimization problem.
We start with an overview of the algorithm and then present
further details in the following subsection.

A. Overview of Algorithm

The basic idea of the algorithm is to use a two-step
placement process. In the optimization step, we search for
an optimal placement w.r.t. network usage. In the second
step, we modify this unconstrained solution such that the
latency constraint is satisfied and the network usage is only
increased as few as possible compared to the unconstrained
solution. Both steps are executed in two sequential phases.
Firstly, in the initial operator placement phase to obtain an
initial mapping of operators to hosts. Then both steps might
be repeated during the adaptation phase to adapt to changing
network conditions either violating the QoS constraint or
rendering the initial solution suboptimal.

Although the optimization step and constraint satisfaction
step are both executed in both phases, the hosts respon-
sible for the execution of these steps are different for
the initial placement phase and adaptation phase. For the
initial placement, a coordinator node is responsible to find
an initial placement for each operator and deploying the
operators on hosts. The coordinator node can be any node,
e.g., the node that initially received the query. During the
runtime of the subsequent adaptation phase, the operators
are monitored, and particular network changes trigger the
re-placement of operators. In this case, the solution of the
unconstrained optimization problem is found in a distributed
manner by the nodes hosting operators of the graph, while
after the optimization step the solution of the constrained
optimization problem is calculated again on a coordinator
node. For the adaptation phase, the coordinator node is the
node that hosts the root of the operator graph such that
communication overhead is reduced.

For solving the unconstrained optimization problem, we
use the algorithm presented in [13]. This algorithm can either
be executed centrally on the coordinator node (Phase 1) or
in a distributed manner (Phase 2) based on a local view
of each operator onto data rates of incoming and outgoing
streams and propagation delays to graph neighbours. After
a number of iterations, the algorithms converges to an
optimal solution of the whole operator graph. The output
of the algorithm, is the optimal position of the operators
in the latency space. For a more detailed description of the
unconstrained optimization algorithm, we refer to [13].

Starting from this optimal placement, we distort the op-
timal solution minimally to satisfy the latency requirements
of the user. Intuitively, this means that the operators should
be placed on hosts that reduce the end-to-end latency, either
by moving to faster nodes (reducing processing delay) or by
reducing the network latency. Theoretically, we could find

the optimal solution of the constraint placement problem by
an exhaustive search that considers every host in the system.
However, obviously this would lead to high overhead for
larger sets of hosts and operators. Therefore our solution is
based on the idea to find some candidate hosts that reduce
the end-to-end latency. We find promising nodes by a search
in certain areas of the latency space—Ilater we will show
in detail how to find a good set of candidates. Then, we
communicate with the candidates to get their processing and
transmission delay. Finally as we see later, in order to keep
the network usage as low as possible, we iterate over the
candidate nodes and we select those that reduce the end-to-
end latency while increasing the network usage minimally.

Depending on the phase, the output of the constraint
satisfaction algorithm will be either an initial placement or
a new placement of the operators. In the latter case, the
operators are migrated to the new hosts.

B. Constraint Satisfaction Algorithm

Next, we describe the details of the constraint satisfaction
step. As mentioned, the constraint satisfaction algorithm
depicted in Algorithm 2 is invoked after the optimization
step. Therefore, before the execution of this algorithm all
operators are placed on hosts such that Equation 1 is min-
imal. For the explanations below, it is important to realize
that U(G) is a function that depends on the coordinates of
the hosts hosting operators in the latency space since the
Euclidean distance between hosts in the latency space de-
fines the propagation delay (Function /V) between hosts and
therefore their operators. In the beginning, U(G) = Upin
where Ui, denotes the minimal network usage, which is
found by the optimization step. However, although U(G)
is minimal after the optimization step, the latency of the
longest path of the graph might be higher than the requested
maximum latency, i.e., Equation 2 is not fulfilled in general.
Algorithm 2 now tries to distort this optimal solution to stay
as close as possible to U, and fulfill the latency constraint.

Algorithm 2 gets as input an initial mapping of the
operators to hosts such that the network usage of the op-
erator graph is minimal [13]. Firstly, the algorithm finds the
longest path in the operator graph, and checks if the latency
restriction is already fulfilled. In that case, it simply returns
the current mapping. Otherwise, it enters the main body of
the algorithm, where it checks for alternative mappings. For
each operator on the longest path, the algorithm finds a set
of candidate hosts where the operator could be migrated to.
The candidate set is calculated once in the beginning for each
operator on a path. The candidates are selected such that
moving an operator to a candidate host decreases the latency
of the longest path. In the next subsection, we are going to
discuss in detail how this candidate set is determined. If
the candidate set is empty, the latency cannot be decreased
any further and the algorithm stops without finding a valid
solution. In this case, the application is notified that the

Algorithm 1 Constraint Satisfaction Algorithm

Require: U(Z,,,...,Z,,) is minimal
Ensure: Finds a mapping (v1,...,1,) such that L(G) < R
and U(Zy,, ..., %Ly,) is minimal

1: while (L(G) > R) do

2: find maximum latency path ;w5

3: if candidate set candidates(w) does not exist then
4 for all operator w € w;w; do

5: find candidate set candidates(w)

6 sort candidates(w) by distance to Upyin

7 end for

8: end if

9: if candidates = () then {latency minimum}

10: notify application

11: else

12: for all operator w € w;w; do

13: get next candidate v/ in candidates(w)

14: calculate the difference in network usage AU (w)
15: end for

16: end if

17: assign operator w with minimal AU (w) to v/
18: delete candidate v’ from candidates(w)

19: end while

20: return current mapping (vq,. .., V)

latency constraint cannot be fulfilled, and the application
might choose to decrease its requirements or simply stop.
If the candidate set is not empty, latency can be further
decreased by migrating to any candidate host. The idea is,
not to choose an arbitrary candidate but a candidate that
increases the network usage the least in order to distort the
optimal solution w.r.t. to network usage the least. To this
end, the hosts of the candidate set are sorted according to
the distance to Upin, and the host with the minimal distance
leading to the minimal network usage increase AU (w) is
chosen as new host for operator w.

C. Selection of Candidates

Calculating the candidate set is a crucial operation during
the constraint satisfaction step. If the candidate set is too
big, the overhead increases since every candidate has to be
contacted and checked with respect to its processing and
network delay. If the candidate set is small and misses some
valid hosts that would decrease latency, no valid solution
might be found although it exists in the network. In order
to find a good trade-off between overhead and success rate,
we considered different candidate selection strategies.

First, we restrict the search space by filtering out the
physical hosts according to their location in the latency
space. Next, we illustrate this idea through a simple example
and we prove an optimal pruning criterion that reduces
further the search space. Firstly, it is important to observe
that all suitable candidates are restricted inside ellipsoidal

T 6

T T T T T T
Physical Host ~ +
Network Coordinates of similar latency ——
= 4 4
t + +
r q4 2
r ¥ 10
w
= H4-2
F -4
1 1 1 1 1 1 1
3 2 1 0 1 2 3 4 5

Figure 1. Candidate set for one unpinned operator.

shapes in the Euclidean latency space. Figure 1 visualizes
a simple example of an operator w with one source w; and
one sink w;. The end-to-end delay L for this simple example
is the sum of the propagation delays of the operator to its
neighbours N = N(wwi) + N(wws), plus the processing
delay P = P(w,v) at the host v of operator w, and the
transmission delays 7' = T'(7,v) + T(7',v) of the input
tuple 7 and output tuple 7’. Each value of the end-to-end
delay L represents an ellipse in the latency space with foci
points the positions of the two neighbours w; and w;. Note
that according to the definition of the ellipse, all points on
the ellipse have the same distance to the foci points, i.e.,
they lead to the same end-to-end delay. It is straightforward
to see that only the nodes that reside inside the ellipse
L = N+ P+ T, can lead to better solutions since for
nodes outside the ellipse even if the processing delay is zero,
the network delay would still exceed the current latency L.
Thus, the candidate nodes are restricted inside the ellipse L.
In order to find the candidate hosts within L, we perform
a range query in the latency space using the latency space
service and query range L.

Checking all nodes inside the ellipse cannot be a valid se-
lection strategy, since the set of nodes might be significantly
large and as a result would lead to high communication
overhead. Moreover, since in a real system the load of the
system changes frequently, asking a large set of nodes could
degrade the information about the current load of nodes due
to long delays. Thus, in order to limit the candidate nodes
to a reasonable size, we select only & hosts in the ellipse
to contact. Straightforward solutions to that problem are to
choose the k closest nodes with respect to network usage
minimum that reside in the ellipse, or to select & random
hosts inside the ellipse. Random selection of hosts could be
beneficial in case the suitable hosts do not lie in the direct
vicinity of the current host. A more sophisticated method
could be to use a pruning criterion that can filter out some
of the nodes inside the ellipse. To this end, we introduce the
following pruning criterion for the processing delay of the
candidate hosts:

Algorithm 2 Candidate Selection Algorithm
Require: Bounding box for ellipse £
Ensure: Candidate set candidates of size k
1: find all hosts hosts inside ellipse E [range query]
sort hosts hosts by distance to Upin
while #candidates < k do
contact next host v/ in hosts
if P(w,v') < P(w,v) + T + N — Ny, then
candidates <+ v/
end if
end while
return candidates

R A R ol

Pruning Criterion Let w be an operator placed on a host
v with network latency N to two neighbouring operators
and with processing delay P. Assume also a tuple 7 with
transmission delay 7. An host ¢/ can only lead to a better so-
lution than that of v w.r.t. latency, if and only if the following
condition is fulfilled: P(w,v’) < P(w,v)+T + N — Nyin,
where Ny, represents the minimum network delay of
operator w to its two neighbours.

Proof: Assume that host v/ lies on the line segment
between the two neighbouring operators w; and wy. Note
that a host on this line segment leads to the minimum
possible propagation delay N,i,. Furthermore, in the best
case, v/ will have negligible transmission delay, i.e., T = 0.
In this case, the latency L’ for a placement on v/ is equal to
P(w,v") + Npin. The latency L for the current placement
on v is P(w,v) + N + T. If it should hold L' < L,
then P(w,?’) + Npin < P(w,v) + N+ T — P(w,V') <
P(w,v)+ T+ N — Npin []

Algorithm 2 shows the pseudocode for the candidate
selection strategy using the pruning criterion. According to
this method, we first get all the hosts that reside in the
ellipse by performing a range query at latency space. Then
we contact one by one the next nearest host with respect
to network usage minimum inside the ellipse and we check
if it satisfies the pruning criterion. In that case, the host
is included to the candidate set. The process is repeated
until £ hosts that satisfy the pruning criterion are found.
Obviously, this method induces higher overhead, than the
naive solutions proposed earlier, but it is expected to give
better quality results, since it takes also into consideration
the processing delay. Thus, if the current host is quite fast,
the criterion tends to filter out more hosts, while in case of
a slow current host, less candidate hosts will be filtered out.
In our evaluation, we show how these different strategies
perform in terms of overhead and result quality.

V. EVALUATION

In this section, we present our evaluation results. We start
with a description of the evaluation setup. Then we evaluate
in detail the performance of the placement algorithm in

terms of optimality w.r.t. network load and its capability
to satisfy latency constraints.

A. Setup

To evaluate our algorithms, we have implemented them
for the NET cluster [7], an emulation environment de-
veloped at the University of Stuttgart. NET provides an
emulation environment for testing distributed systems and
communication protocols. It combines the benefits of real-
time experiments and network simulation. NET consists of
a compute cluster, where every cluster node hosts several
virtual nodes (in our case the operator hosts) that execute
real implementation of the “software under test”. Nodes
are connected by an emulated communication network that
can be parametrized such that it resembles a given network
(including network topology and link characteristics such
as latency and bandwidth). Using emulation instead of
simulation gives us the chance to test a real implementation
of our placement algorithm under realistic conditions.

Our emulated system consists of 200 hosts. Each host has
a capacity of 4,800 bogomips. To define the latencies and
bandwidth between every pair of hosts, we used real mea-
surements between PlanetLab[2]. To construct the latency
space model containing the virtual network coordinates of
hosts, we used the Pyxida system running on each host
[1]. Pyxida implements the Vivaldi algorithm [5] in order
to calculate accurate coordinates where the distance closely
matches the propagation delay.

In order to vary the processing load induced by operators,
we used operators implementing a matrix multiplication with
different sizes. Besides giving us the opportunity to easily
manipulate the processing load of operators, matrix multi-
plication also is a realistic operator is used, for instance, for
traffic matrices in network monitoring, or image recognition.
We varied the size of matrices in the range from 50 to 500 by
defining four discrete sizes of {50, 100,200,500} elements.
Thus, we cover a large spectrum of heterogeneous operators
in terms of processing load. Consequently, the size of the
tuple is defined by the size of the matrices.

For our experiments, an operator graph, has typically
two free operators to be placed. The data sources feed the
operators with data every 20 up to 120 seconds following
a uniform distribution, leading to heterogeneous data rates.
Moreover, the data sources and sinks, are uniformly dis-
tributed on random hosts in the network. The parameter k
that defines the size of the candidate set is set to 5 hosts,
i.e. 2.5% of the total number of hosts in the network. We
evaluated our placement algorithm with the four different
candidate selection strategies presented in Section IV. El-
lipse (EL) represents the strategy that checks all nodes inside
the search ellipse. K-Nearest Neighbour (kNN) implements
the k-nearest neighbour search for hosts inside the ellipse
in the latency space. K-Random (kRand) implements the
random selection strategy, which selects random hosts that

End-to-End Latency (sec)

50 100 150 200 250
Number of Operators

Figure 2. End-to-End Latency for increasing number of operators.

reside inside the ellipse. Finally, Conditional K-Nearest
Neighbor (CKNN) implements the pruned search according
to the pruning criterion presented earlier. For each candidate
selection strategy, we measure the resulting end-to-end la-
tency, the network usage and the communication overhead
to discover the candidate hosts.

B. End-to-End Latency

In the first experiment, we evaluate the QoS capabilities
of our placement algorithm with the different candidate
selection strategies. In order to explore the limitations of the
different strategies, we consider an extreme case with very
hard latency constraints: By setting the latency constraint to
zero, we let the placement algorithm search for the operator
placement with minimum possible latency. We deployed
up to 240 operators gradually and measured the achieved
latency for each candidate selection strategy.

Figure 2 shows the achieved latency over the number
of deployed operators. As expected the latency increases
with the number of deployed operators since the system
load increases. Initially all methods almost perform similarly
since initially the system has no load and all hosts can
execute the operators with the same expected (low) delay.
In this case, the solution is mainly defined by the network
latency and not by the processing delay.

As the number of operators increases, some hosts get
more load and become slower in comparison to other hosts.
In that case, the latency of the random strategy kRand
increases faster compared to the other strategies since it
selects randomly hosts inside the ellipse. The greedy strategy
kNN is more resilient to the load but finally deviates also sig-
nificantly from the CkNN up to 38% since it only considers
a limited set of hosts in the vicinity of the network usage
minimum. Another interesting result is that the approach
with the optimal restriction (EL) performs similar to the
greedy kNN strategy, without achieving the best result.
There are multiple reasons that could have degraded the

Network Load (KBytes)
o = N W & OO N © © ©

Candidates Selection Strategy

Figure 3. Resulting network usage for candidate selection.

performance of the expected optimal strategy. First, the
processing and network model are designed to give a rough
estimation of the delays and not very accurate estimations
that the search of an optimal solution would need. Second,
as we see later this method queries many hosts to decide
on the next host and as a result it reacts slowly to network
changes and it might even use outdated delay measurements.

C. Network Usage

Next, we analyse the optimality of the different candidate
selection strategies in terms of network usage. As already
mentioned before, the different strategies try to strike a
balance between latency constraint fulfillment and optimal-
ity. Therefore, we expect the approaches with better QoS
performance to have the higher costs in terms of network
usage. For the same experiment as before, we calculate the
average network load of the deployed operator graphs. In
order to measure the network load, we have taken snapshots
of the data that were in transit at certain points in time. Thus,
we have calculated the amount of data that are in transit in
K Bytes. Finally, we have calculated the average data load
over the time for the different strategies. Figure 3 shows
the absolute values in K Bytes of the network load for the
different candidate selection strategies.

As we see in Figure 3 the network usage is low for
the greedy kNN strategy and the random strategy. That is
expected, since these approaches do not fulfill optimally
the latency constraints and therefore can achieve a lower
network usage. Moreover, CKNN induces more network
load, achieving although a good balance between the net-
work usage minimization and the fulfillment of the latency
constraints. Finally, EL does not manage to find good
candidate hosts and it induces also high network load.

D. Communication Overhead

Finally, we discuss the communication overhead induced
by each candidate selection strategy. Figure 4 shows the

300

kNN xxX=1]

250 _kRand ===
@ ckNN m—
) EL L
B 200 [N
%]
T 150 e
[9) S
5 |
Ke}
€
=) .
pd O

I I R

0 | mzam ll seari] -

Candidates Selection Strategy

Figure 4. Communication Overhead for candidate selection.

average number of messages communicated between the
coordinator and other hosts in order to define a candidate
set. For kNN and kRand the number of messages are 10,
since by default these strategies communicate with only
k = 5 hosts and therefore they need for each contact two
messages (request/response). For the EL algorithm using the
optimal restriction in the latency space, the average number
of messages is 288. This means that a host should contact
on average 144 out of 200 hosts to decide on a placement.
In practice, this method cannot be used not only because
of the high communication overhead that induces, but also
because it cannot guarantee high quality solutions, since it
would react extremely slow at each network change using
possibly outdated delay measurements.

Finally, for CkKNN the number of messages is 18. Thus, we
see that the strategy that uses the pruning criterion not only
performs better in terms of constraint satisfaction problem,
but also keeps the number of messages very low querying
on average about 5% of the total hosts. In other words, we
see that it is sufficient to check only a small subset of all
hosts that reside in the ellipse.

VI. SUMMARY AND FUTURE WORK

In this paper, we focused on data stream processing
systems that need to process high-volume data streams from
distributed data sources under certain latency constraints. We
motivated to use an overlay network of processing operators
for the online processing of streams. As main contribution,
we proposed a novel operator placement algorithm that
distributes operators among a set of hosts such that the
induced network usage is reduced and the given latency
constraint is fulfilled. We first formulated the problem as
a constrained optimization problem. We proposed a method
for estimating the processing time of operators as a nec-
essary prerequisite for finding suitable operator hosts in
order to fulfill the latency constraint. Then, we proposed
different selection strategies to restrict efficiently the search

space. Our evaluations showed that the heuristic that uses
the pruning criterion performs better in terms of quality of
the solution over a greedy and a random selection strategy,
while it invokes a small communication overhead.

As future work, it would be interesting to investigate the
trade-off between migrating operators and achieving good
quality solutions in highly dynamic environments. Thus, we
could increase the resilience of our solution to frequent
changes of the environment.

ACKNOWLEDGMENT

The work presented in this paper was supported by the
German Research Foundation (DFG) within the Collabora-
tive Research Center (SFB) 627.

REFERENCES

[1] Network Coordinate Research at Harvard. http://www.eecs.
harvard.edu/~syrah/nc/.

[2] Planetlab. http://www.planet-lab.org.

[3] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for
data processing in large-scale interconnected sensor networks.
In The 2007 International Conference on Mobile Data Man-
agement (MDM 2007), pages 198-205, 2007.

[4] A. Benzing, B. Koldehofe, and K. Rothermel. Efficient Sup-
port for Multi-resolution Queries in Global Sensor Networks.
In COMSWARE, 2011.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. In SIGCOMM
’04, 2004.

[6] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a
better NetFlow. In ACM SIGCOMM, 2004.

[7]1 A. Grau, K. Herrmann, and K. Rothermel. Efficient and
Scalable Network Emulation Using Adaptive Virtual Time. In
18th Internatonal Conference on Computer Communications
and Networks, Aug. 2009.

[8] X. Gu, P. S. Yu, and K. Nahrstedt. Optimal Component
Composition for Scalable Stream Processing. In Proceedings
of the 25th IEEE International Conference on Distributed
Computing Systems, ICDCS ’05, 2005.

[9] G. Koch, B. Koldehofe, and K. Rothermel. Cordies: Expres-
sive Event Correlation in Distributed Systems. In Proceedings
of the Fourth ACM International Conference on Distributed
Event-Based Systems, 2010.

[10] S. Mungee, N. Surendran, and D. C. Schmidt. The Design and
Performance of a CORBA Audio/Video Streaming Service.
In Hawaiian International Conference on System Sciences,
1999.

[11] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-Aware Operator Place-
ment for Stream-Processing Systems. In Proceedings of
the 22nd International Conference on Data Engineering,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] S. Rizou, F. Diirr, and K. Rothermel. Providing QoS Guar-
antees in Large-Scale Operator Networks. In 12th IEEE
International Conference on High Performance Computing
and Communications, 2010.

[13] S. Rizou, F. Diirr, and K. Rothermel. Solving the Multi-
operator Placement Problem in Large Scale Operator Net-
works. In 19th Internatonal Conference on Computer Com-
munications and Networks, 2010.

