PSense: Reducing Energy Consumption in
Public Sensing Systems

Patrick Baier, Frank Diirr, Kurt Rothermel
Institute of Parallel and Distributed Systems
Universitdt Stuttgart
70569 Stuttgart, Germany
Email: {baier, duerr, rothermel} @ipvs.uni-stuttgart.de

Abstract—Utilizing peoples’ mobile devices for gathering
sensor data has attracted a lot of attention within the last
few years. As a result, a great variety of systems for sensing
environmental phenomena like temperature or noise have been
proposed. However, most of these systems do not take into
account that mobile devices have only limited energy resources.
For instance, an often assumed prerequisite is that mobile
devices are always aware of their position. Given the fact
that a position fix is a very energy consuming operation,
continuous positioning would quickly drain a device’s battery.
Since the owners of the mobile devices will not tolerate a
significant reduction of the devices’ battery lifetime, such an
approach is not suitable. To address this issue we present
PSense, a flexible system for efficiently gathering sensor data
with mobile devices. By avoiding unnecessary position fixes,
PSense reduces the energy consumption of mobile devices by up
to 70% compared to existing mobile sensing approaches. This
is achieved by introducing an adaptive positioning mechanism
and by utilizing energy efficient short-range communication to
exchange position related information.

Keywords-Wireless sensor networks, Mobile Computing,
Energy-aware systems

I. INTRODUCTION

The ongoing advancements in the performance and the
versatility of mobile devices, especially mobile phones, pave
the way for new applications that go far beyond the primary
scope of mobile communication. One particular field that
already attracted a lot of attention in the research community
(e.g. [1], [2]) is the opportunistically gathering of sensor data
with mobile devices, also called Public Sensing [3], [4]. By
utilizing the build-in sensing facilities of peoples’ mobile
devices, Public Sensing enables a cheap way of acquiring
sensor data without the need for a costly sensor deployment.

Within the last few years a lot of research was done that
deals with the challenges and the opportunities of Public
Sensing [2]. To show its general feasibility a variety of
applications were proposed that monitor particular environ-
mental phenomena such as noise mapping [5] or traffic
delay estimation [6], for instance. Besides these special-
ized systems, more generic views on Public Sensing were
developed proposing architectural schemes for a scalable
deployment of such sensing systems (e.g. [7], [8]). Although
the aforementioned work focuses on the system design on a

very abstract level, we argue that it is crucial to also take into
account the algorithmic challenges that arise from Public
Sensing when designing such a system. More precisely, as
stressed in [4], most of the prevailing Public Sensing systems
assume that the contributing mobile devices continuously
fix their position and sample their sensors. Since it is
commonly agreed that such a continuous sensing quickly
drains a mobile device’s battery (e.g. [2], [9]), most of these
systems would not be accepted by the device’s owner. As a
result, the number of devices that gather sensor data would
decrease. Because this would also decrease the quality of the
information that the system delivers, Public Sensing systems
must be designed in such a way that the amount of energy
intensive operations on the mobile devices are minimized.

One of the major opportunities to reduce the devices’
energy consumption is to avoid the continuous positioning of
the devices [9], which is a frequently assumed prerequisite
in most of the prevailing Public Sensing systems. Often
GPS is used for positioning since it is widely deployed and
sufficiently accurate. However, experimental measurements
[10] have shown that continuously sampling the GPS sensor
significantly decreases a mobile device’s battery life. Cir-
cumventing this problem by simply reducing the positioning
interval between two consecutive GPS fixes would have an
undesired impact on the sensing result, since sensor readings
are in general only useful when they are provided with the
location where they were taken. Moreover, mobile devices
need to be aware of their position to decide whether they
should take a sensor reading at their current location.

In this paper, we present the PSense system, which
reduces the energy for positioning in Public Sensing while
not facing the aforementioned problems. PSense reduces the
overall number of position fixes a mobile devices has to
perform in a Public Sensing scenario, while not affecting the
quality of the sensing process. This is achieved by adapting
the time until a mobile device performs its next position fix
to the distance of the nearest location at which the device
could read sensor values. For instance, considering that a
noise level measurement is requested at some location [in
the city (referred to as sensing location). Naively, a mobile
device m that has a microphone to record the noise level

Published in the Proceedings of the 26th IEEE International Conference on Advanced Information

Networking and Applications (AINA-2012),pp. 136-143,

© IEEE 2012
http://dx.doi.org/10.1109/AINA.2012.33

Fukuoka, Japan, March 2012.

at [but is quite far away from it would continuously fix
its position to determine whether it is close enough for
recording. In a more deliberated approach, m can defer
its next position fix until it is close enough for recording
at [. PSense makes use of this fact by determining for
each mobile device an optimal time span by which the
device’s next position fix can be deferred while ensuring
that no sensing location is missed. We show by simulation
that this reduces the energy consumption by up to 70%
compared to the prevailing approaches that use continuous
positioning. Moreover, PSense works on basis of a generic
sensor abstraction that is utilized in many Public Sensing
systems (e.g. [4], [11], [12]). This makes it deployable for
a huge variety of mobile sensing scenarios.

The rest of the paper is organized as follows. In Section
IT we first give an overview of related work dealing with
optimization approaches in Public Sensing in general and
the problem of efficient positioning in particular. In Section
IIT we introduce our system model, before we present in
Section IV the basic sensor abstraction of our system. In
Sections V to VII we first present a naive approach to
acquire the sensor data and then consecutively introduce
the optimization algorithms we have developed for PSense.
In Section VIII we evaluate our systems and present the
simulation results, before Section IX concludes this work.

II. RELATED WORK

To introduce the related work, we have a look at two
different research areas. First, we look at optimization
techniques that aim on reducing the energy consumption
of mobile devices in Public Sensing scenarios. Second, we
particularly focus on work dealing with efficient positioning,
which is the basic optimization concept of PSense.

A. Optimized Public Sensing

In addition to the already mentioned Public Sensing
systems that do not consider energy consumption at all,
there has also been some work that considers the challenge
of gathering mobile sensor data in an efficient way. For
instance, Eisenman et al. [13] show how the communication
with mobile devices can be more efficient when adapting
the size of the communication range of the communicat-
ing partners to application specific requirements. A quite
different approach (e.g. [14], [15]) aims at the avoidance
of cellular network communication in favor of short-range
radio communication. Since short-range radio induces less
energy overhead on the mobile phones [16], local forwarding
and aggregation of data can be used to reduce mobile
energy consumption and cellular network load. One further
optimization goal that is focused on the sensing, is the
prevention of redundant sensor readings. Given a predefined
point-of-interest and a set of sensor equipped mobile devices
in its proximity, Philipp et al. [4] show that the mobile
devices can be coordinated in such a way that only a small

subset of devices is needed to read the sensor data at that
point in an effective and efficient way.

Although all of these approaches optimize energy con-
sumption in Public Sensing, none of them stresses the fact
of efficient positioning. Since efficient positioning in general
is not a completely new research challenge, we have in the
following a look on work that particular focuses this issue.

B. Efficient Positioning

To begin with, we look at work that deals with application
independent techniques for efficient positioning. Taking the
context of the user into account, Lu et al. [10] and Ryder
et al. [17] show a way to increase the battery lifetime of
a mobile device by adapting the GPS positioning to the
movement mode of the user. For instance, no position fix is
needed while the user stays at the same position. Although
these approaches optimize positioning, they do it in a very
generic way. Therefore, they cannot fully utilize the energy
reduction that is possible in a dedicated sensing scenario.

In contrast, application aware approaches can utilize a
more efficient positioning. One commonly used way to
reduce the number of GPS fixes on a mobile device is to
delay its next position fix until the earliest point in time when
the device could reach a critical point for the application.
For instance, Farrell et al. [18], [19] show in their work
on continuous range queries that the next GPS fix can be
deferred until the earliest point in time when the mobile
device could reach the boundary of the range query. In our
previous work [3], [11], [20] we employ this concept to
coordinate the positioning of mobile devices in specialized
sensing scenarios, like object discovery or map validation.
More precisely, we use information about the Euclidean
distance from a mobile device to the next point that is critical
for the application. Upon that we calculate the time by which
the next position fix of the device can be deferred.

For PSense we extend our previous work to the area
of Public Sensing by including more generic assumptions
that are not considered in our previous approaches. In more
detail, PSense assumes an underlying road graph for the
mobile devices’ movement and uses graph-based distances
instead of Euclidean to determine the time until the next po-
sition fix. Additionally, PSense handles frequently changing
queries for sensor data. As a result, the set of critical points
for positioning (in that case the set of sensing locations) is
dynamically changing and a mechanism for the adaption of
positioning is needed, which is not considered so far. Finally,
PSense utilizes short-range communication to exchange in-
formation about a mobile phone’s current position, which is
not utilized by any of the existing approaches.

III. SYSTEM MODEL

Our system model consists of one server and an arbi-
trary number of mobile devices (see Figure 1). The server
provides a query interface for collecting and answering user

queries for sensor data, which is described in the next section
in more detail. Note that for matters of abstraction we
assume only one server. In a real deployment the load of
this server may be distributed among a set of other servers,
where each server would be responsible for a particular
area. Each mobile device m is equipped with a GPS sensor
for determining its position (x,,(t), ¥ (t)) at time ¢. This
position is inaccurate up to e, (usually up to 20 meters
[21]). Furthermore, each device m comes with a set of
specific sensors S, such as a thermometer. Each sensor
s € Sy, has a limited reading range range(s) and a type
type(s), which specifies the type of data that can be sensed.

Mobile devices are carried by people who move according
to an underlying road graph, which is known to the server.
The edges of this road graph are constituted of polygonal
lines representing roads. These edges are interconnected
with vertices that represent intersections and terminal points
of roads. We assume that neither the speed nor the movement
direction of the mobile devices can be influenced. Further-
more, we require that each mobile device is aware of its
maximum speed, which is referred to as v,,q-

The server can communicate with the mobile devices via
a cellular mobile network like GPRS or UMTS. In addition,
mobile devices can also use short-range radio (e.g. WLAN
802.11 or Bluetooth) to establish an inter-device ad-hoc
communication that has a limited range range(ah).

Since the server is part of the infrastructure, we assume
that it comes with unlimited battery supply. On the con-
trary, a mobile devices has only limited battery supply and
each sensing and communication operation drains a specific
amount of energy from its battery. Moreover, we assume that
cellular communication is more energy draining than short
range communication [11]. For the concrete energy values
that we assume for these operations we refer to Section VIII.

IV. BASIC SENSOR ABSTRACTION

In this section, we introduce the basic sensor abstraction
PSense is based upon. To achieve high flexibility and easy
utilization of PSense, we adapt an abstraction model (see
Figure 1) that is commonly used in a large variety of Public
Sensing systems (e.g. [4], [11], [12]):

The server accepts sensing queries () that contain a set
of desired sensing locations. Each sensing location [€ @
is specified by spatial coordinates (x;,y;) and a particular
type of sensor type(l) that indicates the kind of data which
the user is interested in (e.g. the noise level). The server
stores a set L, which contains all sensing locations currently
requested by the users. For providing the user with the
requested data, the server assigns sensing tasks to mobile
devices that move within the vicinity of the queried sensing
locations. This area is referred to as queried area and is
defined as an extended bounding-box of all queried sensing
locations. We call a sensing location [compatible with a
mobile device m if it satisfies the following condition:

& User @ Sensing Location
Sensing Sensor © Mobile Device
Query Data { | sensing Range
Queried Area
Query (¢))
interface O—
® ®

fetd L

System Model and Sensor Abstraction

Server

Figure 1.

e ds €S, : type(s) = type(l)
Furthermore, a device can read a sensing location [at time
t if the following conditions are satisfied:

1) [is compatible with m by sensor s

2) dist((1), (@m(t), ym(2))) < range(s)
Where dist(z,y) depicts the Euclidean distance between
point and y. If a sensing location | was successfully read
by a mobile device, the data is uploaded to the server. The
server delivers the data to the user and removes [from L.

V. NAIVE SENSING APPROACH

In this section, we present a basic algorithm that realizes
a naive way for providing the requested sensor data to
the user. Since this approach leads to a very high energy
consumption on the mobile devices, we gradually improve
it in the upcoming sections to address this problem.

Upon receiving a sensing query (), the server adds each
[€ @ to the set of currently requested sensing locations L.
Initially, the server distributes L to all mobile devices that
are located in the queried area. For sending this message,
the server needs to know the set of devices that are currently
located in this area. We assure this by assuming that a
node registration mechanism runs on each mobile device,
which notifies the server when a mobile device joins or
leaves the queried area. Since this mechanism is out of the
scope of PSense, we refer to dedicated work on energy
efficient tracking of mobile objects (e.g. [19]). After the
initial distribution of L, the server notifies the devices in
the queried area every time L changes by sending an update
containing only the newly inserted or removed sensing
locations. Mobile devices that enter the queried area for the
first time register at the server and receive the entire set L.

When a mobile device receives L from the server, it starts
periodically updating its position every t,,; seconds via
GPS. After each position fix the device checks whether the
conditions for reading one (or more) sensing locations in
L are fulfilled. If that is the case for [, the device reads
[and uploads the data to the server. Upon receiving this

data, the server delivers it to the user and removes [from
L. Subsequently, the server notifies all other mobile devices
in the queried area that [no longer needs to be read.

VI. ADAPTIVE POSITIONING

The naive approach presented in the previous section
ensures that no mobile device passes a sensing location
without noticing it (at least if 7,,, is chosen sufficiently
small) and can therefore be used as a reference for achieving
optimal sensing effectiveness. Nevertheless, this approach
causes a high energy consumption since the mobile devices
continuously fix their position. To tackle this issue, PSense
uses a mechanism that suppresses position fixes if the next
sensing location is some distance away. The basic idea is
to find an adaptive positioning interval of length ¢, that
determines the time until the next GPS fix is performed
instead of fixedly scheduling the next position fix at time
tpos- Most beneficially, ¢, is set to the maximum time
span a device can suppress positioning without missing the
next compatible sensing location. In the following, we first
introduce a concept to calculate the adaptive positioning
interval ¢,. In the second step, we introduce a mechanism
that ensures the effectiveness of sensing in case the set of
queried sensing locations L changes, while some devices
already scheduled their next position fix.

A. Adaptive Positioning Interval

For choosing an optimal positioning interval ., device
m needs information about the distance to its closest com-
patible sensing location [. Knowing this distance (referred
to as din), it can calculate ¢, according to Equation (1)
using information about its maximum speed vy,4.. The
resulting value of ¢, indicates the earliest point in time,
when m could reach [. Since we use the maximum speed
for this calculation, we ensure that no node will miss a
sensor reading. A more optimistic approach would be to
use the node’s average speed vq,, instead. This would
further decrease the number of GPS fixes but also reduce
the effectiveness of the sensing system, since it would be
possible that a sensor reading is missed in case a device
moves faster then v,,4. Because the effectiveness of the
system should be guaranteed with PSense, we use v, 4, for
the calculation of ¢, and defer analyses of a more optimistic
approaches to our future work.

ta = dmin M)

Umaw

Since a device needs to know d,,;,, for the calculation of
t,, it sends after each position fix its current position in a
positioning query to the server, which is answered by the
server with a sensing update. This sensing update includes
dmin as well as the coordinates (x;, y;) and the type(l) of the
closest compatible sensing location /. With the help of these
values the device first checks if it could read | immediately.

O Mobile Device

@ Graph Vertex
° Sensing Location () Sensing Range

Figure 2. Restructuring the Road Graph

If that is the case it reads [and uploads the data to the
server, which answers with a new sensing update (including
another sensing location). If the device cannot sense [, it
uses the provided d,,;,, to calculate ¢, and schedules its next
position fix to time ¢,. Although server communication is an
energy draining operation, the objective of this approach is
that the decrease in the number of position fixes outweighs
the energy spent for sending positioning queries.

In more detail, the positioning query that mobile device m
sends at time ¢ to the server contains m’s current position
(m(t), ym(t)) and m’s set of sensors S,,. To accurately
determine d,,;, the server utilizes the fact that the devices
move according to the roads of the road graph. Therefore,
instead of calculating the Euclidean distance between the
device and the closest compatible sensing location it uses
a shortest path algorithm (e.g. Dijkstra or Bellmann-Ford).
Before this algorithm can be applied, the road graph needs to
be restructured by mapping the position of the mobile device
and the sensing locations to the road graph in the following
way: After the server received a positioning query from
mobile device m it maps m’s position to the closest point
on the road graph. We refer to this point as pos(m). The
server now checks for each [€ L whether [is compatible
with m. If [is compatible with m by sensor s, the server
associates [with the sensing range range(s) to define the
area in which m can read [. This area is now projected onto
the road graph by intersecting the graph and the circle with
radius range(s) and center (x;,y;) (see Figure 2-a). The
obtained intersections mark the points on the road graph at
which m could start reading [. If sensing location [is not
compatible with m, [is skipped. Subsequently, each road
edge that contains any of the intersections is split into two
road edges and a connecting vertex is placed at the respective
intersection point (see Figure 2-b).

To obtain d,,;y,, the server now executes a shortest path
algorithm on the modified road graph starting from pos(m).
Executing this algorithm, the server calculates the distance
on the shortest path from pos(m) to all vertices in the road
graph. After the algorithm is finished, the server determines
dpmin that indicates the distance from pos(m) to the closest
vertex v that was generated out of a sensing location [.

Finally, the server subtracts €,,s from d,,;, and returns this
value along with the coordinates and the type of sensing
location [to the device. This is necessary to take the
inaccuracy of the GPS fix into account that depicts the
mobile devices position. This inaccuracy may cause that the
device is actually located closer to v than distance d ;.

The reason why d,,;, is calculated on the server rather
than on the mobile devices is twofold. First, executing a
shortest path algorithm is a non-trivial operation and needs
to be done quite often (after each position fix). Since the road
graph might arbitrarily large and complex, the computational
overhead on the mobile device could quickly get too energy
consuming. Furthermore, this avoids the need to make any
assumptions about the computational power of the mobile
devices, which can be quite heterogeneous. The second
reason for doing the calculation on the server is that the
necessity to keep L up-to-date on all mobile devices is
avoided. This is especially beneficial in scenarios in which
the set of queried sensing locations changes frequently.

B. Query Adaption

Using the concept of adaptive positioning, the server
does not proactively disseminate the set of current sensing
locations to the mobile devices, as in the naive approach.
Therefore, the individual positioning interval of some mobile
devices may no longer be appropriate when a new sensing
query arrives. For instance, assuming a user issues a query
for data at time ¢ from a sensing location [that is next
to a mobile device m. If [is compatible with m, but m
has already scheduled its next position fix to some time
t’ > t, it is possible that m misses to read [. To avoid
this, the server has to recalculate the distance to the closest
compatible sensing location by taking into account the newly
queried sensing locations. If the result is smaller than m’s
formerly calculated d,,;,, the server has to notify the device.
To know which mobile devices needs an update when a new
query arrives, the server implements the following concept:

When calculating the distance to the closest compatible
sensing location d,,;, for a mobile device m, the server
remembers the device’s last known position, its sensors
and the calculated d,;,. Upon receiving a new query @
the server checks for every device m if there are sensing
locations [€ () that are compatible with m. If that is the
case the server maps these sensing locations to the road
graph and executes the shortest path algorithm from m’s
last known position again. If the resulting d/,;,, is smaller
than the previously calculated distance d,,;, (see Figure
3), the server queries device m for its position. Knowing
this position the server returns a fresh sensing update by
taking into account the newly inserted sensing location.
This mechanism guarantees that no mobile device misses
a sensing location and only those devices receive an update
that are affected by newly queried sensing locations.

OF
o

Figure 3. Arrival of new Sensing Location

Moreover, we also have to consider the case that a
sensing location is successfully read by some device and
gets removed from L after the results were uploaded to
the server. In the naive approach the server has to inform
all devices about the removed sensing location to avoid
redundant sensing operations. Since the server now only
sends the coordinates of the closest compatible sensing
location to each device, it only has to send a sensing update
to those devices that have the successfully read sensing
location as their closest compatible sensing location.

VII. AD-HOC INFORMATION EXCHANGE

Although adaptive positioning decreases the amount of
GPS fixes on the mobile devices, it increases the number
of messages that are exchanged with the server, since every
mobile device has to query the server after each position
fix. Therefore, PSense utilizes a technique that further re-
duces the energy consumption by decreasing the number of
messages that the mobile devices exchange with the server.
This can be achieved by making use of the property that
nearby mobile devices have almost the same distance to the
next sensing location. If a mobile device receives a sensing
update from the server it can locally forward this information
via its ad-hoc interface. Nearby mobile devices can now use
this information to adapt their respective positioning interval
without communicating with the server. To implement this
concept, the adaptive positioning algorithm is augmented by
two extensions presented in the following. The first shows
how the message exchange between the mobile devices
is realized. The second step ensures that the introduced
query adaption also works with the ad-hoc extension. This
is important since the server may no longer be aware of
a device’s closest sensing location in case a device learns
about a nearby sensing locations via an ad-hoc message.

A. Message Exchange

To introduce the message exchange, we assume that a
mobile device mg just fixed its position and received a
sensing update from the server that includes sensing location
l. Before mg forwards the information about [via an ad-
hoc broadcast to other nearby devices, it determines the
Euclidean distance from its current position to [(referred to
as d(1)) and then subtracts the maximum range of its ad-hoc
interface range(ah) from d(1). The resulting value indicates
the minimum distance to [for each receiver of the broadcast,
since each of them maybe located up to range(ah) closer to

l (see Figure 4-a). Finally, mg sends the ad-hoc broadcast
and also includes the type of the sensing location type(l)
and the set of its sensors Sj.

Each device m, that receives this message from the
sending device mg does the following:

1) Check if [is compatible with m,.. If not, stop.

2) Check if S, C S;. If not, stop.

3) Compute t/, according to the following equation:

d(l) —range(s) dist

Umacx

t =

a

Umax

In which range(s) depicts the range of sensor s € S,
that can read [(i.e. type(s) = type(l)).

4) If t/, is bigger than the remaining time until the next
position fix is performed, then reschedule the next
position fix to ¢/. If not, stop.

5) Send an ACK-message back to m,..

Besides the prerequisite that the sensing location [must be
compatible with m,. (step 1), the device m, can only use
the information it received if [is also its closest compatible
sensing location. To guarantee this, the broadcast sender m
needs to have at least all the sensors that m,. has (step 2).
If that is not the case, a sensor s € S, and s ¢ S, can be
located closer to m,. but is not included in the sensing update
from the server (since this is based on the sensors of my).
If these requirements are fulfilled, m, can determine time
t! that indicates the earliest time in which m,. can reach the
starting point for reading location [. To get the distance to
this starting point, range(s) needs to be subtracted from the
received d(1) (see Figure 4-a). Device m, can now extend
the time until the next GPS fix to time tﬁl, if the remaining
time until the next position fix is smaller than ¢/, (step 4). If
that is the case device m, answers with an ACK-message
to the broadcast sender (step 5), which is needed for the
ad-hoc query adaption mechanism (see next section).

Although device mg receives with the sensing update from
the server also the graph-based distance d,,;, to the next
sensing location [, it broadcasts the Euclidean distance to the
other devices. Figure 4-b shows that broadcasting the graph-
based distance may lead to a problem if the receiving device
is on another road segment from which [can be reached
on a shorter path. If m, would calculate ¢/, based on the
graph-based distance d,,;, it received from my, it would
be possible that ¢/, is chosen too large and the reading of
[is missed. Since this has to be avoided to preserve the
effectiveness of the sensing system, the calculation of ¢/, is
based on the Euclidean distance to [.

B. Ad-hoc Query Adaption

To ensure a correct query adaption in case of the arrival
of a new sensing location, the previously presented query
adaption has to be extended when ad-hoc information ex-
change is used. More precisely, if a new sensing location
is queried, the server needs to know the closest compatible

(a) Starting point (b)
—= for sensing

'\ @l o
\\\ range(ah/)// ¢ d(l) R
—dist—>

,

" range(s) {_) ad-hoc range

Figure 4. Ad-hoc Information Exchange

sensing location of each device to execute the query adaption
(see section VI-B). The problem that arises with the ad-
hoc extension is that the server does not take notice of the
ad-hoc messages that the devices exchange and which may
update a device’s closest compatible sensing location. As
a result, it cannot determine which devices need an update
if a query @ arrives. To avoid this, the query adaption is
extended as follows. If a mobile device m sends an ad-hoc
message it remembers the set of other devices that used the
sent information for extending their respective positioning
interval (i.e. all devices that returned an ACK-message). We
refer to this set as M,. If the server now receives a new
sensing location which causes an update for m, (according
to query adaption in section VI-B), device m returns the set
M, to the server. The server now knows the set of devices
that scheduled their next position fix according to the same
sensing location as mg. Since these devices also need an
update, the server subsequently queries each device m € M,
for its position and returns a fresh sensing update. Based on
this update each of theses devices adapts now its positioning
interval (as described in Section VI).

VIII. EVALUATION

To evaluate PSense, we look at its efficiency and ef-
fectiveness by comparing the developed concepts to the
naive approach. For this purpose, we conducted extensive
simulations using the network simulator ns-2 combined with
traces of pedestrian movement.

A. Simulation Setup

For the simulation we took a part of the street graph of
Chicago (size 2km x 2km) as road graph and used the
mobility trace file generator UDELModels [22] to generate
realistic trace files of pedestrian movement. We simulated
one hour simulation time using varying numbers of mobile
devices and a standard positioning interval t,,s = 5s (for
the naive approach). To simulate the sensing queries we
requested data from ten randomly placed sensing locations
at the same time. When a sensing location was successfully
read we removed it and inserted a new sensing location at
some other randomly chosen place again.

To measure the amount of energy that is consumed for
communication we used the commonly used energy model

35 T T T 40 T 80 T
— naive © naive ° naive o
2 30 - adapt —— - 35 [adapt —<— —~ 70 - adapt ——
= adhoc e adhoc o) adhoc o
< o5 — 30 S 60
2 = »

T 25 o :
£ 20 2 5 %0 Py
2 £ 20 2 40 e
s 15 [[0} et
3 o 15 i 30
> 10 - ~ 5
> B (G 14 S
s P or £ 20 g
g ° — = 5 e 10 %

S i T R S R I S AN AR S s .
0 PP ST S SO S
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Number of Mobile Devices Number of Mobile Devices Number of Mobile Devices
Figure 5. Total Energy consumption Figure 6. Positioning Operations Figure 7. GPRS Communication
. . 50 :
[3], [23] shown in Table I. For the communication between naive ---o
. . 45 - adapt
the mobile devices and the server we assumed GPRS. For 0 e /
. . . 2]
the ad-hoc information exchange we assumed Wifi commu- 2 s /
. . . . °
nication using the 802.11b standard and a maximum com- § 20
munication range range(ah) of 100m. As the algorithms 5 s s
. . . 12}
executed on the mobile phones are quite simple and can be S 2 4
executed in constant time, we do not explicitly consider the 15
energy consumption for their execution.

Operation Energy [m]]
GPS Position Fix 75
GPRS Send (1000 Bit) 80
GPRS Receive (1000 Bit) 40
802.11b Send (1000 Bit) 2
802.11b Receive (1000 Bit) 1

Table I
ENERGY MODEL

In the following we compare the results of the three
different algorithms we presented:

naive Refers to the results of the naive approach without
including any optimizations (see Section V).

adapt Includes the concept of the adaptive positioning
interval (see Section VI).

adhoc Includes adaptive positioning as well as the ad-hoc
information exchange (see Section VII).

B. Efficiency of PSense

First, we have a look at the amount of energy that is
consumed by the mobile devices to evaluate the efficiency
of PSense. Figure 5 shows on the y-axis the total amount of
energy that is consumed by all mobile devices. The values
on the x-axis depict the number of mobile devices that were
used for the respective simulation scenario. We can see that
the amount of energy consumed in the ad-hoc information
exchange approach is on average only 30% of the naive
approach (i.e. a reduction of 70%) and that ad-hoc consumes
less energy than using only adaptive positioning.

Next we investigate how these energy values are con-
stituted. Therefore, we look at the number of GPS fixes

10
100 150 200 250 300 350 400 450 500
Number of Mobile Devices

Figure 8. Sensing Effectiveness

(Figure 6) and the number of GPRS messages (Figure 7)
that are used over all mobile devices. Here we can see
that the naive approach requires much more GPS fixes
than the other approaches. Looking at the number of GPRS
messages, we see that the ad-hoc information exchange leads
to a significant decrease of GPRS messages. Since cellular
communication and GPS fixes are very energy consuming,
we can explain from Figure 6 and 7 why the ad-hoc approach
performs best in terms of overall energy consumption.

C. Effectiveness of PSense

To determine the effectiveness of PSense, we look at the
number of sensor readings that were performed in each of
the three approaches. Figure 8 shows the number of sensor
values that are uploaded from the mobile devices to the
server. We can see from the chart that this number is the
same for all approaches. As a result, we can conclude that
no sensor readings are missed and all approaches deliver the
same amount of sensor readings to the user.

IX. CONCLUSION

In this paper we introduced the PSense systems, a generic
Public Sensing framework for efficiently gathering sensor
data with mobile devices. In comparison to existing ap-
proaches using continuous positioning, PSense introduces an
adaptive positioning mechanism. As shown in the evaluation,
this approach helps to significantly reduce the number of re-
quired GPS fixes but does not impact the amount of acquired

sensor data. Nevertheless, the adaptive sensing approach also
increases the amount of cellular messages. Therefore, we
introduced in a second step an ad-hoc exchange mechanism
that replaces energy intensive cellular messages to further
decrease the amount of energy consumed. Finally, PSense is
based on a widely used sensor abstraction model that makes
it applicable in a wide spectrum of Public Sensing scenarios.

In future work we will investigate further positioning
strategies that are based on a more optimistic assumption of
the nodes prospective speed. This will further reduce energy
consumption but may also have a negative impact on the
overall effectiveness of the sensing system.

REFERENCES

[1] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin,
L. Guibas, A. Kansal, S. Madden, and J. Reich, “Mobiscopes
for human spaces,” IEEE Pervasive Computing, vol. 6, pp.
20-29, Apr. 2007.

[2] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,
and A. Campbell, “A survey of mobile phone sensing,’
Communications Magazine, IEEE, vol. 48, no. 9, pp. 140—
150, Sep. 2010.

[3] P. Baier, H. Weinschrott, F. Diirr, and K. Rothermel, “Map-
Correct: automatic correction and validation of road maps
using public sensing,” in Proc. of the 36th Conf. on Local
Computer Networks, 2011.

[4] D. Philipp, F. Diirr, and K. Rothermel, “A sensor network
abstraction for flexible public sensing systems,” in Proc. of
the 8th Intern. Conf. on Mobile Ad-hoc and Sensor Systems,
2011.

[5] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and
W. Hu, “Ear-phone: an end-to-end participatory urban noise
mapping system,” in Proc. of the 9th ACM/IEEE Intern. Conf.
on Information Processing in Sensor Networks, 2010.

[6] A. Thiagarajan, L. S. Ravindranath, K. LaCurts, S. Toledo,
J. Eriksson, S. Madden, and H. Balakrishnan, “VTrack: Ac-
curate, Energy-Aware Traffic Delay Estimation Using Mobile
Phones,” in Proce. of the 7th ACM Conf. on Embedded
Networked Sensor Systems, 2009.

[7] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and
A. Sharma, “Prism: platform for remote sensing using smart-
phones,” in Proc. of the 8th Intern. Conf. on Mobile Systems,
Applications, and Services, 2010.

[8] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo,
and R. A. Peterson, “People-centric urban sensing,” in Proc.
of the 2nd Intern. Workshop on Wireless internet, 2006.

[9] L. Shafer and M. L. Chang, “Movement detection for power-
efficient smartphone wlan localization,” in Proce. of the 13th
ACM Intern. Conf. on Modeling, Analysis, and Simulation of
Wireless and Mobile Systems, 2010.

[10] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and
A. T. Campbell, “The jigsaw continuous sensing engine for
mobile phone applications,” in Proc. of the 8th ACM Conf.
on Embedded Networked Sensor Systems, 2010.

[11] H. Weinschrott, F. Durr, and K. Rothermel, “Efficient cap-
turing of environmental data with mobile rfid readers,” in
Proc. of the 10th Intern. Conf. on Mobile Data Management:
Systems, Services and Middleware, 2009.

[12] H. Lu, N. D. Lane, S. B. Eisenman, and A. T. Camp-
bell, “Bubble-sensing: Binding sensing tasks to the physical
world,” in Proc. of the Intern. Workshop on Mobile Device
and Urban Sensing, 2008.

[13] S. B. Eisenman, H. Lu, and A. T. Campbell, “Halo: Managing
node rendezvous in opportunistic sensor networks,” in Proc.
of the 6th IEEE Intern. Conf. Distributed Computing in Sensor
Systems, 2010.

[14] E.Jung, Y. Wang, L. Prilepov, F. Maker, X. Liu, and V. Akella,
“User-profile-driven collaborative bandwidth sharing on mo-
bile phones,” in Proc. of the 1st Workshop on Mobile Cloud
Computing & Services, 2010.

[15] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and
A. Srinivasan, “Cellular traffic offloading through opportunis-
tic communications: a case study,” in Proc. of the 5th ACM
Workshop on Challenged Networks, 2010.

[16] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani, “Energy consumption in mobile phones: a measurement
study and implications for network applications,” in Proc. of
the 9th Conf. on Internet Measurement, 2009.

[17] J. Ryder, B. Longstaff, S. Reddy, and D. Estrin, “Ambulation:
A tool for monitoring mobility patterns over time using
mobile phones,” in Intern. Conf. on Computational Science
and Engineering, 2009.

[18] T. Farrell, K. Rothermel, and R. Cheng, “Processing con-
tinuous range queries with spatiotemporal tolerance,” IEEE
Transactions on Mobile Computing, vol. 10, no. 3, pp. 320—
334, Mar. 2011.

[19] T. Farrell, R. Lange, and K. Rothermel, “Energy-efficient
Tracking of Mobile Objects with Early Distance-based Re-
porting,” in Proc. of the 4th Intern. Conf. on Mobile and
Ubiquitous Systems: Networking and Services, 2007.

[20] H. Weinschrott, J. Weisser, F. Durr, and K. Rothermel,
“Participatory sensing algorithms for mobile object discovery
in urban areas,” in Proc. of the Intern. Conf. on Pervasive
Computing and Communications, march 2011, pp. 128 —135.

[21] W. Ochieng, “Urban road transport navigation: performance
of the global positioning system after selective availabil-
ity,” Transportation Research Part C-emerging Technologies,
vol. 10, pp. 171-187, 2002.

[22] J. Kim, V. Sridhara, and S. Bohacek, “Realistic mobility
simulation of urban mesh networks,” Ad Hoc Netw., vol. 7,
pp. 411-430, Mar. 2009.

[23] H. Weinschrott, F. Duerr, and K. Rothermel, “Streamshaper:
Coordination algorithms for participatory mobile urban sens-
ing,” in Proc. of the 7th Intern. Conf. on Mobile Adhoc and
Sensor Systems, 2010.

