
PSense: Reducing Energy Consumption in
Public Sensing Systems

Patrick Baier, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems
Universität Stuttgart

70569 Stuttgart, Germany
Email: {baier, duerr, rothermel}@ipvs.uni-stuttgart.de

Abstract—Utilizing peoples’ mobile devices for gathering
sensor data has attracted a lot of attention within the last
few years. As a result, a great variety of systems for sensing
environmental phenomena like temperature or noise have been
proposed. However, most of these systems do not take into
account that mobile devices have only limited energy resources.
For instance, an often assumed prerequisite is that mobile
devices are always aware of their position. Given the fact
that a position fix is a very energy consuming operation,
continuous positioning would quickly drain a device’s battery.
Since the owners of the mobile devices will not tolerate a
significant reduction of the devices’ battery lifetime, such an
approach is not suitable. To address this issue we present
PSense, a flexible system for efficiently gathering sensor data
with mobile devices. By avoiding unnecessary position fixes,
PSense reduces the energy consumption of mobile devices by up
to 70% compared to existing mobile sensing approaches. This
is achieved by introducing an adaptive positioning mechanism
and by utilizing energy efficient short-range communication to
exchange position related information.

Keywords-Wireless sensor networks, Mobile Computing,
Energy-aware systems

I. INTRODUCTION

The ongoing advancements in the performance and the

versatility of mobile devices, especially mobile phones, pave

the way for new applications that go far beyond the primary

scope of mobile communication. One particular field that

already attracted a lot of attention in the research community

(e.g. [1], [2]) is the opportunistically gathering of sensor data

with mobile devices, also called Public Sensing [3], [4]. By

utilizing the build-in sensing facilities of peoples’ mobile

devices, Public Sensing enables a cheap way of acquiring

sensor data without the need for a costly sensor deployment.

Within the last few years a lot of research was done that

deals with the challenges and the opportunities of Public

Sensing [2]. To show its general feasibility a variety of

applications were proposed that monitor particular environ-

mental phenomena such as noise mapping [5] or traffic

delay estimation [6], for instance. Besides these special-

ized systems, more generic views on Public Sensing were

developed proposing architectural schemes for a scalable

deployment of such sensing systems (e.g. [7], [8]). Although

the aforementioned work focuses on the system design on a

very abstract level, we argue that it is crucial to also take into

account the algorithmic challenges that arise from Public

Sensing when designing such a system. More precisely, as

stressed in [4], most of the prevailing Public Sensing systems

assume that the contributing mobile devices continuously

fix their position and sample their sensors. Since it is

commonly agreed that such a continuous sensing quickly

drains a mobile device’s battery (e.g. [2], [9]), most of these

systems would not be accepted by the device’s owner. As a

result, the number of devices that gather sensor data would

decrease. Because this would also decrease the quality of the

information that the system delivers, Public Sensing systems

must be designed in such a way that the amount of energy

intensive operations on the mobile devices are minimized.

One of the major opportunities to reduce the devices’

energy consumption is to avoid the continuous positioning of

the devices [9], which is a frequently assumed prerequisite

in most of the prevailing Public Sensing systems. Often

GPS is used for positioning since it is widely deployed and

sufficiently accurate. However, experimental measurements

[10] have shown that continuously sampling the GPS sensor

significantly decreases a mobile device’s battery life. Cir-

cumventing this problem by simply reducing the positioning

interval between two consecutive GPS fixes would have an

undesired impact on the sensing result, since sensor readings

are in general only useful when they are provided with the

location where they were taken. Moreover, mobile devices

need to be aware of their position to decide whether they

should take a sensor reading at their current location.

In this paper, we present the PSense system, which

reduces the energy for positioning in Public Sensing while

not facing the aforementioned problems. PSense reduces the

overall number of position fixes a mobile devices has to

perform in a Public Sensing scenario, while not affecting the

quality of the sensing process. This is achieved by adapting

the time until a mobile device performs its next position fix

to the distance of the nearest location at which the device

could read sensor values. For instance, considering that a

noise level measurement is requested at some location l in

the city (referred to as sensing location). Naively, a mobile

device m that has a microphone to record the noise level

Published in the Proceedings of the 26th IEEE International Conference on Advanced Information

Networking and Applications (AINA-2012),pp. 136-143, Fukuoka, Japan, March 2012.

© IEEE 2012

http://dx.doi.org/10.1109/AINA.2012.33

at l but is quite far away from it would continuously fix

its position to determine whether it is close enough for

recording. In a more deliberated approach, m can defer

its next position fix until it is close enough for recording

at l. PSense makes use of this fact by determining for

each mobile device an optimal time span by which the

device’s next position fix can be deferred while ensuring

that no sensing location is missed. We show by simulation

that this reduces the energy consumption by up to 70%

compared to the prevailing approaches that use continuous

positioning. Moreover, PSense works on basis of a generic

sensor abstraction that is utilized in many Public Sensing

systems (e.g. [4], [11], [12]). This makes it deployable for

a huge variety of mobile sensing scenarios.

The rest of the paper is organized as follows. In Section

II we first give an overview of related work dealing with

optimization approaches in Public Sensing in general and

the problem of efficient positioning in particular. In Section

III we introduce our system model, before we present in

Section IV the basic sensor abstraction of our system. In

Sections V to VII we first present a naive approach to

acquire the sensor data and then consecutively introduce

the optimization algorithms we have developed for PSense.

In Section VIII we evaluate our systems and present the

simulation results, before Section IX concludes this work.

II. RELATED WORK

To introduce the related work, we have a look at two

different research areas. First, we look at optimization

techniques that aim on reducing the energy consumption

of mobile devices in Public Sensing scenarios. Second, we

particularly focus on work dealing with efficient positioning,

which is the basic optimization concept of PSense.

A. Optimized Public Sensing

In addition to the already mentioned Public Sensing

systems that do not consider energy consumption at all,

there has also been some work that considers the challenge

of gathering mobile sensor data in an efficient way. For

instance, Eisenman et al. [13] show how the communication

with mobile devices can be more efficient when adapting

the size of the communication range of the communicat-

ing partners to application specific requirements. A quite

different approach (e.g. [14], [15]) aims at the avoidance

of cellular network communication in favor of short-range

radio communication. Since short-range radio induces less

energy overhead on the mobile phones [16], local forwarding

and aggregation of data can be used to reduce mobile

energy consumption and cellular network load. One further

optimization goal that is focused on the sensing, is the

prevention of redundant sensor readings. Given a predefined

point-of-interest and a set of sensor equipped mobile devices

in its proximity, Philipp et al. [4] show that the mobile

devices can be coordinated in such a way that only a small

subset of devices is needed to read the sensor data at that

point in an effective and efficient way.

Although all of these approaches optimize energy con-

sumption in Public Sensing, none of them stresses the fact

of efficient positioning. Since efficient positioning in general

is not a completely new research challenge, we have in the

following a look on work that particular focuses this issue.

B. Efficient Positioning

To begin with, we look at work that deals with application

independent techniques for efficient positioning. Taking the

context of the user into account, Lu et al. [10] and Ryder

et al. [17] show a way to increase the battery lifetime of

a mobile device by adapting the GPS positioning to the

movement mode of the user. For instance, no position fix is

needed while the user stays at the same position. Although

these approaches optimize positioning, they do it in a very

generic way. Therefore, they cannot fully utilize the energy

reduction that is possible in a dedicated sensing scenario.

In contrast, application aware approaches can utilize a

more efficient positioning. One commonly used way to

reduce the number of GPS fixes on a mobile device is to

delay its next position fix until the earliest point in time when

the device could reach a critical point for the application.

For instance, Farrell et al. [18], [19] show in their work

on continuous range queries that the next GPS fix can be

deferred until the earliest point in time when the mobile

device could reach the boundary of the range query. In our

previous work [3], [11], [20] we employ this concept to

coordinate the positioning of mobile devices in specialized

sensing scenarios, like object discovery or map validation.

More precisely, we use information about the Euclidean

distance from a mobile device to the next point that is critical

for the application. Upon that we calculate the time by which

the next position fix of the device can be deferred.

For PSense we extend our previous work to the area

of Public Sensing by including more generic assumptions

that are not considered in our previous approaches. In more

detail, PSense assumes an underlying road graph for the

mobile devices’ movement and uses graph-based distances

instead of Euclidean to determine the time until the next po-

sition fix. Additionally, PSense handles frequently changing

queries for sensor data. As a result, the set of critical points

for positioning (in that case the set of sensing locations) is

dynamically changing and a mechanism for the adaption of

positioning is needed, which is not considered so far. Finally,

PSense utilizes short-range communication to exchange in-

formation about a mobile phone’s current position, which is

not utilized by any of the existing approaches.

III. SYSTEM MODEL

Our system model consists of one server and an arbi-

trary number of mobile devices (see Figure 1). The server

provides a query interface for collecting and answering user

2

queries for sensor data, which is described in the next section

in more detail. Note that for matters of abstraction we

assume only one server. In a real deployment the load of

this server may be distributed among a set of other servers,

where each server would be responsible for a particular

area. Each mobile device m is equipped with a GPS sensor

for determining its position (xm(t), ym(t)) at time t. This

position is inaccurate up to epos (usually up to 20 meters

[21]). Furthermore, each device m comes with a set of

specific sensors Sm such as a thermometer. Each sensor

s ∈ Sm has a limited reading range range(s) and a type

type(s), which specifies the type of data that can be sensed.

Mobile devices are carried by people who move according

to an underlying road graph, which is known to the server.

The edges of this road graph are constituted of polygonal

lines representing roads. These edges are interconnected

with vertices that represent intersections and terminal points

of roads. We assume that neither the speed nor the movement

direction of the mobile devices can be influenced. Further-

more, we require that each mobile device is aware of its

maximum speed, which is referred to as vmax.

The server can communicate with the mobile devices via

a cellular mobile network like GPRS or UMTS. In addition,

mobile devices can also use short-range radio (e.g. WLAN

802.11 or Bluetooth) to establish an inter-device ad-hoc

communication that has a limited range range(ah).
Since the server is part of the infrastructure, we assume

that it comes with unlimited battery supply. On the con-

trary, a mobile devices has only limited battery supply and

each sensing and communication operation drains a specific

amount of energy from its battery. Moreover, we assume that

cellular communication is more energy draining than short

range communication [11]. For the concrete energy values

that we assume for these operations we refer to Section VIII.

IV. BASIC SENSOR ABSTRACTION

In this section, we introduce the basic sensor abstraction

PSense is based upon. To achieve high flexibility and easy

utilization of PSense, we adapt an abstraction model (see

Figure 1) that is commonly used in a large variety of Public

Sensing systems (e.g. [4], [11], [12]):

The server accepts sensing queries Q that contain a set

of desired sensing locations. Each sensing location l ∈ Q
is specified by spatial coordinates (xl, yl) and a particular

type of sensor type(l) that indicates the kind of data which

the user is interested in (e.g. the noise level). The server

stores a set L, which contains all sensing locations currently

requested by the users. For providing the user with the

requested data, the server assigns sensing tasks to mobile

devices that move within the vicinity of the queried sensing

locations. This area is referred to as queried area and is

defined as an extended bounding-box of all queried sensing

locations. We call a sensing location l compatible with a

mobile device m if it satisfies the following condition:

Sensing
Query

Sensor
Data

Sensing Location

Mobile Device

Sensing Range

Queried Area

User

Server

Query
interface

Figure 1. System Model and Sensor Abstraction

• ∃s ∈ Sm : type(s) = type(l)

Furthermore, a device can read a sensing location l at time

t if the following conditions are satisfied:

1) l is compatible with m by sensor s
2) dist((xl, yl), (xm(t), ym(t))) ≤ range(s)

Where dist(x, y) depicts the Euclidean distance between

point x and y. If a sensing location l was successfully read

by a mobile device, the data is uploaded to the server. The

server delivers the data to the user and removes l from L.

V. NAIVE SENSING APPROACH

In this section, we present a basic algorithm that realizes

a naive way for providing the requested sensor data to

the user. Since this approach leads to a very high energy

consumption on the mobile devices, we gradually improve

it in the upcoming sections to address this problem.

Upon receiving a sensing query Q, the server adds each

l ∈ Q to the set of currently requested sensing locations L.

Initially, the server distributes L to all mobile devices that

are located in the queried area. For sending this message,

the server needs to know the set of devices that are currently

located in this area. We assure this by assuming that a

node registration mechanism runs on each mobile device,

which notifies the server when a mobile device joins or

leaves the queried area. Since this mechanism is out of the

scope of PSense, we refer to dedicated work on energy

efficient tracking of mobile objects (e.g. [19]). After the

initial distribution of L, the server notifies the devices in

the queried area every time L changes by sending an update

containing only the newly inserted or removed sensing

locations. Mobile devices that enter the queried area for the

first time register at the server and receive the entire set L.

When a mobile device receives L from the server, it starts

periodically updating its position every tpos seconds via

GPS. After each position fix the device checks whether the

conditions for reading one (or more) sensing locations in

L are fulfilled. If that is the case for l, the device reads

l and uploads the data to the server. Upon receiving this

3

data, the server delivers it to the user and removes l from

L. Subsequently, the server notifies all other mobile devices

in the queried area that l no longer needs to be read.

VI. ADAPTIVE POSITIONING

The naive approach presented in the previous section

ensures that no mobile device passes a sensing location

without noticing it (at least if tpos is chosen sufficiently

small) and can therefore be used as a reference for achieving

optimal sensing effectiveness. Nevertheless, this approach

causes a high energy consumption since the mobile devices

continuously fix their position. To tackle this issue, PSense

uses a mechanism that suppresses position fixes if the next

sensing location is some distance away. The basic idea is

to find an adaptive positioning interval of length ta that

determines the time until the next GPS fix is performed

instead of fixedly scheduling the next position fix at time

tpos. Most beneficially, ta is set to the maximum time

span a device can suppress positioning without missing the

next compatible sensing location. In the following, we first

introduce a concept to calculate the adaptive positioning

interval ta. In the second step, we introduce a mechanism

that ensures the effectiveness of sensing in case the set of

queried sensing locations L changes, while some devices

already scheduled their next position fix.

A. Adaptive Positioning Interval

For choosing an optimal positioning interval ta, device

m needs information about the distance to its closest com-

patible sensing location l. Knowing this distance (referred

to as dmin), it can calculate ta according to Equation (1)

using information about its maximum speed vmax. The

resulting value of ta indicates the earliest point in time,

when m could reach l. Since we use the maximum speed

for this calculation, we ensure that no node will miss a

sensor reading. A more optimistic approach would be to

use the node’s average speed vavg instead. This would

further decrease the number of GPS fixes but also reduce

the effectiveness of the sensing system, since it would be

possible that a sensor reading is missed in case a device

moves faster then vavg . Because the effectiveness of the

system should be guaranteed with PSense, we use vmax for

the calculation of ta and defer analyses of a more optimistic

approaches to our future work.

ta =
dmin

vmax
(1)

Since a device needs to know dmin for the calculation of

ta, it sends after each position fix its current position in a

positioning query to the server, which is answered by the

server with a sensing update. This sensing update includes

dmin as well as the coordinates (xl, yl) and the type(l) of the

closest compatible sensing location l. With the help of these

values the device first checks if it could read l immediately.

Graph Vertex
Sensing Location

Mobile Device
Sensing Range

(a) (b)

Figure 2. Restructuring the Road Graph

If that is the case it reads l and uploads the data to the

server, which answers with a new sensing update (including

another sensing location). If the device cannot sense l, it

uses the provided dmin to calculate ta and schedules its next

position fix to time ta. Although server communication is an

energy draining operation, the objective of this approach is

that the decrease in the number of position fixes outweighs

the energy spent for sending positioning queries.

In more detail, the positioning query that mobile device m
sends at time t to the server contains m’s current position

(xm(t), ym(t)) and m’s set of sensors Sm. To accurately

determine dmin the server utilizes the fact that the devices

move according to the roads of the road graph. Therefore,

instead of calculating the Euclidean distance between the

device and the closest compatible sensing location it uses

a shortest path algorithm (e.g. Dijkstra or Bellmann-Ford).

Before this algorithm can be applied, the road graph needs to

be restructured by mapping the position of the mobile device

and the sensing locations to the road graph in the following

way: After the server received a positioning query from

mobile device m it maps m’s position to the closest point

on the road graph. We refer to this point as pos(m). The

server now checks for each l ∈ L whether l is compatible

with m. If l is compatible with m by sensor s, the server

associates l with the sensing range range(s) to define the

area in which m can read l. This area is now projected onto

the road graph by intersecting the graph and the circle with

radius range(s) and center (xl, yl) (see Figure 2-a). The

obtained intersections mark the points on the road graph at

which m could start reading l. If sensing location l is not

compatible with m, l is skipped. Subsequently, each road

edge that contains any of the intersections is split into two

road edges and a connecting vertex is placed at the respective

intersection point (see Figure 2-b).

To obtain dmin, the server now executes a shortest path

algorithm on the modified road graph starting from pos(m).
Executing this algorithm, the server calculates the distance

on the shortest path from pos(m) to all vertices in the road

graph. After the algorithm is finished, the server determines

dmin that indicates the distance from pos(m) to the closest

vertex v that was generated out of a sensing location l.

4

Finally, the server subtracts epos from dmin and returns this

value along with the coordinates and the type of sensing

location l to the device. This is necessary to take the

inaccuracy of the GPS fix into account that depicts the

mobile devices position. This inaccuracy may cause that the

device is actually located closer to v than distance dmin.

The reason why dmin is calculated on the server rather

than on the mobile devices is twofold. First, executing a

shortest path algorithm is a non-trivial operation and needs

to be done quite often (after each position fix). Since the road

graph might arbitrarily large and complex, the computational

overhead on the mobile device could quickly get too energy

consuming. Furthermore, this avoids the need to make any

assumptions about the computational power of the mobile

devices, which can be quite heterogeneous. The second

reason for doing the calculation on the server is that the

necessity to keep L up-to-date on all mobile devices is

avoided. This is especially beneficial in scenarios in which

the set of queried sensing locations changes frequently.

B. Query Adaption

Using the concept of adaptive positioning, the server

does not proactively disseminate the set of current sensing

locations to the mobile devices, as in the naive approach.

Therefore, the individual positioning interval of some mobile

devices may no longer be appropriate when a new sensing

query arrives. For instance, assuming a user issues a query

for data at time t from a sensing location l that is next

to a mobile device m. If l is compatible with m, but m
has already scheduled its next position fix to some time

t′ > t, it is possible that m misses to read l. To avoid

this, the server has to recalculate the distance to the closest

compatible sensing location by taking into account the newly

queried sensing locations. If the result is smaller than m’s

formerly calculated dmin, the server has to notify the device.

To know which mobile devices needs an update when a new

query arrives, the server implements the following concept:

When calculating the distance to the closest compatible

sensing location dmin for a mobile device m, the server

remembers the device’s last known position, its sensors

and the calculated dmin. Upon receiving a new query Q
the server checks for every device m if there are sensing

locations l ∈ Q that are compatible with m. If that is the

case the server maps these sensing locations to the road

graph and executes the shortest path algorithm from m’s

last known position again. If the resulting d′min is smaller

than the previously calculated distance dmin (see Figure

3), the server queries device m for its position. Knowing

this position the server returns a fresh sensing update by

taking into account the newly inserted sensing location.

This mechanism guarantees that no mobile device misses

a sensing location and only those devices receive an update

that are affected by newly queried sensing locations.

dmin
d´min

m ll´

Figure 3. Arrival of new Sensing Location

Moreover, we also have to consider the case that a

sensing location is successfully read by some device and

gets removed from L after the results were uploaded to

the server. In the naive approach the server has to inform

all devices about the removed sensing location to avoid

redundant sensing operations. Since the server now only

sends the coordinates of the closest compatible sensing

location to each device, it only has to send a sensing update

to those devices that have the successfully read sensing

location as their closest compatible sensing location.

VII. AD-HOC INFORMATION EXCHANGE

Although adaptive positioning decreases the amount of

GPS fixes on the mobile devices, it increases the number

of messages that are exchanged with the server, since every

mobile device has to query the server after each position

fix. Therefore, PSense utilizes a technique that further re-

duces the energy consumption by decreasing the number of

messages that the mobile devices exchange with the server.

This can be achieved by making use of the property that

nearby mobile devices have almost the same distance to the

next sensing location. If a mobile device receives a sensing

update from the server it can locally forward this information

via its ad-hoc interface. Nearby mobile devices can now use

this information to adapt their respective positioning interval

without communicating with the server. To implement this

concept, the adaptive positioning algorithm is augmented by

two extensions presented in the following. The first shows

how the message exchange between the mobile devices

is realized. The second step ensures that the introduced

query adaption also works with the ad-hoc extension. This

is important since the server may no longer be aware of

a device’s closest sensing location in case a device learns

about a nearby sensing locations via an ad-hoc message.

A. Message Exchange

To introduce the message exchange, we assume that a

mobile device ms just fixed its position and received a

sensing update from the server that includes sensing location

l. Before ms forwards the information about l via an ad-

hoc broadcast to other nearby devices, it determines the

Euclidean distance from its current position to l (referred to

as d(l)) and then subtracts the maximum range of its ad-hoc

interface range(ah) from d(l). The resulting value indicates

the minimum distance to l for each receiver of the broadcast,

since each of them maybe located up to range(ah) closer to

5

l (see Figure 4-a). Finally, ms sends the ad-hoc broadcast

and also includes the type of the sensing location type(l)
and the set of its sensors Ss.

Each device mr that receives this message from the

sending device ms does the following:

1) Check if l is compatible with mr. If not, stop.

2) Check if Sr ⊆ Ss. If not, stop.

3) Compute t′a according to the following equation:

t′a =
d(l)− range(s)

vmax
=

dist

vmax

In which range(s) depicts the range of sensor s ∈ Sr

that can read l (i.e. type(s) = type(l)).
4) If t′a is bigger than the remaining time until the next

position fix is performed, then reschedule the next

position fix to t′a. If not, stop.

5) Send an ACK-message back to mr.

Besides the prerequisite that the sensing location l must be

compatible with mr (step 1), the device mr can only use

the information it received if l is also its closest compatible

sensing location. To guarantee this, the broadcast sender ms

needs to have at least all the sensors that mr has (step 2).

If that is not the case, a sensor s ∈ Sr and s /∈ Ss can be

located closer to mr but is not included in the sensing update

from the server (since this is based on the sensors of ms).

If these requirements are fulfilled, mr can determine time

t′a that indicates the earliest time in which mr can reach the

starting point for reading location l. To get the distance to

this starting point, range(s) needs to be subtracted from the

received d(l) (see Figure 4-a). Device mr can now extend

the time until the next GPS fix to time t′a, if the remaining

time until the next position fix is smaller than t′a (step 4). If

that is the case device mr answers with an ACK-message

to the broadcast sender (step 5), which is needed for the

ad-hoc query adaption mechanism (see next section).

Although device ms receives with the sensing update from

the server also the graph-based distance dmin to the next

sensing location l, it broadcasts the Euclidean distance to the

other devices. Figure 4-b shows that broadcasting the graph-

based distance may lead to a problem if the receiving device

is on another road segment from which l can be reached

on a shorter path. If mr would calculate t′a based on the

graph-based distance dmin it received from ms, it would

be possible that t′a is chosen too large and the reading of

l is missed. Since this has to be avoided to preserve the

effectiveness of the sensing system, the calculation of t′a is

based on the Euclidean distance to l.

B. Ad-hoc Query Adaption

To ensure a correct query adaption in case of the arrival

of a new sensing location, the previously presented query

adaption has to be extended when ad-hoc information ex-

change is used. More precisely, if a new sensing location

is queried, the server needs to know the closest compatible

d(l)

(a) (b)

ad-hoc rangerange(s)

ms mr

range(ah)

dist

ms mr
l

l

Starting point
for sensing

Figure 4. Ad-hoc Information Exchange

sensing location of each device to execute the query adaption

(see section VI-B). The problem that arises with the ad-

hoc extension is that the server does not take notice of the

ad-hoc messages that the devices exchange and which may

update a device’s closest compatible sensing location. As

a result, it cannot determine which devices need an update

if a query Q arrives. To avoid this, the query adaption is

extended as follows. If a mobile device ms sends an ad-hoc

message it remembers the set of other devices that used the

sent information for extending their respective positioning

interval (i.e. all devices that returned an ACK-message). We

refer to this set as Mo. If the server now receives a new

sensing location which causes an update for ms (according

to query adaption in section VI-B), device ms returns the set

Mo to the server. The server now knows the set of devices

that scheduled their next position fix according to the same

sensing location as ms. Since these devices also need an

update, the server subsequently queries each device m ∈ Mo

for its position and returns a fresh sensing update. Based on

this update each of theses devices adapts now its positioning

interval (as described in Section VI).

VIII. EVALUATION

To evaluate PSense, we look at its efficiency and ef-

fectiveness by comparing the developed concepts to the

naive approach. For this purpose, we conducted extensive

simulations using the network simulator ns-2 combined with

traces of pedestrian movement.

A. Simulation Setup

For the simulation we took a part of the street graph of

Chicago (size 2 km x 2 km) as road graph and used the

mobility trace file generator UDELModels [22] to generate

realistic trace files of pedestrian movement. We simulated

one hour simulation time using varying numbers of mobile

devices and a standard positioning interval tpos = 5 s (for

the naive approach). To simulate the sensing queries we

requested data from ten randomly placed sensing locations

at the same time. When a sensing location was successfully

read we removed it and inserted a new sensing location at

some other randomly chosen place again.

To measure the amount of energy that is consumed for

communication we used the commonly used energy model

6

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400 450 500

E
ne

rg
y

C
on

su
m

pt
io

n
[M

J]

Number of Mobile Devices

naive
adapt
adhoc

Figure 5. Total Energy consumption

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 150 200 250 300 350 400 450 500

G
P

S
 F

ix
es

 (1
04)

Number of Mobile Devices

naive
adapt
adhoc

Figure 6. Positioning Operations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 150 200 250 300 350 400 450 500

G
P

R
S

 M
es

sa
ge

s
(1

03)

Number of Mobile Devices

naive
adapt
adhoc

Figure 7. GPRS Communication

[3], [23] shown in Table I. For the communication between

the mobile devices and the server we assumed GPRS. For

the ad-hoc information exchange we assumed Wifi commu-

nication using the 802.11b standard and a maximum com-

munication range range(ah) of 100 m. As the algorithms

executed on the mobile phones are quite simple and can be

executed in constant time, we do not explicitly consider the

energy consumption for their execution.

Operation Energy [mJ]

GPS Position Fix 75

GPRS Send (1000 Bit) 80

GPRS Receive (1000 Bit) 40

802.11b Send (1000 Bit) 2

802.11b Receive (1000 Bit) 1

Table I
ENERGY MODEL

In the following we compare the results of the three

different algorithms we presented:

naive Refers to the results of the naive approach without

including any optimizations (see Section V).

adapt Includes the concept of the adaptive positioning

interval (see Section VI).

adhoc Includes adaptive positioning as well as the ad-hoc

information exchange (see Section VII).

B. Efficiency of PSense

First, we have a look at the amount of energy that is

consumed by the mobile devices to evaluate the efficiency

of PSense. Figure 5 shows on the y-axis the total amount of

energy that is consumed by all mobile devices. The values

on the x-axis depict the number of mobile devices that were

used for the respective simulation scenario. We can see that

the amount of energy consumed in the ad-hoc information

exchange approach is on average only 30% of the naive

approach (i.e. a reduction of 70%) and that ad-hoc consumes

less energy than using only adaptive positioning.

Next we investigate how these energy values are con-

stituted. Therefore, we look at the number of GPS fixes

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 150 200 250 300 350 400 450 500

S
en

so
r R

ea
di

ng
s

Number of Mobile Devices

naive
adapt
adhoc

Figure 8. Sensing Effectiveness

(Figure 6) and the number of GPRS messages (Figure 7)

that are used over all mobile devices. Here we can see

that the naive approach requires much more GPS fixes

than the other approaches. Looking at the number of GPRS

messages, we see that the ad-hoc information exchange leads

to a significant decrease of GPRS messages. Since cellular

communication and GPS fixes are very energy consuming,

we can explain from Figure 6 and 7 why the ad-hoc approach

performs best in terms of overall energy consumption.

C. Effectiveness of PSense

To determine the effectiveness of PSense, we look at the

number of sensor readings that were performed in each of

the three approaches. Figure 8 shows the number of sensor

values that are uploaded from the mobile devices to the

server. We can see from the chart that this number is the

same for all approaches. As a result, we can conclude that

no sensor readings are missed and all approaches deliver the

same amount of sensor readings to the user.

IX. CONCLUSION

In this paper we introduced the PSense systems, a generic

Public Sensing framework for efficiently gathering sensor

data with mobile devices. In comparison to existing ap-

proaches using continuous positioning, PSense introduces an

adaptive positioning mechanism. As shown in the evaluation,

this approach helps to significantly reduce the number of re-

quired GPS fixes but does not impact the amount of acquired

7

sensor data. Nevertheless, the adaptive sensing approach also

increases the amount of cellular messages. Therefore, we

introduced in a second step an ad-hoc exchange mechanism

that replaces energy intensive cellular messages to further

decrease the amount of energy consumed. Finally, PSense is

based on a widely used sensor abstraction model that makes

it applicable in a wide spectrum of Public Sensing scenarios.

In future work we will investigate further positioning

strategies that are based on a more optimistic assumption of

the nodes prospective speed. This will further reduce energy

consumption but may also have a negative impact on the

overall effectiveness of the sensing system.

REFERENCES

[1] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin,
L. Guibas, A. Kansal, S. Madden, and J. Reich, “Mobiscopes
for human spaces,” IEEE Pervasive Computing, vol. 6, pp.
20–29, Apr. 2007.

[2] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,
and A. Campbell, “A survey of mobile phone sensing,”
Communications Magazine, IEEE, vol. 48, no. 9, pp. 140–
150, Sep. 2010.

[3] P. Baier, H. Weinschrott, F. Dürr, and K. Rothermel, “Map-
Correct: automatic correction and validation of road maps
using public sensing,” in Proc. of the 36th Conf. on Local
Computer Networks, 2011.

[4] D. Philipp, F. Dürr, and K. Rothermel, “A sensor network
abstraction for flexible public sensing systems,” in Proc. of
the 8th Intern. Conf. on Mobile Ad-hoc and Sensor Systems,
2011.

[5] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and
W. Hu, “Ear-phone: an end-to-end participatory urban noise
mapping system,” in Proc. of the 9th ACM/IEEE Intern. Conf.
on Information Processing in Sensor Networks, 2010.

[6] A. Thiagarajan, L. S. Ravindranath, K. LaCurts, S. Toledo,
J. Eriksson, S. Madden, and H. Balakrishnan, “VTrack: Ac-
curate, Energy-Aware Traffic Delay Estimation Using Mobile
Phones,” in Proce. of the 7th ACM Conf. on Embedded
Networked Sensor Systems, 2009.

[7] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and
A. Sharma, “Prism: platform for remote sensing using smart-
phones,” in Proc. of the 8th Intern. Conf. on Mobile Systems,
Applications, and Services, 2010.

[8] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo,
and R. A. Peterson, “People-centric urban sensing,” in Proc.
of the 2nd Intern. Workshop on Wireless internet, 2006.

[9] I. Shafer and M. L. Chang, “Movement detection for power-
efficient smartphone wlan localization,” in Proce. of the 13th
ACM Intern. Conf. on Modeling, Analysis, and Simulation of
Wireless and Mobile Systems, 2010.

[10] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and
A. T. Campbell, “The jigsaw continuous sensing engine for
mobile phone applications,” in Proc. of the 8th ACM Conf.
on Embedded Networked Sensor Systems, 2010.

[11] H. Weinschrott, F. Durr, and K. Rothermel, “Efficient cap-
turing of environmental data with mobile rfid readers,” in
Proc. of the 10th Intern. Conf. on Mobile Data Management:
Systems, Services and Middleware, 2009.

[12] H. Lu, N. D. Lane, S. B. Eisenman, and A. T. Camp-
bell, “Bubble-sensing: Binding sensing tasks to the physical
world,” in Proc. of the Intern. Workshop on Mobile Device
and Urban Sensing, 2008.

[13] S. B. Eisenman, H. Lu, and A. T. Campbell, “Halo: Managing
node rendezvous in opportunistic sensor networks,” in Proc.
of the 6th IEEE Intern. Conf. Distributed Computing in Sensor
Systems, 2010.

[14] E. Jung, Y. Wang, I. Prilepov, F. Maker, X. Liu, and V. Akella,
“User-profile-driven collaborative bandwidth sharing on mo-
bile phones,” in Proc. of the 1st Workshop on Mobile Cloud
Computing & Services, 2010.

[15] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and
A. Srinivasan, “Cellular traffic offloading through opportunis-
tic communications: a case study,” in Proc. of the 5th ACM
Workshop on Challenged Networks, 2010.

[16] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani, “Energy consumption in mobile phones: a measurement
study and implications for network applications,” in Proc. of
the 9th Conf. on Internet Measurement, 2009.

[17] J. Ryder, B. Longstaff, S. Reddy, and D. Estrin, “Ambulation:
A tool for monitoring mobility patterns over time using
mobile phones,” in Intern. Conf. on Computational Science
and Engineering, 2009.

[18] T. Farrell, K. Rothermel, and R. Cheng, “Processing con-
tinuous range queries with spatiotemporal tolerance,” IEEE
Transactions on Mobile Computing, vol. 10, no. 3, pp. 320–
334, Mar. 2011.

[19] T. Farrell, R. Lange, and K. Rothermel, “Energy-efficient
Tracking of Mobile Objects with Early Distance-based Re-
porting,” in Proc. of the 4th Intern. Conf. on Mobile and
Ubiquitous Systems: Networking and Services, 2007.

[20] H. Weinschrott, J. Weisser, F. Durr, and K. Rothermel,
“Participatory sensing algorithms for mobile object discovery
in urban areas,” in Proc. of the Intern. Conf. on Pervasive
Computing and Communications, march 2011, pp. 128 –135.

[21] W. Ochieng, “Urban road transport navigation: performance
of the global positioning system after selective availabil-
ity,” Transportation Research Part C-emerging Technologies,
vol. 10, pp. 171–187, 2002.

[22] J. Kim, V. Sridhara, and S. Bohacek, “Realistic mobility
simulation of urban mesh networks,” Ad Hoc Netw., vol. 7,
pp. 411–430, Mar. 2009.

[23] H. Weinschrott, F. Duerr, and K. Rothermel, “Streamshaper:
Coordination algorithms for participatory mobile urban sens-
ing,” in Proc. of the 7th Intern. Conf. on Mobile Adhoc and
Sensor Systems, 2010.

8

