Map-aware Position Sharing
for Location Privacy in Non-trusted Systems

Pavel Skvortsov, Frank Diirr, Kurt Rothermel
{pavel.skvorzov,frank.duerr,kurt.rothermel } @ipvs.uni-stuttgart.de

Institute of Parallel and Distributed Systems, Universitit Stuttgart

Abstract. Many current location-based applications (LBA) such as friend finder
services use information about the positions of mobile users. So-called location
services (LSs) have been proposed to manage these mobile user positions effi-
ciently. However, managing user positions raises privacy issues, in particular, if
the providers of LSs are only partially trusted. Therefore, we presented the con-
cept of private position sharing for partially trusted systems in a previous paper
[1]. The basic idea of position sharing is to split the precise user position into a
set of position shares of well-defined limited precision and distribute these shares
among LSs of different providers.

The main contributions of this paper are two extended position sharing approaches
that improve our previous approach in two ways: Firstly, we reduce the pre-
dictability of share generation that allows an attacker to gain further information
from a sub-set of shares to further increase the position precision. Secondly, we
present a position sharing algorithm for constrained movement scenarios whereas
the existing approach was tailored to open space environments. However, open
space approaches are vulnerable to map-based attacks. Therefore, we present a
share generation algorithm that takes map knowledge into account.

Keywords: Location-based service; privacy; obfuscation; sharing; map-awareness.

1 Introduction

Location services (LS) such as Yahoo! Fire Eagle, Google Latitude, InstaMapper, or
Trace4 Youstoring the positions of mobile users have become an important prerequisite
for many advanced location-based applications (LBA). In particular, LS are beneficial
if various LBAs have to be provided with the position of the mobile user. For instance,
the position of a user could be accessed by several social networks like Facebook and
Gowalla, a friend alert service, a location-based advertising service, a traffic conges-
tion service, etc. Obviously, in such scenarios the LS, which usually runs on powerful
servers, relieves the mobile device from sending individual positions to each LBA.
However, since user positions are privacy-sensitive information, problems might
arise if the LS provider is not fully trusted by the mobile user. This might be the case
for various reasons. For instance, the provider might be malicious and misuse data,
e.g., selling it to another party. However, even if the provider itself is not malicious,
he might simply be unable to protect the data from attacks. As various examples in

Published in J. Kay et al. (Eds.): Pervasive 2012, LNCS 7319, pp. 388-405, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The original publication is available at www.springerlink.com:
http://www.springerlink.com/content/w682352838637308

skvorzpl
Text Box
Published in J. Kay et al. (Eds.): Pervasive 2012, LNCS 7319, pp. 388-405, 2012.
© Springer-Verlag Berlin Heidelberg 2012
The original publication is available at www.springerlink.com:
http://www.springerlink.com/content/w682352838637308

the past show, even infrastructures that were deemed to be trustworthy were subject
to successful attacks, information leaks, loss of data, etc. [2], [3], [4]. With the advent
of cloud computing, we are likely to see even more cloud-based location services in
the future operated by non-trusted providers. Using these services is certainly attractive
from a monetary and technical point of view, however, it requires concepts to reduce
privacy risks.

Besides LSs, LBAs might also be only partially trusted by the mobile user. However,
LBAs have to be provided with position information of a certain quality to provide the
requested functionality. This leads to a situation, where the user might want to trade-off
his privacy in terms of the precision of positions provided to LBAs and the quality of
service provided by the LBA. For instance, it might be necessary to provide a friend
alert service with positions of a precision of 200 m, whereas 1 km precision might be
sufficient for Facebook to show location-based status messages. In other words, the
user might want to define different privacy levels corresponding to different degrees of
precision individually for each LBA.

In [1], we proposed the concept of position sharing to solve the above privacy is-
sues. The basic idea is that the (trusted) mobile device of the tracked user splits up the
precise position information into so-called position shares of limited precision. These
shares are distributed among a set of LSs of different providers, i.e., each LS only man-
ages position information of strictly limited, well-defined precision. The mobile users
provides LBAs with access rights to access a certain number of position shares from
different LSs. Using a so-called share fusion algorithm, these shares can be combined
to yield a position of a certain precision which is higher than the precision of the single
shares stored at the LSs. Fusing all shares restores the precise position. Therefore, dif-
ferent privacy levels can be defined for individual applications by providing the LBA
with access rights to a certain number of shares. Besides the possibility to define dif-
ferent privacy levels, this approach has another important advantage: it has a graceful
degradation of privacy property since a compromised LS will only reveal information
of strictly limited precision. Therefore, it is possible to utilize not fully trusted LSs to
store position information and still limit the risk since no single point of failure exists
Ww.I.t. privacy.

In this paper, we are going to improve our previous system further. As a first main
contribution, we propose a new share generation algorithm that increases location pri-
vacy by reducing the predictability of share generation. Therefore, it becomes harder
for an attacker to derive more precise positions than intended from a certain number of
shares. Secondly, our first approach only targeted free space environments where users
can move without restriction. However, in highly structured areas such as cities this
makes it easy for an attacker to restrict and therefore predict positions of high precision.
Therefore, as the second main contribution of this paper, we propose a novel map-aware
position sharing approach that considers movement restrictions given by the physical
environment. The basic idea is to adapt the size of obfuscation areas defined by shares
based on map information. Therefore, a sufficiently large area of possible positions is
retained also under movement restrictions.

The rest of this paper is structured as follows. First, in Section 2 we present our sys-
tem model, problem statement and formal definition of obfuscation security. In Section

3 we describe the basic position sharing approach and two extended approaches includ-
ing the new map-aware position sharing. Then in Section 4 we analyze the security of
obfuscation provided by the our approach. After that we overview the related work in
Section 5. Finally, we conclude the results of our work and give some perspective for
the future research.

2 System Model and Problem Statement

In this section, we introduce the different components of our location management sys-
tem together with the formal notation used in this paper.

Our system consists of three types of components: mobile objects, location servers,
and location-based applications (see Figure 1).

{ share, |+ rights to access location servers:

location servery Share
Share fusmn LBA
QEHE(aIIO% 1 .
(_share,] access
4_
location servsr><:\. Va L‘? LS, LS;
LBA;
_share
MO .\ / i / A = +aocesas !Sr.
locatnon serverg LEA st
3
) .
oo, 8 _.f Y
c

\ A L «— +access LS;

Fig. 1. System model

Mobile objects (MO) are the objects whose positions are managed on location
servers and used by location-based applications. MOs correspond to users carrying
a mobile device such as a smart phone with a position system like GPS. Using this
positioning system, the MO can determine its current position, denoted as p,ser. For
the sake of simplicity, we assume p, . to be perfectly precise and accurate. This is
a reasonable simplification if we assume that the imprecision introduced by position
obfuscation is much greater than the imprecision of the positioning system. However,
the algorithms could easily be extended to also consider the intrinsic imprecision of the
positioning system.

On the MO, a trustworthy component is located that runs a share generation al-
gorithm. Given a precise position pyser, @ number of n shares, and a lowest preci-
sion ¢.,in, the share generation algorithm generates a set of position shares denoted as

S= (SOa {Sla LR Sn}):
generate(pusera n, d)mln) =5 (1)

In more detail, S consists of a so-called master share sy which represents a position
with lowest precision ¢,,in. S1, - - ., S, are called refinement shares. Given sg and a set
Sk C S of k refinement shares, a refined position py can be calculated using a share
fusion algorithm:

fuse(so, Sk) = Pk 2)

The basic idea is that each refinement share increases the precision by a well-defined
value Ag. That is, fusing k refinement shares and the master share yields a position py,
of higher precision ¢, = ¢pin —kAg, Where ¢y, < ¢p_1. Fusing all shares reconstructs
the precise position pysey-

The precision ¢ is represented as a radius, if the obfuscation area is circular. How-
ever, later we will see that obfuscation areas do not need to be circular areas. Instead, an
obfuscation area can have any shape. Therefore, we additionally measure the precision
as the size of the area'. Thus, we say that a higher precision corresponds to a smaller ra-
dius and a smaller area, while a lower precision corresponds to larger radius and larger
area of the obfuscation shape.

After share generation, the MO distributes the shares among a set of location servers
(LS), denoted as L, where every LS is operated by a different provider. Formally, share
distribution is defined as an injective function that distributes every refinement share to
an unique LS:

distribute({s1,...,8n}, L) : S = L 3)

The master share is known to everybody — in particular, every location-based appli-
cation, — for instance, through full replication at every LS and unrestricted access by
location-based applications. Hence, every location-based application can track MOs
with (at least) a precision of ¢,,,;,,. Therefore, ¢, is usually chosen large, i.e., with a
low precision.

Refinement shares are only known to authorized location-based applications (LBA).
The MO specifies, which precision each LBA should get. Usually, this decision defines
a tradeoff between the quality of service an LBA can provide with a certain precision
of information, and the privacy requirements of the MO. The trusted share generation
component running on the MO’s device determines, how many refinement shares from
the set of refinement shares are required for this precision using the above formula for
o1 Then, the MO assigns access rights to refinement shares. Shares and the respective
access rights are sent together to the LSs. LSs use common access control mechanisms
to deliver refinement shares only to authorized LBAs. LBAs receive the necessary ac-
cess rights (credentials) together with the relevant LS addresses from the MO.

The injective mapping ensures that each LS only knows exactly one refinement
share (plus the master share). Therefore, a compromised LS reveals only one refinement
share equivalent to a position of strictly limited precision. The precision available to an
attacker increases linear with the number of compromised servers. This ensures the
most important property of the approach: graceful degradation of privacy (increase of
precision) with the number of compromised shares.

Theoretically, the mapping of shares to LS or the precision increase Ay could be
adjusted to the individual trustworthiness of the LS, giving more trusted LSs better or
more shares. The individual trust value could be defined by a trust management system,
for which several concepts have been described in the literature [5]. However, such
optimizations are beyond the scope of this paper. Here, we simply assume that every
server stores one refinement share per position, and every refinement share has the same
precision increase A.

"'In order to make both precision metrics comparable, it is possible to convert the area of a
non-circular obfuscation shape to a radius of a virtual circle with the size of the area.

We also assume that each MO stores a map of the environment. For each location,
a map contains a binary Boolean value: true if the MO could be located at this location
(e.g., a street, building, etc.); false otherwise (e.g., a lake, agriculture field, etc.). As
shown later, this map knowledge is used by the share generation algorithm to generate
shares that do not allow for the derivation of position information of higher precision
than intended. A simple example of a binary map representation derived from a given
map (Figure 2a) is presented in Figure 2b.

Fig. 2. (a) Basic map: roads and squares; (b) Binary representation of the map knowledge

Finally, we assume that share generation is only triggered sporadically rather than
with every update of the positioning system. Typically, this is the case when using a
“check-in” usage pattern, where the user manually publishes her position sporadically
at certain locations. Although the presented algorithms could also work with continuous
positions updates, subsequent (close) positions might reveal additional information to
an attacker. Such problems arising from continuous updates are beyond the scope of
this paper. Instead we assume that a minimum position update interval is ensured that
guarantees that succeeding obfuscation shapes of precision ¢, do not intersect.

Problem Statement and Obfuscation Security Metrics. The problem is to find a
secure share generation algorithm (implementation of function generate(pyser, 7, @min))
such that the following property is fulfilled for the generated shares: Given the master
share s(and a set Sy, of refinement shares, it should not be possible to derive a position
with higher precision than the intended precision ¢ = ¢min — kA4. Informally, we
say that the generated shares are insecure. Obviously, if this would be possible, the MO
could not effectively control the precision of information offered to LBAs by assigning
access rights to a certain number (k) of shares corresponding to the intended precision
(@k)-

The above statement is very strict considering the fact that an implementation of a
share generation algorithm might always lead to a certain degree of insecurity. The best
we can do is to design an algorithm that minimizes the insecurity of shares as much
as possible. Therefore, we introduce metrics, called obfuscation security metrics, that
quantify the degree of share security. As we will see later, we use probabilistic share
generation algorithms. Therefore, our security metrics are also probabilistic metrics
expressing the probability that an attacker can reveal a position of a certain precision.
We propose two metrics:

Let sp and Si be a master share and a set of refinement shares, and p be the
area resulting from the fusion of these k shares. Then the obfuscation security metrics
P(¢,attack) defines the probability that an attacker can refine the MO’s position to an

area with precision @y attack Where @p attack < @k. A perfectly secure set of shares
would lead to a probability of 0.0 for every ¢y attack < ¢%. This metrics gives insight
into the absolute precision that an attacker can gain, for instance, an attacker can calcu-
late a position of 500 m precision with 90% probability.

The second obfuscation security metric, Py, defines the probability that an at-
tacker can pinpoint the MO’s position to an area of 10% size of pj. A perfectly secure
set of shares leads to Pjgo, = 0.1. Or in other words: The position of MO is uniformly
distributed within the obfuscation area. A non-uniform probability distribution of MO
within py, increases Pjqg to values greater than 0.1. This metrics is based on a relative
area size compared to pg. It has to be noted that the choice of using 10% instead of an-
other value is somewhat arbitrary reflecting the case that the attacker can gain a position
of much higher precision than intended. We could also use any other relative area size.

3 Position Sharing Approaches

In this section, we present three different position sharing approaches. As basis, we start
with a brief description of our basic approach published in [1], called OSPS-ASO (Open
Space Position Sharing with Any Share Order). Then, we improved this approach in two
ways: Firstly, the share generation of OSPS-ASO is (to a certain degree) predictable,
i.e., from k out of n shares information with a higher precision than the intended preci-
sion ¢ — kA can be derived. Therefore, we present an improved share generation
algorithm called OSPS-FSO (Open Space Position Sharing with Fixed Share Order),
which decreases the predictability of shares. Secondly, OSPS-ASO does not consider
map knowledge, which can also be used by an attacker to increase the precision unin-
tentionally. To solve this problem, we present a map-aware share generation algorithm
called CSPS (Constrained Space Position Sharing), which considers movement restric-
tions given by the physical environment.

3.1 Basic Approach: OSPS-ASO

Fig. 3. OSPS-ASO: fusion of the same set of shares in different order

In order to explain how OSPS-ASO implements the concept of position sharing, we
first give a detailed definition of shares and explain the share fusion algorithm, before
we explain the generation of shares.

Algorithm 1 shows the share fusion algorithm of OSPS-ASO. With this open space
approach, positions are defined as circles with radius (precision) ¢. The master share
so 1is simply a circle ¢y with radius ro = ¢.,,;,, centered at pg. Each refinement share
defines a shift vector that shifts the center of the previous obfuscation circle. At the
same time, the radius is decreased by value Ay. The fusion algorithm incrementally
shifts the positions of obfuscation circles starting from pg, and after each shift decreases
the radius by Ag.

Algorithm 1 OSPS-ASO: fusion of shares

: function fuse_k_shares- OSPS_ASO(n,co,81...8k)
 Ar <+ 1o/n

P < po

T < To

: fori=1to kdo

P < P+ Si;

r<r— Ar

: return ¢, = {p,r}

e A el S

Note that with this approach, shares can be added in any order since the shift oper-
ation is a commutative operation (therefore the name “Any Share Order”). As a conse-
quence, the maximal length of shift vectors has to be limited by Ar = ro/n = Ay. As
a result, any refined circle is completely contained in the previous circle. Two examples
of share fusion in different orders for n = 4 and k = 3 given refinement shares are
shown in Figure 3.

The algorithm for share generation is shown in Algorithm 2. Input parameters to
this algorithm are the precise user position Py ser, radius rg = @y, of the master share,
and the total number of refinement shares n.

Algorithm 2 OSPS-ASO: generation of shares

: function generate_-n_shares_.OSPS_ASO(puser, Ny Pmin, Ag)
. select randomly po such that distance(po, puser) < Gmin
: do

1
2
3
4. fori =1ton — 1do

5: select rand. s; with |s;| < Ay such that pyser € ¢;
6: while distance(po + 27:_11 Si, Puser) > Ay

T 8n Puser — (Po + E?;ll Si)

8: return sg ... sn

In the first step, position pg of ¢y (master share) is selected such that p, s, is dis-
tributed uniform at random within ¢ (2). Then we calculate n — 1 refinement shares.
For each of these shares, we choose a random direction and random length within the
valid length interval [0, Ay4] (3-6). The last (nth) refinement share has to connect the end
point of the concatenated n — 1 refinement shares to p,s. (7). If the resulting length

of the nth vector is smaller than or equal to the length constraint A, we have found a
valid set of refinement shares. Otherwise, we repeat the process, i.e., re-calculate n — 1
random refinement shares, and try to connect their end point to p, s, Within the given
length constraint.

3.2 Extended Approach 1: OSPS-FSO

Next, we are going to present the improved position sharing approach OSPS-FSO that
improves the security of calculated shares.

The design goal of OSPS-ASO was to be able to combine shares in any order. There-
fore, also a missing share does not prevent share fusion altogether. Also if refinement
shares are missing, the remaining shares can still be fused to a position of increased pre-
cision where the precision increase linearly depends on the number of missing shares.
This increases the robustness of OSPS-ASO w.r.t. failed LSs.

However, as we have shown in [1], the predictability of further shares can be also
increased as an attacker knows more and more refinement shares. The obtained preci-
sion increases beyond the intended precision, e.g., if the constrained share generation
parameters make the resulting vectors correlated. This is due to the length restriction of
shift vectors, which ensures that refined obfuscation circles are completely contained
within the unrefined circles.

Fig. 4. Fusion of shares in a fixed order without area adjustment

We will show that the security of obfuscation can be substantially increased by
combining shares only in fixed order (therefore the name “Fixed Share Order”). Un-
fortunately, by fixing the share order, the robustness of the scheme w.r.t LS failures
of attacks is decreased. However, if the availability of location information is critical,
robustness can be achieved by other means such as replication of shares.

Algorithm 3 shows the adapted share fusion algorithm of OSPS-FSO. Similar to
OSPS-ASO, each refinement share defines a shift of the center of the previous circle
c;—1. The result is again a circle ¢; with a different (predefined) radius r;. However,
since the length of the shift is not restricted anymore, ¢; might not be completely con-
tained within c;_; (see Figure 4). Instead, the new obfuscated position py, is defined by
the intersection of ¢; and the previous obfuscation area. Consequently, p;, might not be
a circle anymore but an area defined by the intersection of multiple circles. Only the

Algorithm 3 OSPS-FSO: fusion of shares
: function fuse_k_shares OSPS_FSO(n,co,81...8k,T1...7k)
: Ak < Co

1

2

3: ppo

4: for: = 1to k do
5: p+p+s;
6
7
8
9

ci < {p,ri}
A +— ArNc;
. end for
: return Ay

master share sq still must be a circle of radius ro = ¢,,,;,. We denote A to be the size
of the area resulting from the intersection of k circles, i.e., the fusion of k refinement
shares and the master share:

Ak:area(coﬂclﬂ...ﬁck)zﬂ*ri)

We say, the obfuscated position py, has the precision ¢y, if Ay = 7 * (Pmin — k:A¢)2.
That is, we compare the obfuscation area to a circle covering an area of the same size.

Fig.5. OSPS-FSO: (a) intersection of 3 circles co, c1,c2; (b) adjustment of intersection area
through radius increase of ¢} to c1: A1 = area(co N ec1) = area(c))

Moreover, we need another modification to ensure that every additional share in-
creases the precision by a well-defined value A,. We achieve this by an adjustment of
the radius r; of circle ¢; such that A; equals the area of the initial (non-adjusted) circle
c;. Algorithm 4 shows the share generation algorithm of OSPS-FSO. In lines 8-10, we
increase the radius to match the desired size Ay, as it is shown in Figure 5.

However, only increasing the radius is not sufficient for secure share generation, if
an attacker knows the share generation algorithm. If we only increase radius r; without
changing the circle center p;, an attacker can simply reduce the obfuscation area A;
by decreasing the obtained radius r; down to the initial (non-increased) value of the
radius 7} (see Figure 6a). In order to avoid such an attack, the center of circle ¢; must
be adjusted so that the original position of ¢; within ¢; cannot be found.

Algorithm 5 shows a secure algorithm for increasing r; by also moving the center
p;. First, for the current p; we determine the radius r; which makes the intersection area

Algorithm 4 OSPS-FSO: generation of shares

1: function generate_n_shares OSPS_FSO(puser, Ny dmin, Ao)
2: select randomly po with distance(po, puser) < Gmin
3: Ap + area(co)

4: fori =1ton — 1do
5: T < ¢min — % A¢>
6: select rnd. s; with pyser € ¢;
7. A; < area(c;)

8: while area(N’_;(c;)) < A; do

9: r; < increase(r;)
10: end while
11: end for

12: Sn Puser — (pO + Z?;ll Si)
13: return sg...S8n,70...7n

Fig. 6. Adjustment of p; during radius increase: (a) no adjustment of p;; (b) randomized adjust-

ment of p;

Algorithm 5 Radius increase with adjustment of p;

: function increase(r;, pi, Ar, pr)

i

. A; + area(c})

: while area(N’_;(c;)) < A; do

r; < ri + Ar

: end while

: Tsnift < get_random shift(p;, v}, ;)

. Yshift < get_random_shift(p;,r;, ;)

: pi < shift(pi, Tsnife, Ysnist)

s if area(N_1(c;)) < A; then

r; < increase(r;)

. else

while (area(N’_;(c;)) > A;) and (p, € ¢;) do
r; < 1; — Ar

end while

r; < 1r; + Ar

: end if

: return p;, r;

ket ke
e e ol S =

large enough; we used radius increase Ar = r/20 (4-6). Then we perform the random
shift of p;, not longer than r; —r} (7-9). After that we check whether the current radius ;
is satisfying the area condition (10). If the intersection area is again not large enough, we
call the function increase(r;, . . .) recursively (11). If the intersection area now exceeds
the target value A;, we decrease the current radius 7; until it achieves the required size
(12-16).

In Figure 6b, it is shown that after the adjustment of p; the target position p,, can
be located anywhere within ¢;. In other words, an attacker is not able to reduce the
obfuscation area A; just knowing the share generation algorithm.

3.3 Extended Approach 2: CSPS

Although OSPS-FSO as presented in the previous sub-section solves the problem of
predictable refinement shares in an open space environment, it is not sufficient for re-
stricted movement scenarios. If an MO cannot or is at least unlikely to move in certain
areas such as lakes or agriculture fields, these areas can be subtracted from the obfus-
cated position pj, calculated by the share generation algorithm of OSPS-FSO. This ef-
fectively reduces the size Ay, of py, to a value below the intended precision ¢y, — kA
(see Figure 7a).

Fig.7. CSPS: (a) intersection of 3 circles co, c1, c2 and the map representation M, ; (b) adjust-
ment of intersection area through radius increase of c¢1: A1 = area(M,, N co Nc1) = area(c)).
The black area depicts the effective obfuscation area where the user can actually be located.

Obviously, this unintended size reduction of py is due to the fact that OSPS-FSO
does not consider such movement restrictions during share generation. This problem
can be solved by considering movement restriction during radius adjustment. As pre-
requisite, a user-defined map M, is required which defines possible positions of MO.
Depending on the type of MO, M,, might contain general areas such as streets, shops,
public places, as well as individual areas such as the user’s home and working place.
In general, M, should reflect all movement restrictions that a possible attacker could
know. Obviously, if an attacker is aware of additional movement restrictions that were
not considered during share generation, he can possibly further reduce the obfuscation
area.

Based on M,,, we can now modify the share fusion and share generation algorithm
to consider movement restrictions to define our Constraint Space Position Sharing Ap-
proach (CSPS). The main idea of the map-aware share generation algorithm of CSPS
is to increase in each share generation step 7 the radius of circle c;, until the size? of
M, N (coN...N¢)isequal to Gpin — A, (see Figure 7b). Informally, this means
that we increase the intersection area until there are enough locations where the MO
can actually be located.

Compared to the fusion algorithm of OSPS-FSO (Algorithm 3), only a small change
in is required. The obfuscated position is not only defined by the intersection of the
circles ¢;, but also the intersection with M, to remove areas where the user cannot be
located. Thus, line 2 is modified to: Ay <+ M, N cg.

The map-aware share generation algorithm of CSPS is similar to Algorithm 4, with
additional ¢ increase before the main cycle for generating shares s;...5,:

while area(M, Nco) < Ap do
ro < increase(ro)
end while

Also, the condition of line 8 of Algorithm 4 now must include M, :

while area(M, N N’—,(c;)) < A; do

4 Evaluation of Obfuscation Security

In this section, we evaluate the obfuscation security provided by the share generation
algorithm. For a quantitative comparison, we use the metrics introduced in Section 2.
First, we introduce our attacker model before we describe the evaluation results.

Attacker Model. On the one hand, attackers include external attackers who try
to circumvent the access control mechanisms of LSs to get access to as many secret
refinement shares as possible. Since preventing such attacks basically requires well-
known access control mechanisms, which are not specific to position sharing, we will
not consider this kind of attack further in our evaluation.

On the other hand, attackers also include internal attackers in form of malicious LS
or LBA providers. In general, such internal attackers have access to k out of n shares.
In detail, a LS has access to 1 out of n shares, namely, the single share managed by
the LS. A compromised LBA has access to the k out of n shares for which it received
access rights from the MO. As already described in the beginning, & defines a trade-
off between the QoS that can be offered by the LBA due to the limited precision of
position information, and the degree of lost privacy should the LBA misuse the position
information. Therefore, in our approach adjusting % is the basic means of controlling
privacy risks. Therefore, we focus our evaluation on such internal attacks where the
attacker knows k out of n shares. We should note that we do not explicitly consider

2 The size of intersection area is calculated through space discretization: we count the number of
points covered by the intersection shape and convert this number into the corresponding area
value proportionally.

the case of colluding internal attacker, i.e., multiple malicious LS or LBA providers
that exchange their shares to increase the number of (compromised) shares. To handle
this case, the MO needs to assess the risk that providers collude, which is a different
problem of defining suitable trust relations and modeling relations between providers—
for instance, which LS are sharing the same server (cloud) infrastructure operated by
the same third-party provider, or which providers have to reveal their data to the same
legal entity because they fall under the same jurisdiction, etc.

As already mentioned, adjusting k is only then an effective means to control privacy
if the precision of positions derived from these shares are well-defined. If the share
generation algorithm is perfectly secure, an attacker with k£ compromised shares can
calculate a position with at least the precision ¢ = @pmin — KA. However, due to a
certain predictability of share generation, he might even increase the precision beyond
that value as already discussed in Section 3. Since we assume that the share generation
algorithm is known to everybody, the attacker can use a Monte Carlo Simulation to
simulate the process of share generation and predict further possible refinement shares
from the known shares. To this end, he runs the share generation algorithm many times
to sample the probability distribution of the MO position and analyzes the resulting
position distribution to determine the most likely area where the MO is located in.

To quantify the (undesired) effect of share prediction and the resulting effective se-
curity of shares, we use the metrics Pygy and P (¢ qttack) already defined in Section 2.

4.1 Open Space Evaluation (OSPS-ASO vs. OSPS-FSO)

In our first evaluation, we start with the assumption that MOs can move without restric-
tions in an open space. This evaluation shows the difference between our old approach
OSPS-ASO presented in [1] that fuses the refinement shares in arbitrary order, and the
fixed order fusion approach OSPS-FSO presented in this paper.

As mentioned, in the ideal case each share should increase the precision by exactly
Ag. Depending on the predictability of share generation, the attacker can gain a higher
precision @y, grtack < kAg from k (compromised) shares with a certain probability
P(¢k,attack)- Figure 8 plots ¢ qrtack Over k for different probabilities P (¢ qttack)
(the total number of refinement shares is n = 5; ¢y, = 10000 m). Figure 8a shows
the results for our old algorithm OSPS-ASO; Figure 8b shows the results of OSPS-FSO
proposed in this paper.

Obviously, with 100% probability (curve P(¢x aitack) = 100%), the attacker can
derive a precision ¢y qttack = KAy for both algorithms as intended by the position
sharing concept. With lower probability, the attacker can also gain a higher precision
for OSPS-ASO as well as OSPS-FSO, so both algorithms show a certain degree of
predictability. However, we can see that the predictability of OSPS-FSO is significantly
lower (i.e., closer to the ideal curve P = 100%) than for OSPS-ASO. For instance,
with P(¢k. attack) = 80% probability and k& = 2 compromised shares, the effective
precision ¢ qttack = k of OSPS-ASO is 3.91 km and 4.58 km for OSPS-FSO (the
ideal precision increase of a non-predictable share generation algorithm for k = 2
wouldbe Ay = 10 km — 2 - 2 km = 6 km).

The fact that OSPS-FSO is less predictable than OSPS-ASO is also shown in Fig-
ure 9. Here, we consider the metric Pjq¢ introduced above, i.e., the probability that an

Dy attacks =a=P_k,attack = 100% ~+-P_k,attack = 80% | @iattacks —o=P_k,attack = 100% P_kattack = 80%
km o p \attack=50% -e-P_k,attack = 10% km g p kattack=50% —@-P_kattack = 20%
10 ¢ 10 &
8 8
6 i? 6 ‘
4 | 4 gl\‘\
i \Eg:g ’
k k
0 I T ’ 0 | T -
0 1 2 3 4 5 o 1 2 3 4 5

Fig. 8. (a) Precision ¢k qttqck corresponding to probability values P (¢, qttack) depending on
k for OSPS-ASO; (b) Precision ¢, attack corresponding to probability values P(¢k,attack) de-
pending on k for OSPS-FSO. n = 5; ro = 10 km; 100 runs of the Monte Carlo method

attacker can locate the user within an area of 10% size of the actually intended area
resulting from the fusion of k shares. That is, instead of considering the absolute value
of precision increase as before, we now consider the relative increase in precision. In
the ideal case, P;gy should be 10%. This figure plots P, gy, for OSPS-ASO and OSPS-
FSO over different numbers of compromised shares out of a total number of n = 5
refinement shares (¢.,i, = 25 km). Up to k& = 2, both algorithms nearly lead to the
same small increase in precision. However, for larger numbers of compromised shares,
OSPS-FSO shows a much lower predictability than OSPS-ASO: for k£ > 2 its value of
P, is more than 2 times lower.

So, overall we can state that for open space scenarios our new share generation
algorithm OSPS-FSO creates shares which significantly more secure than created by
OSPS-ASO.

Piox % —#-OSPS-ASO -B-OSPS-FSO

—e-10%: ideal case n=5
70
& Je
50
0 pa
30
20 /
10 J
0 | t T T k
0 1 2 3 4

Fig. 9. Comparison of share generation algorithms: probability P;q¢ to derive an area covering
10% of the obfuscation circle ci; n = 5; ro = 25 km; 100 runs using Monte Carlo method

4.2 Constrained Space Evaluation (OSPS-FSO vs. CSPS)

In this sub-section, we consider a constrained space movement model where MO only
move in certain areas defined by the introduced map M,,. In this evaluation, we compare

the proposed (open-space) approach OSPS-FSO, which does not consider any move-
ment constraints, against the proposed map-based approach CSPS, which is aware of
the movement constraints defined by M,,.

Fig. 10. (a) Map My, 4: roads and squares of Los Angeles City; (b) Map M pw : forests of Baden
Wiirttemberg

Obviously, the difference between OSPS-FSO and CSPS depends on the concrete
map. If the map does not define any constraints, OSPS-FSO and CSPS will behave
similarly. If there are many constraints, we expect a bigger difference between both al-
gorithms. Therefore, we used two real maps for our evaluation. The first map (M 4)
defines streets and places in a part of Los Angeles (see Figure 10a). The second map
(MBw) defines coarser movement constraints in a part of the state of Baden Wiirttemberg
(Germany), where the MO can move everywhere except for forests (see Figure 10b).

% of ¢, —&—O0SPS-FSO (MLA) —4—OSP5-FSO (MBW)

—m-CSPS n=5s
100 L L L L

80

&0 l———k——"—’_"’d
. /‘———0——/‘/

20

]
4] 1 2 3 4

Fig. 11. Relative effective area size; 100 runs of the Monte Carlo method

In order to compare OSPS-FSO and CSPS, we compare the sizes of the obfuscation
areas calculated by OSPS-FSO and CSPS after the intersection with the map M,,. CSPS
adjusts the obfuscation area Ay, such that the intersection area Ay N M,, always has the
desired obfuscation area size 7 - (Qpin — kA¢)2. In contrast, OSPS-FSO does not
consider the map, which reduces the effective obfuscation area size where the MO can
actually be located. Obviously, a smaller effective obfuscation area size is less secure.
Therefore, as performance metric we calculate the relative effective area size of OSPS-
FSO compared to the desired obfuscation area size 7 - (Ppin — k;A¢)2. Since CSPS

adjusts the obfuscation area such that the effective size is equal to 7 - (Ppin — kA¢)2,
it always has a relative size of 100%.

Figure 11 shows the relative effective area sizes for the two maps over different
numbers of shares (k) known by the attacker. Each figure depicts the results for different
total numbers (n) of shares. The curve labeled “OSPS-FSO (MLA)” depicts the results
of OSPS-FSO for map My 4; “OSPS-FSO (MBW)” depicts the results for map Mpyy .
First, we can observer that the coarse-grained map M pyy has a stronger effect on the
effective area size since it constraints larger areas where the MO cannot be located.
Moreover, we see that the relative effective area size increases for larger k. The reason
for this is that usually smaller obfuscation areas (higher numbers k of refinement shares)
tend to overlap more with regions where the user can actually be located. For instance,
an area of only a few 10 meters will have almost 100% overlap with a building or street
where the user can be located.

Comparing our map-aware approach CSPS and the open-space approach OSPS,
we see that CSPS leads to a relative improvement of the effective obfuscation area
size between about 40% and 60% for the two maps. Therefore, we can conclude that
considering map knowledge is essential to guarantee the security of obfuscation. By
considering map knowledge, CSPS guarantees that the effective obfuscation area size
is equal to the desired area size for k shares.

5 Related Work

There are many different techniques to preserve the privacy of user locations while
using LBS. They can be classified into methods based on access control, cryptographic
encryption, k-anonymity, and spatial obfuscation ([6], [7], [8]).

The application of access control (e.g., [9]) using privacy policies allows users to
define which LBAs are authorized to access the user’s private location information.
However, privacy policies do not provide ultimate (technical) guarantees against the
misuse of user’s data by LBS.

The classic method of encryption applied to the user’s position information has a
general drawback: no geometric operations over the encrypted data are possible at the
LS, or only at a very high cost.

k-anonymity based methods (e.g., [10]) are managing the user position so that it
cannot be distinguished from k£ — 1 positions of other users. This is achieved by adding
a trusted anonymizer to the system, which manages the interaction between users and
LBS. The anonymizer updates the exact user position by a set of & user positions (k-
cluster). The common problem of k-anonymity based approaches is that they require
total trust in a third party that operates the anonymizer. Also, the needed cluster of k
users is not always available, especially clusters which satisfy additional constraining
parameters such as area size and position diversity.

Spatial obfuscation (e.g., [11]) secures the user position by sending coarsened loca-
tion information to the LBS. There is no need for a trusted third party, but on the other
hand the problem of trading-off between precision and privacy raises. By selecting a
large obfuscation area a user makes it impossible to query his position with acceptable
precision, while a fine-granular location information provides only a low privacy level.

Our position sharing approach presented in [1] removes this shortcoming of obfus-
cation approaches. It uses spatial obfuscation as a basic mechanism and allows for a
gradual refinement of the user position’s precision by collecting data shares from dif-
ferent providers. The idea of decomposing a user’s position information into shares has
been also applied by Marias et al. [12]. The proposed method based on secret sharing
solves the problem of limited trust to providers, but provides no gradual refinement of
precision: only the complete set of shares gives the target position, while the absence of
even a single share results in the absence of position information of any precision.

The problem of map-awareness regarding obfuscation techniques is a relatively rare
topic, although it affects significantly the spatial obfuscation approaches. The PROBE
approach proposed by Damiani et al. [13] considers map features with pre-defined prob-
ability values assigned to them. The distribution of probability of a user to be located
within the given region is also assumed to be known a-priori. Moreover, a personal-
ized model of privacy sensitivity for various map features is presented. The algorithm
expands the obfuscation cells over the discrete space step-by-step. The resulting obfus-
cation region can have any shape, but the approach lacks some flexibility due to the
enforced cell-based space representation.

The landscape-aware obfuscation of Ardagna et al. [14] provides a defense against
Bayesian inference based on the prior probability density over the given area. This work
presents the theoretical background for map-awareness. Also Ardagna et al. present the
idea of adjusting the radius of obfuscation disk in order to preserve the user’s privacy
affected by the landscape knowledge. In our work, we adopt the similar principle to the
position sharing approach.

6 Summary

In this paper, we have presented a new position sharing approach for managing ob-
fuscated user positions on a set of untrusted location services (LSs). The basic idea
of position sharing is to split the precise user position into a set of imprecise position
shares and distribute these shares among LSs of different providers. Location-based ap-
plications (LBA) can query these shares from the LSs and fuse them to a position of
well-defined precision depending on the number of shares they got access rights for
from the tracked user. Since each LS only stores a single share of well-defined preci-
sion, a compromised LS will not reveal the precise user position but rather a position of
strictly limited precision (graceful degradation of privacy).

We have presented enhanced share generation algorithms and fusion algorithms that
further improve our basic position sharing approach presented in [1]. Firstly, we reduced
the predictability of share generation that allows an attacker to gain further information
from a set of compromised shares to further increase the position precision. Secondly,
we presented a position sharing algorithm for constrained movement scenarios. Since
typically users are likely to be located in areas like streets, buildings, etc. rather than
areas like lakes or agriculture fields, open space approaches such as [1] are vulnerable
to map-based attacks. Therefore, we presented a share generation algorithm that takes
map knowledge into account.

Possible future research directions include the following. CSPS could be modified
to additionally provide k-anonymity guarantees by adjusting the obfuscation area until
it covers k other users. Moreover, the current approach is targeted at “position check-in”
scenarios where the user only sporadically updates his position rather than continuously
sending position updates. In future work we plan to design position sharing approaches
that also support such continuous tracking scenarios. Finally, it would be interesting
to also consider individual trust-levels of different location service providers. For in-
stance, we could store more shares or shares of higher precision on LSs that are more
trustworthy than others.

References

1. F. Diirr, P. Skvortsov, and K. Rothermel, “Position sharing for location privacy in non-trusted
systems,” in PerCom 2011, Seattle, USA, March 2011, pp. 189-196.

2. Privacy Rights Clearinghouse, “Privacy rights clearinghouse,”
http://www.privacyrights.org/data-breach, June 2011.

3. M. F. Mokbel, “Privacy in location-based services: State-of-the-art and research directions,”
in MDM’07, Mannheim, Germany, May 2007.

4. D. Pedreschi, F. Bonchi, F. Turini, V. S. Verykios, M. Atzori, B. Malin, B. Moelans, and
Y. Saygin, “Privacy protection: Regulations and technologies, opportunities and threats,”
Mobility, Data Mining and Privacy, pp. 101-119, 2008.

5. A. Gutscher, “A Trust Model for an Open, Decentralized Reputation System,” in I[FIPTM’07,
August 2007.

6. D. Riboni, L. Pareschi, and C. Bettini, “Privacy in georeferenced context-aware services:
A survey,” in Proceedings of the Ist International Workshop on Privacy in Location-Based
Applications, October 2008.

7. J. Krumm, “A survey of computational location privacy,” Personal and Ubiquitous Comput-
ing, vol. 13, no. 6, pp. 391-399, August 2009.

8. A. Solanas, J. Domingo-Ferrer, and A. Martinez-Ballesté, “Location privacy in location-
based services: Beyond ttp-based schemes,” in Proceedings of the Ist International Work-
shop on Privacy in Location-Based Applications (PiLBA), Malaga, Spain, October 2008.

9. C. Hauser and M. Kabatnik, “Towards privacy support in a global location service,” in
WATM/EUNICE’01, September 2001.

10. P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, ‘“Preventing location-based identity
inference in anonymous spatial queries,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 19, no. 12, pp. 1719-1733, Dec. 2007.

11. C. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, and P. Samarati, “Lo-
cation privacy protection through obfuscation-based techniques,” in Proc. of the 21st IFIP
WG 11.3 Working Conference on Data and Applications Security, vol. 4602, 2007.

12. G. F. Marias, C. Delakouridis, L. Kazatzopoulos, and P. Georgiadis, “Location privacy
through secret sharing techniques,” in WOWMOM’05. 1EEE Computer Society, June 2005.

13. M. L. Damiani, E. Bertino, and C. Silvestri, “Protecting location privacy against spatial in-
ferences: the probe approach,” in SIGSPATIAL ACM GIS 2009 Intl. Workshop on Security
and Privacy in GIS and LBS, ser. SPRINGL *09. New York, USA: ACM, 2009.

14. C. A. Ardagna, M. Cremonini, and G. Gianini, “Landscape-aware location-privacy protec-
tion in location-based services,” Journal of System Architecture (JSA), vol. 55, April 2009.

