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ABSTRACT
In recent years peer-to-peer (P2P) networking has gained
high popularity for large-scale content distribution. Promi-
nent systems expect a large user base with rather diversi-
fied demands. Yet it is highly challenging to achieve scal-
ability without sacrificing the expressiveness of queries in
such systems. This paper proposes distributed spectral clus-
ter management, an approach which adapts the techniques
from spectral graph theory to work in distributed settings.
The proposed approach is applied to content-based pub-
lish/subscribe to i) significantly reduce the cost for event
dissemination by clustering subscribers exploiting the sim-
ilarity of events, ii) preserve the expressiveness of the sub-
scription language, and iii) perform robustly in the presence
of workload variations. The evaluations analyze the accu-
racy of the proposed distributed spectral mechanisms and
show their effectiveness to significantly reduce the efforts to
disseminate events under many practical workloads.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed
Systems; C.2.1 [Computer Systems Organization]: Net-
work Architecture and Design

General Terms
Content-based, Publish/Subscribe, Broker-less, Spectral
Clustering, P2P

1. INTRODUCTION
Clustering is a popular approach to reduce the complex-

ity of building and maintaining P2P based overlays by effi-
ciently identifying service-specific similarities between peers,
e.g. clustering by performance measures in multicast groups
or by semantic similarities in content distribution networks.
In particular, for content-based publish/subscribe – which
itself is a highly popular and important paradigm to build
large-scale distributed applications – clustering has proven
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its potential for significant efficiency gains [31, 25, 12]. Yet
it is highly challenging for broker-less content-based pub-
lish/subscribe systems to use the full potential of cluster
management.
In content-based publish/subscribe, publishers and sub-

scribers are loosely coupled and exchange information in the
form of events. Subscribers are provided with expressive
means to specify their interest in certain events by complex
filter operations on the event content without needing to
know the set of publishers. Likewise, publishers can inject
events into the system regardless of the set of subscribers.
In a broker-less publish/subscribe system peers do not only
act as subscribers but also form the event forwarding overlay
network, i.e., all subscribers contribute in forwarding events.
Therefore, the rate of events that peers receive and forward
though lacking a matching subscription (false positives) is
an important factor for the resource overhead in such a sys-
tem. In particular, false positives waste system resources by
increasing network bandwidth utilization and inducing ex-
tra processing load on the peers in an overlay network [30].
However, as observed by Cao et al. [9], false positives cannot
be avoided completely without sacrificing the scalability of
a publish/subscribe system. The interest of subscribers can
be highly diverse and in the worst case generate 2n distinct
subscriber groups out of n subscribers.
Subscription clustering is one promising way to reduce the

effect of false positives by grouping subscribers with similar
subscriptions in a limited number of clusters such that the
event dissemination within each cluster can be very efficient
w.r.t. the number of false positives [10, 28, 25].
Subscription clustering in a publish/subscribe system is

complicated due to the lack of global knowledge, high dy-
namicity of subscribers and continuously evolving event traf-
fic. Existing approaches to clustering mostly consider the
structural (absolute) similarity between the subscriptions
such as the area occupied by the intersection of two sub-
scriptions [7, 3, 33, 37, 10]. These approaches restrict the
expressiveness of the content-based model to predefined nu-
meric attributes and lack mechanisms to further reduce false
positives by considering the similarities between subscrip-
tions according to the current event traffic. Only a handful
of approaches take into account the current event load of the
system to create clusters of subscribers. These approaches
either assume global knowledge [28, 25, 12] or rely on the
presence of a network of reliable brokers [5].
This paper presents an efficient and scalable approach

to cluster management coping with high workload varia-
tions. We study its effectiveness in the context of broker-
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less publish/subscribe systems. The approach preserves the
expressiveness of the content-based model and can work
with any method to estimate similarities between subscrip-
tions. Techniques from spectral graph theory are used to
perform subscription clustering, because these techniques
are proved to be more accurate in finding clusters than tra-
ditional mechanisms such as k-means [24]. This work is the
first to study spectral clustering mechanisms in the context
of content-based publish/subscribe systems. Furthermore,
the presented approach can be seen as a general framework
to perform distributed spectral clustering and can be applied
to other areas such as document clustering. Spectral clus-
tering in a distributed setting is highly challenging and to
the best of our knowledge has not been previously addressed
in literature.

The main contributions of this paper are: i) identifica-
tion of different centralized spectral methods that can solve
the subscription clustering problem and comparison of the
effectiveness of those methods with the related approaches
(cf. Section 3), ii) development of efficient and scalable mech-
anisms to perform spectral clustering in a distributed man-
ner with accuracy closely matching that of centralized meth-
ods (cf. Section 4), iii) an approach to create and main-
tain clusters of subscribers using the developed distributed
spectral mechanisms in a highly dynamic P2P based system
(cf. Section 5), and iv) thorough evaluations of different as-
pects of the proposed distributed approach under different
workloads and dynamics (cf. Section 6).

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

We consider a content-based publish/subscribe system
without broker infrastructure. Publishers and subscribers
contribute as peers to the maintenance of the system. Pub-
lishers disseminate events into the system, while the sub-
scribers specify filtering criteria for the selection of desired
events using (possibly many) subscriptions.

A subscription f is a stateless boolean function [35] that
accepts an event e as an argument. An event e matches a
subscription f if f(e) = true. A containment relation can
be defined on subscriptions. Let Ef1 and Ef2 denote the set
of events matching the subscriptions f1 and f2 respectively.
Then f1 is said to be covered by the subscription f2, denoted
by f1 ≺ f2, iff Ef1 ⊆ Ef2 holds. Similarly, two subscriptions
f1 and f2 are said to be overlapping, denoted by f1 � f2, iff
Ef1 ∩ Ef2 �= ∅.

In a broker-less publish/subscribe system as described
above, the main concern is to reduce the cost of event dis-
semination by avoiding false positives (events a peer is re-
quired to forward while they do not match any of the peer’s
subscriptions). Subscription clustering is an effective ap-
proach for this purpose. It partitions the subscriber peers
with similar subscriptions into a small number of groups
such that the event dissemination within each group incurs
few false positives.

To perform clustering, usually the absolute (structural)
similarity between the subscriptions, such as the overlap re-
lation (�) defined on Ef , is considered to calculate their
closeness in receiving the same events. However, the over-
lap relation does not take into account the number of events
recently matched by the subscriptions for calculating the
similarities. For instance, a low event rate causes little false

positives in a cluster of two similar, yet not identical sub-
scriptions, while with a high event rate, the same cluster
encounters a large number of false positives, so that the
two subscriptions had better not be clustered. Therefore, to
achieve good clustering that minimizes false positives, the
current event load of the system should be considered.

In more detail, let E
t
f be the set of last m events matched

by the subscription f before a given time t. Let sim(i, j, t) be
a function that defines the similarity between two arbitrary
subscriptions fi and fj at time t using their recently matched

events i.e. E
t
fi and E

t
fj .

The set of N subscriptions in the system Π = {f1, ..., fN}
and the pairwise similarities between them can be repre-
sented by a similarity graph. A similarity graph denoted by
G = (Π, E , t) is a weighted undirected graph, where E is the
set of edges connecting distinct subscriptions with non-zero
similarity values, i.e., E = {εi,j : fi �= fj ∧ sim(i, j, t) > 0}.
The similarities between subscriptions and hence the sim-
ilarity graph change over time, however for the clearness
in presentation we will omit time t in the following. Us-
ing the adjacency matrix of the similarity graph, which is a
symmetric matrix we denote by W ∈ R

N×N , we can define
the weighted degree d of a subscription fi as the sum of its
pairwise similarities with all other subscriptions in the sys-
tem, i.e., di =

∑N
j=1 wi,j . The degree matrix denoted by

D ∈ R
N×N is a diagonal matrix with degrees (d1, ...dN ) of

all subscriptions on the diagonal. Let Π1, Π2 denote two
groups of vertices in G. The inter-group weight or the sum
of edge weights between the vertices of Π1 and Π2 can be
defined as W (Π1,Π2) =

∑
i∈Π1,j∈Π2

wi,j . Furthermore, the

degree of a group Π1 is defined as dΠ1 = W (Π1,Π).
Given a dynamic set of subscribers and continuously evolv-

ing similarity graph, our objective is to maintain k disjoint
clusters of subscriptions (Π1, ...Πk) in a publish/subscribe
system so that,

1. inter-cluster weights are minimized, i.e., overlap be-
tween the events in different clusters is minimized.

2. clusters are balanced in terms of their size to ensure
even event dissemination load on each cluster.

In the presence of only first criterion (i.e. minimization of
inter cluster weights), the subscription clusters can be effi-
ciently created by solving minimum cut problem [24]. How-
ever in practice it has tendency to create singleton clusters
i.e., clusters consisting of only individual subscriptions, and
does not lead to satisfactory results. The second criterion
is added to overcome this problem and create clusters with
reasonably large number of subscriptions.

3. CENTRALIZED SUBSCRIPTION CLUS-
TERING

In this section we describe our approach to maintain the
subscription clusters in a centralized fashion. Similar to
other state of the art centralized approaches [31, 28, 25],
the proposed centralized approach has potential to be used
as a competent method to perform subscription clustering
in a content-based publish/subscribe system. In particu-
lar our contributions in this section are twofold. First we
propose different spectral methods that can effectively solve
the subscription clustering problem. Second, we show the



capability of the proposed methods to produce clusters with
improved quality in comparison to the related approaches.

3.1 Subscription clustering using spectral
methods

In the following, we describe the spectral methods and
main steps needed to perform subscription clustering.

3.1.1 Similarity function
In order to perform clustering, the first step is to quan-

tify the similarities between the subscriptions by defining
an appropriate similarity function sim(i, j). Intuitively, the
similarity between the two subscriptions increases with the
increase in overlapping events and decreases with the non-
overlapping event traffic. Based on this intuition we propose
to use the Jaccard1 (in short Jac) similarity function [14],
which is defined as a ratio of overlapping event sets matched
by the subscriptions to the union of their overlapping and

non-overlapping event sets, i.e., Jac =
|Efi

∩Efj
|

|Efi
∪Efj

| . Similari-

ties are assigned in the range [0, 1], where 0 means complete
disjointness.

3.1.2 Clustering as graph partitioning
Once the similarity function is in place and the similar-

ity graph is calculated, the subscription clustering is per-
formed by partitioning the similarity graph into k disjoint
sub-graphs. In this paper, we select two graph partitioning
objective functions which fulfill our requirements of strongly
connected and balanced clusters:

Ratio Association = max
Π1,...Πk

∑k
i=1

W (Πi,Πi)
|Πi| (1)

Normalized Cut = min
Π1,...Πk

∑k
i=1

W (Πi,Π\Πi)
dΠi

(2)

The Ratio Association (in short RAssoc) objective [16] aims
to maximize the association between the cluster members
(intra cluster), whereas the Normalized Cut [16] (in short
NCut) tries to minimize the association between different
clusters (inter cluster). The objective functions strive to
create clusters that are balanced in terms of the number
of vertices and the degree (edge weights) respectively. We
selected these two objective functions because of their dif-
ferent characteristics. RAssoc is better in creating strongly
connected clusters, whereas NCut is good at forming bal-
anced clusters (cf. Section 3.2). Both objective functions
are NP-hard to solve in the discrete domain. The relaxed
versions of these objective functions can be solved by spectral
analysis of the similarity graph.

3.1.3 Spectral Analysis
The spectral clustering consists of two main parts: i) ini-

tially the hard discrete problem is relaxed to obtain the
global optimum in the continuous domain by means of eigen-
decomposition [14], ii) afterwards a k-means algorithm [21]
is used to get discrete partitions from the real valued eigen-
vectors.

Intuitively, the first part (eigendecomposition) embeds the
vertices of a similarity graph (i.e., the subscriptions) in a

1We have evaluated many different similarity functions such
as Russell [14], Dice [14], Simpson [14] and Simple match-
ing [14]. However, the results of the Jaccard function were
superior in consistency. Therefore, in this paper we only
focus on the properties of this function.

Algorithm 1 Centralized Spectral Clustering Steps

1: Calculate the similarities between N subscriptions
Generate similarity graph G
Apply Guassian function on G (NCut)

εi,j = exp(−‖sim(i,j)‖
σ2 )

2: Perform eigenvector decomposition
Y = Λk+V

T
k+ : W = UΛV T (RAssoc)

Y = QT
k− : (D −W )q = λDq ( NCut)

3: Apply k-means clustering algorithm
Cluster (yi)i=1,..N ∈ Y into k clusters

low-dimensional space with k dimensions by treating eigen-
vectors as geometrical coordinates and hence is termed as
dimensionality reduction or embedding. The dimensionality
reduction step is beneficial in reducing the effect of noise and
extracting the main features of the data to cluster. This part
depends on the partitioning objective function.
The Ratio Association function performs linear dimen-

sionality reduction using Principal Component Analysis
(PCA) [14]. PCA performs dimensionality reduction by
means of singular value decomposition (SVD) [14], i.e., W =
UΛV T , where W is a centered matrix obtained by subtract-
ing the mean of the similarity matrix W from its columns,
Λ = {λi, ..., λN} is a diagonal matrix of eigenvalues, and V
and U are the matrices of right and left singular vectors re-
spectively. The k-dimensional coordinates are obtained as
Λk+V

T
k+, where the subscript k+ identifies that only the k

largest non-zero eigenvalues and corresponding eigenvectors
are used.
As an alternative, Normalized Cut embeds the coordinates

in non-linear space which only preserves the geometry of the
local neighborhood. To model neighborhood, the pairwise
similarities between the vertices in the similarity graph are

weighted by Gaussian kernel, i.e., εi,j = exp(−‖sim(i,j)‖
σ2 ),

where σ controls the width of the neighborhood. The low-
dimensional coordinates correspond to the k eigenvectors
(QT

k−) with smallest non-zero eigenvalues (represented by
subscript k−) obtained by solving the generalized eigensys-
tem. Algorithm 1 shows the overall steps needed to perform
spectral clustering.

3.2 Effectiveness of spectral clustering
We show the effectiveness of our approach w.r.t. the qual-

ity of the identified clusters and reduction of false positives
as compared to two related approaches.

3.2.1 Experimental Setup
Experiments are performed using PeerSim [1]. We as-

sume a content-based schema with up to 5 integer attributes,
where the domain of each attribute is in the range [0,30].
Our approach, however, is not limited to a certain number,
type or domain of attributes2. Experiments are performed
on two different models for the distributions of subscriptions
and events. The uniform model (M1) generates random sub-
scriptions/events independent of each other. The interest
popularity model (M2) chooses five hotspot regions around
which subscriptions/events are generated using the widely
used zipfian distribution. For the experiments, up to 32, 000
subscriptions and 6, 000 events are used. Each event matches

2We would like to stress here that the results presented in
this paper are of general validity and are independent of the
content-based schema or language.
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Figure 1: Evaluations for centralized spectral clustering

5% of subscriptions and each subscription maintains a list
of 20 most recently matched events.

We compare our work with two widely used related ap-
proaches. The first approach [10] (denoted as CK) clus-
ters subscriptions according to the coordinates of their cen-
troid using a k-means algorithm. The second approach (de-
noted as OV ) is a representative of many prominent pub-
lish/subscribe systems [7, 31]. It considers the absolute over-
lap between the subscriptions as a measure of their similarity
and uses k-means or R-tree [39] algorithms to cluster them.

3.2.2 Quality of clusters
The employed spectral clustering mechanisms provide no

guarantee on the quality of the solution [24]. We therefore
evaluate the quality of generated clusters by measuring their
Entropy [11] and Accuracy [11]. The entropy of a cluster
specifies the disorder within the clusters, indicated by the
distribution of ideal subscription clusters on the generated
clusters, whereas accuracy measures the extent to which sub-
scriptions are assigned to the correct clusters. Entropy and
accuracy obtain scores in the range of [0,1]. A lower entropy
and higher accuracy score imply better clustering. Fig-
ures 1(a) and (b) show that for both of the alternative par-
titioning functions (RAssoc and NCut) in Algorithm 1, the
quality of clusters improves with the increase in the dimen-
sionality of the embedded space. However, sufficiently good
quality clusters can be obtained with just 20-dimensional
space. Moreover, the proposed mechanisms perform reason-
ably good for both workloads (M1 and M2). In case of M2,
which is the more realistic of the two workloads, clusters of
almost all the subscriptions are identified correctly. How-
ever, the quality is not at its optimum for M1 because the
subscriptions are uniformly distributed and some subscrip-
tions may not share event traffic with any other subscription,
making it hard to cluster them.

3.2.3 Reduction in false positives
The reduction in the false positives is measured as the

percentage improvement to the related centroid (CK) and
overlap (OV ) based clustering approaches. In all the ex-
periments, subscriptions are generated using only uniform
distribution, whereas events follow uniform and zipfian dis-
tribution. Figures 1(c) and (d) show that in the case of zip-
fian event distribution (M2) there is a considerable (up to
30%) improvement in reducing false positives in comparison
to both the related approaches. However, for uniformly dis-
tributed event traffic the improvement drops to just 6− 9%
for NCut and under 5% for RAssoc, which is predictable as
there is no advantage of taking into consideration the event

load based similarity in comparison to the absolute similar-
ity metrics. Figures 1(c) and (d) indicate that RAssoc is
better at reducing false positives in case of zipfian event dis-
tribution whereas NCut performs better in case of uniform
event workload.

3.3 Properties of centralized clustering
In practice, subscriptions of peers as well as event traf-

fic change dynamically and therefore, over time the previ-
ously calculated clusters may become suboptimal. In order
to adapt to the changes, a central coordinator periodically
collects information about the events matched (in the recent
time window) by the subscriptions of the peers and repeats
the clustering process.
The centralized subscription clustering approach, although

still widely researched in literature [31, 28, 25], has some
scalability issues. First, periodic fetching of the event histo-
ries, calculation of clusters and distribution of cluster mem-
bership information incurs significant overhead (in terms of
bandwidth and processing resources) for the central coordi-
nator. Second, the centralized spectral clustering is very ex-
pensive in terms of time and memory requirements. The cal-
culation of the similarity graph encounters quadratic com-
putational and memory requirements. Similarly, the calcu-
lation of k eigenvectors (of a dense matrix) involves O(N3)
operations [18].

4. DISTRIBUTED SUBSCRIPTION CLUS-
TERING

Our aim is to develop an efficient and scalable approach
to perform spectral clustering in a distributed fashion that
can compute clusters with accuracy closely approximating
the accuracy of the proposed centralized solution. In the
subsequent sections, we will first describe the organization
of the subscriber peers in an overlay (Section 4.1) and after-
wards present mechanisms to perform dimensionality reduc-
tion (Section 4.2) and k-means algorithm (Section 4.3) in a
distributed manner, exploiting the overlay organization.

4.1 Organization of subscriber peers
Subscriber peers are arranged into a multilevel hierarchy

of small manageable groups as shown in Figure 2. The lev-
els are numbered sequentially, with zero being the lowest
level (denoted as L0). All subscribers participate in the low-
est level (L0) groups such that the similarity graph formed
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Figure 2: Hierarchical organization of subscribers

by the subscriptions of the members of a L0 group is con-
nected.3

Each group selects a coordinator peer that joins the higher
level group. A group at level l with coordinator p is denoted
as Gl

p and the number of subscriptions maintained by this

group is denoted by |Gl
p|. In the subsequent formulation the

subscript (p) will be dropped if it can be inferred from the
context. At each level l, a coordinator p maintains a list of
subscriptions (along with their matched events) called land-
marks, which are selected uniformly at random from the
members of group Gl

p.
4 The landmarks participate in the

higher-level group to create the similarity graph. For exam-
ple, in Figure 2, coordinator E maintains three landmarks
subscriptions (from the peers B, G and E) which become
part of the level L1 group. The landmarks are used dur-
ing distributed dimensionality reduction and for an accurate
calculation of low-dimensional embedding. The number of
landmarks should be higher than the dimension k of the
embedded space.

Maintaining a hierarchical overlay network as described
above in dynamic conditions is a well researched topic [6,
7]. For this reason we will not discuss the maintenance algo-
rithms in this paper but rather focus on the more challenging
issue of performing distributed spectral clustering.

4.2 Dimensionality reduction
To perform dimensionality reduction (low-dimensional em-

bedding, cf. Section 3.1) in a distributed manner, three
main issues should be considered. First, the resulting low-
dimensional space should be consistent so that the coordi-
nates of different subscriptions can be compared. Second,
the embedding should adapt to reflect dynamic changes in
the similarities between the subscriptions. Third, the error
induced due to the distributed calculation of the embedding
should be small.

Our approach for distributed dimensionality reduction ad-
dresses the above issues and comprises two steps: i) sepa-
rate (local) embedding of a small subset of subscriptions in

3A subscriber with completely dissimilar (disjoint) subscrip-
tions may participate in multiple lowest level groups.
4The random strategy yields reasonably good results (cf.
Section 6). However, more sophisticated mechanisms can
also be used for the selection of landmarks, such as maximum
independent set of the similarity graph [17] formed by the
similarities between the group members. We envision the
study of different landmark selection mechanisms as future
work.

low-dimensional space and, ii) transformation of these inde-
pendently generated local embeddings into a globally unified
coordinate system.
Each group in the hierarchical organization separately cal-

culates low-dimensional coordinates of its subscriptions. The
local coordinates (embeddings) are calculated in isolation
from each other and therefore use different coordinate sys-
tems. As a consequence, similarities between the subscrip-
tions with different local embeddings are not preserved, and
thus the k-means algorithm cannot be applied. To over-
come this problem, local embeddings are transformed (pro-
jected) into a globally unified coordinate system. The land-
marks of the highest level (root) group define the basis of the
global coordinate system. The global basis is progressively
projected to adjust the local embeddings level by level (by
traversing the hierarchy) until the lowest level groups are
reached.
Each group Gl at level l maintains a projection matrix

w.r.t the parent group at level l+ 1. The projection matrix
is used to transform the local coordinates of the group Gl

to global coordinates as follows:

YGl = HGlXGl (3)

where YGl ∈ R
k×|Gl| are the projected (global) coordinates

of the members of group Gl, XGl ∈ R
k×|Gl| are the local co-

ordinates and HGl ∈ R
|k|×|k| (in short H) is the projection

matrix. The calculation of local coordinates and the projec-
tion matrix depends on the properties of the low-dimensional
space (i.e. linear or non-linear) as well as on the partitioning
objective function. In the following we will describe mecha-
nisms for both the objective functions (RAssoc and NCut).

4.2.1 Ratio association (Linear embedding)
Again, the low-dimensional coordinates are calculated us-

ing PCA [14] to compute an explicit linear mapping between
the original space (similarities between subscriptions) and
the embedded space. In our distributed organization we
avoid the use of a global projection matrix in favor of sep-
arate matrices for each group which are maintained based
only on the similarities between the groups’ member sub-
scriptions and local landmarks.
Local embedding: The local coordinates of the landmark

subscriptions (XL
Gl) maintained by the coordinator p of a

group Gl are obtained by using the standard technique (cf.
Algorithm 1, line 2 ). The local coordinates of all other sub-
scriptions (XGl) of the group Gl are calculated w.r.t. these

landmarks. Let WGl→L ∈ R
|L|×|Gl| denote the similarities

between the subscriptions of Gl and the landmarks. The
local coordinates XGl can be calculated using Nyström Ap-
proximation [18] as follows: XGl = UTWGl→L.
Global embedding: In order to convert the local coordi-

nates (XGl) to the global coordinates (YGl), a projection
matrix is calculated by the coordinator. The landmarks
maintained by the coordinator of a group Gl also partici-
pate in the parent group Gl+1. The projection matrix is
calculated as a basis change matrix between the coordinates
of the landmarks at two levels by solving a linear least square
problem, i.e.,

min ||(XL
Gl)

TH − (Y L
Gl+1)

T ||
The matrix (XL

Gl)
T can be decomposed into UΛV T using

singular value decomposition (SVD) [14], where U ∈ R
|L|×|k|,



Λ ∈ R
|k|×|k| and V ∈ R

|k|×|k|. Thus the projection matrix
is calculated as follows:

UΛV TH = (Y L
Gl+1)

T

H = V Λ†UT (Y L
Gl+1)

T

If the matrix XL
Gl is rank deficient then Λ has some diagonal

elements that are zero and cannot be inverted. Hence, the
Moore-Penrose pseudo-inverse [14] Λ† is used in the calcu-
lations.

4.2.2 Normalized Cut (Non-linear embedding)
In the case of Normalized Cut the dimensionality reduc-

tion step embeds the coordinates in a non-linear space. The
reduced space does not preserve the global structure, it rather
captures the geometries at a local neighborhood in the sim-
ilarity graph. Let yi be the k-dimensional coordinates as-
sociated with the ith subscription, then the dimensionality
reduction minimizes the following cost function [24]: Φ =
∑N

i,j=1 wi,j‖ yi√
di

− yj√
dj
‖22. The cost function ensures that

neighbors with larger weights in the similarity graph stay
close in the low-dimensional space.

Local embedding: Let WGl denote the similarities between
the subscriptions of group Gl, and DGl is the corresponding
degree matrix (see Section 2). The local coordinates (XGl)
of the subscriptions of Gl can be calculated by performing
generalized eigendecomposition and selecting the k smallest
non-zero eigenvectors (cf. Algorithm 1, line 2 ).
Global embedding: The projection matrix of a group Gl

is calculated by minimizing the cost function of Normalized
cut, i.e.,

Φ =
∑

i∈Gl+1

∑
j∈Gl wi,j ||( yi√

di
− Hxj√

dj
)||2 (4)

Equation 4 calculates the projection matrix H such that the
error between the sum of squared distances of the projected
coordinates of the subscriptions of Gl and subscriptions of
the parent group Gl+1 is minimized. We have omitted the
derivation steps of projection matrix from Equation 4 for
space reasons. In summary, to minimize Φ we set the first-
order derivative of Equation 4 to zero so that the projection
matrix H can be obtained as:

H = YGl+1D
− 1

2

Gl+1W
TD−1D

1
2

GlX
†
Gl

where W ∈ R
|Gl|×|Gl+1| is the weight matrix which specifies

similarities between the subscriptions of the groups Gl+1

and Gl, and D ∈ R
|Gl|×|Gl| is the degree matrix obtained

by summing the row of weight matrix W . Moreover, D
1
2

Gl ∈
R

|Gl|×|Gl| and D
1
2

Gl+1 ∈ R
|Gl+1|×|Gl+1| represent the degree

matrices of the groups Gl and Gl+1 respectively.
Once the projection matrix H is calculated, Equation 3

can easily convert local low-dimensional coordinates into
global coordinates.

4.3 Distributed k-means algorithm
After low-dimensional embedding, the next step is to par-

tition the subscriptions into clusters by performing a k-
means algorithm. We propose two methods to obtain sub-
scription clusters. Both methods benefit from the hierarchi-
cal organization of subscriber peers (cf. Section 4.1).

Sampling method: In the hierarchical organization, land-
mark subscriptions maintained by a parent group are rep-
resentative of the subscriptions in the subtree. Similarly,
subscriptions of the root group represent the uniform sam-
ple of all the subscriptions in the system. In the sampling
method, the coordinator of the root group performs the k-
means algorithm on its landmark subscriptions and the re-
sultant cluster centers are treated as the centers of the global
clusters.
Hierarchical method: We extended the HP2PC [21] ap-

proach where each base (L0) group independently performs
the k-means algorithm to calculate local clusters. In a Merge
phase, those clusters are merged level by level by their par-
ent groups until the global clusters are obtained at the root.
As the k-means algorithm is very sensitive to its initializa-
tion, we prepend a Selection phase in order to select good
initial cluster centers for the k-means clustering performed
at each L0 group. The Selection phase starts at the root and
propagates down the hierarchy. While the root uses random
initialization, each subsequent group uses the cluster centers
calculated by its parent group to initialize its k-means clus-
tering and then forwards the adjusted centers to its child
groups. Afterwards, a Merge phase similar to the HP2PC
algorithm sets in so that finally, the root obtains information
about the global clusters.

5. CLUSTER CREATION AND MAINTE-
NANCE

Once the global clusters are obtained by means of dis-
tributed k-means algorithm, the information about the new
cluster centers is distributed among the subscribers using the
hierarchical organization (Section 4.1). In addition, boot-
strap peers to join the clusters are announced along with
the cluster centers. On reception of this information, each
subscriber peer joins the cluster Πj whose center is nearest to
the global coordinates of its subscription f (i.e., |yf −yΠj | is
minimum, where yf and yΠj are k-dimensional coordinates
associated with the subscription f and the center of cluster
Πj respectively). If the subscriptions of a subscriber are dis-
similar and match different set of events, then the subscriber
may join more than one cluster. Each cluster is maintained
separately. Existing techniques such as IP multicast [15]
or Application layer multicast (ALM) [6] can be used to
disseminate events within each cluster. Furthermore, addi-
tional mechanisms such as subscription forwarding [9, 5, 23]
can be performed within each cluster to even further reduce
the rate of false positives.
P2P systems are very dynamic in nature and therefore

it is infeasible to completely recalculate the clusters for ev-
ery minor change in the set of subscriptions. Thus, upon
arrival of a new subscription in the system, its subscriber
first contacts the coordinator of its group in the hierarchical
organization to obtain the global coordinates of its subscrip-
tion by means of the locally maintained projection matrix.
Afterwards, the subscriber joins the cluster whose center is
nearest to the global coordinates of its subscription. Simi-
larly, to counter the effect of minor changes in the events’
distribution, the coordinator of each group locally calculates
the global coordinates of its member subscriptions using the
projection matrix and distributes them in its group. The
newly computed global coordinates of a subscription may



change its nearest cluster center; the subscriber of the cor-
responding subscription then joins the new cluster.

The dynamic changes in the subscriptions, as well as the
event workload, can accumulate over time, so that the cur-
rent set of clusters becomes suboptimal. In order to adapt
to the subscription and event workload changes, the coor-
dinator of the root group periodically starts the clustering
process by sending a control message. The control message
propagates towards the base groups. Each group coordina-
tor on the path updates the projection matrix and recal-
culates the global coordinates of its member subscriptions.
The calculation of the projection matrix is very fast as each
group accommodates only a small percentage of the overall
subscriptions (cf. Section 6). Furthermore, to expedite the
projection process the local embeddings5 are pre-calculated
asynchronously, independent of the control message. In case
the hierarchical k-means algorithm is used, the Selection
phase is performed simultaneously along with the projection
process. Once the clusters are obtained, the coordinator of
the root group compares the centers of the newly obtained
clusters with the centers of the currently deployed clusters.
If the new centers deviate more than a predefined threshold
allows, new clusters will be installed, i.e., subscribers receive
information about the new clusters and join their subscrip-
tions one by one with the cluster whose center is nearest to
the subscription’s global coordinates.

6. EVALUATION OF THE DISTRIBUTED
APPROACH

We evaluate four aspects of our distributed approach: i)
accuracy of the distributed dimensionality reduction, ii) qual-
ity of clusters created by the distributed k-means algorithm,
iii) effectiveness of the overall distributed approach to reduce
the cost of event dissemination under dynamically chang-
ing workload and in comparison to the related P2P based
approach, and iv) scalability of the cluster management in
terms of computational time and load on peers.

The experimental setup is the same as described in Sec-
tion 3.2. We modified the NICE protocol [6] to use it for
managing the hierarchical organization of subscribers. The
number of peers in the experiments ranges from 1000 to
2000, with different percentages of churn. Moreover, in Fig-
ure 3, Lvs denotes the number of levels in the hierarchical
organization, LM denotes the percentage of subscriptions
selected as landmarks in each group, and Gps denotes the
number of L0 groups.

6.1 Accuracy of distributed dimensionality
reduction

Two separate metrics are adopted to measure the accu-
racy of linear (RAssoc) and non-linear (NCut) dimensional-
ity reduction. The stress [14] metric evaluates the quality of
linear embedding by calculating the sum of squares of rela-
tive errors in the similarities of the subscriptions between the
original space and the low-dimensional embedded space, i.e.,

Stress =
∑

i∈Π

∑
j∈Π(

wi,j−wi,j

wi,j
)2, where wi,j is the similar-

ity between the subscriptions i and j in the low-dimensional
space. The linear embedding is accurate if the value of stress
is zero.

5The calculation of the embedding (cf. Step 2, Algorithm 1)
is the most expensive operation (cf. Section 6.4).

To measure the quality of non-linear embedding, we eval-
uate trustworthiness [36] and continuity [36] of the neigh-
borhood relationship between the original and the embed-
ded space. The trustworthiness (denoted as Ts) measures
how far the neighborhood in the embedded space differs to
the original neighborhood. The continuity (denoted as Cn)
quantifies the deviation of the original neighborhood from
the embedded space neighborhood. The harmonic mean [17]
(denoted asHScore) of the trustworthiness and continuity is

expressed as: HScore = 2.Ts(κ).Cn(κ)
Ts(κ)+Cn(κ)

, where κ is the size of

the neighborhood used for the calculation of trustworthiness
and continuity. In our experiments we used a neighborhood
size of 50. Higher values of HScore indicate a better embed-
ding accuracy. The upper bound is 1, which indicates that
the κ nearest neighbors of every subscription are exactly the
same in the original and the embedded space.
Figures 3(a) and (b) show the effect of the number of L0

groups on the accuracy of the (linear and non-linear) em-
bedded space in comparison to the centralized approach. All
the L0 groups have the same number of subscriptions. For
instance, a total of 8 groups means that each group main-
tains 12.5% of the overall subscriptions in the system. The
following conclusions can be drawn from the figures. First,
the accuracy of the distributed approach with two levels of
hierarchy closely resembles the accuracy of the centralized
method for both types of embeddings. Second, the accu-
racy decreases slightly with the increase in the number of
groups due to the corresponding decrease in the number of
subscriptions per group. Third, the centralized and the dis-
tributed approaches produce embedding with better accu-
racy if the subscription workload concentrates on spots of
interests (M2).
Figures 3(c) and (d) show the accuracy of the embedding

as a function of the percentage of landmark subscriptions per
group. In general, the accuracy increases with the increase
in the percentage of landmarks. This behavior is more signif-
icant with the increase in the levels of the hierarchy because
each additional intermediate level decreases the overall per-
centage of subscriptions managed by the higher level groups
by a factor of the number of subscriptions managed in the
current level and the percentage of allowed landmarks in
each group. Therefore lower percentages of landmarks result
in significantly smaller numbers of subscriptions managed by
the higher level groups. For instance, in case of 50% land-
mark subscriptions per group, the root of a 3-level hierarchy
manages 25% subscriptions, whereas with 10% landmarks,
it manages just 1% subscriptions, decreasing the accuracy of
the overall embedding. Figures 3(e) and (f) show that the
accuracy decreases with the increase in the levels of the hi-
erarchy. However up to 4 levels of hierarchy the embedding
can be performed with reasonable accuracy. We argue that
a 4-level system with 30% landmark subscriptions per group
is very promising to perform good low-dimensional embed-
ding. First of all the accuracy is only slightly decreased
as compared to the centralized approach. Second, a 4-level
system can handle subscriptions in a scalable manner. For
instance, in the evaluated scenario, the groups at the inter-
mediate levels manage 30% and 9% of subscriptions respec-
tively, and the root group only manages 2.7% subscriptions.
In Section 6.4, we show that 4-level system with only 25%
landmark subscriptions can easily scale well beyond 32, 000
subscriptions.
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Figure 3: Evaluations for distributed clustering approach

6.2 Effectiveness of distributed k-means algo-
rithm

We compare the quality of clusters obtained by the two
proposed approaches, Sampling method (Sample) and Hi-
erarchical method (Hierarchy), with the related distributed
clustering approach HP2PC. The quality of clusters are eval-
uated by Entropy [11] and Accuracy [11] (cf. Section 3.2).
Figures 3(g) and (h) show the values of entropy and accu-
racy versus the percentage of landmark subscriptions. As ex-
pected, the quality of clusters improves with the higher per-
centage of landmarks due to the corresponding increase in
the accuracy of the low-dimensional embedded space. More-
over, both proposed methods outperform the HP2PC ap-
proach. Especially for the hierarchical method this indicates
that the selection phase (cf. Section 4) is beneficial in im-
proving the quality of clusters by providing a good estimate
of the initial cluster centers. Figures 3(i) and (j) evaluate the
effect of the number of levels on the quality of clusters. The
trend shows that the quality of clusters gradually degrades
with increasing levels of the hierarchy. There are many rea-
sons for such a degradation: i) decrease in the accuracy of
the low-dimensional embedding (cf. Figures 3(e) and (f)),
ii) less accurate estimation of the initial cluster centers due
to the decrease in the percentage of landmarks maintained
by the root and iii) loss of cluster quality at higher levels of
hierarchy as a result of the merging of clustering information
from the lower level groups [21].

6.3 Effectiveness of overall distributed ap-
proach

We evaluate the effectiveness of our proposed clustering
approach w.r.t. i) the cost of event dissemination, ii) the
adaptability to dynamic changes in the event workload and
iii) the resilience to peer churn. Similar to [5], we define
notification cost as the ratio of the complete traffic gener-
ated in the system to the number of subscriptions matched
by the disseminated events. The traffic includes all the con-
trol overhead due to hierarchical organization, distributed
embedding, k-means algorithm, maintenance of dissemina-
tion structure for each cluster and subscription forwarding.
The notification cost expresses the efficiency of the event
dissemination such that lower cost means higher efficiency.
We compare two variants of our proposed approach (with
and without event filtering in the clusters) with an over-
lap metric (OV) based approach. The non-filtering vari-
ant uses multicast to disseminate events within each cluster,
whereas the filtering variant uses subscription forwarding to
further reduce false positives. Both variants use a two-level
hierarchical organization to perform dimensionality reduc-
tion and calculate subscription clusters. The OV-RTree ap-
proach implements a distributed R-tree similar to [7, 39].
Figure 3(k) shows the notification cost during the evolution
of the system as more and more events are disseminated.
The measurements are taken after every 50 events. To eval-
uate adaptability, the hotspots of the event distribution are
completely changed after every 2, 000 events. The figure



shows that immediately after the change in event workload,
the notification cost of the proposed variants rises signifi-
cantly for a small transient period, mainly because of the
control overhead to calculate and install new clusters. How-
ever, the new clusters obtained after the transient period
provide almost identical performance increase. Moreover,
the figure depicts that the OV-RTree approach shows almost
unchanged performance and is not responsive to the changes
in the workload. Nevertheless, the proposed filtering and
non-filtering variants shows 34% and 18% improvement in
the cost of event dissemination (accounting all the control
overhead associated with the P2P based implementation of
the approach) respectively in comparison to the OV-RTree
approach.

Figure 3(l) shows the average notification cost experienced
by the OV-RTree and our proposed approach in the pres-
ence of continuously arriving and leaving subscriptions. The
churn percentage is relative to the total number of peers in
the system. For instance, for a total of 2, 000 peers, a churn
of 10% means that in each time step, 200 online peers leave
the system and the same number of new peers join the sys-
tem. The churn percentages of 10% and 16% can be seen as
worst case scenario that puts the system under very stressing
condition. The figure shows that the performance of both
the approaches degrades gracefully with the increase in con-
tinuous churn. However, our proposed approach is more
resilient to churn than OV-RTree, the reason being that the
OV-RTree degrades over time (especially, if the newly arriv-
ing subscriptions are not added from the root) resulting in
a higher rate of false positives and thus higher notification
cost. In our proposed system the periodic recalculation and
installation of new clusters avoids the gradual degradation
and thus the rate of false positives remains low over time.

Table 1: Parameters for scalability evaluations

Parameter Value

Dim. of embedded space 50
% of landmarks 25%
No. of clusters 50
Max. levels of hierarchy 4
Max No. of L0 Gps 64
Clustering method Hierarchical

6.4 Scalability of cluster management
In the previous section, we have shown the scalability of

the system in terms of the cost of event dissemination under
dynamically changing workload. In this section, we evaluate
the scalability of our proposed mechanisms w.r.t. i) the over-
all time to cluster increasingly large number of subscriptions
and ii) the computational load on the peers participating in
the hierarchical organization. Furthermore, we compare the
computational times and the quality of clusters obtained by
the linear and non-linear methods.

The matrix algebra needed to perform clustering is imple-
mented using the JAMA library [22], a linear algebra pack-
age for Java. All the measurements are made on a 2.7 GHz
Intel core i7 CPU with 4GB RAM, running a 64 bit Windows
7 operating system. The delays between the communication
links are chosen rather conservatively in the range [224 ms,
384 ms].

Figure 4(a) shows the cost in terms of time to perform the

dimensionality reduction6 for different percentages of land-
mark subscriptions and levels of hierarchy (one level means
the centralized approach). For a hierarchy with 2 or more
levels, the time is measured from the instant the root starts
the dimensionality reduction process till the low dimensional
coordinates of all the subscriptions are calculated. Thus the
overall cost includes the time to perform local and global
embeddings as well as communication delays between the
peers along the longest (or the slowest) branch of the hi-
erarchy. The number of subscriptions is fixed to 2, 000 for
this experiment. In the figure some values for linear em-
bedding (RAssoc) are not visible because of their smaller
magnitude. The figure shows that the distributed approach
drastically decreases the time to perform dimensionality re-
duction in comparison to the centralized case. For instance,
even for 1-level hierarchy with 50% landmarks the calcu-
lation time is decreased by 86% and 90% for linear (RAs-
soc) and non-linear (NCut) methods respectively. More than
99% decrease in time can be achieved with 4-level hierarchy.
Moreover, the Figure 4(a) shows that the calculation time in
general decreases with a decreasing percentage of landmark
subscriptions and with an increasing number of levels of the
hierarchy. Because of the decrease in landmarks and increase
in levels, this reduction in time comes with a slight decrease
in accuracy (cf. Section 6.1). However, with up to 4 lev-
els of hierarchy and with only 25% landmark subscriptions,
the clustering can be performed with reasonable accuracy
(cf. Figures 4(d) and (e)). Another important observation
is that the linear embedding (RAssoc) is less expensive com-
pared to the non-linear embedding (NCut). For instance,
in the centralized scenario RAssoc takes approximately 18%
less time. The computationally intense generalized eigensys-
tem problem is mainly responsible for the additional time in
case of NCut. The difference in time (to perform dimension-
ality reduction) between RAssoc and NCut widens with the
increase in levels of hierarchy. The reason is that in RAs-
soc, only landmark subscriptions are used to calculate the
projection matrix, whereas in NCut, the projection matrix
is calculated by performing least square optimization w.r.t.
all the subscriptions in the parent group (cf. Section 4.2).
Figure 4(b) shows the overall time to perform dimension-

ality reduction and clustering in a distributed manner for
different numbers of subscriptions. The parameters used in
the experiment are specified in Table 1. The time is mea-
sured from the instant the root starts the clustering process
till the clusters are calculated and clustering information is
distributed among subscriber peers. This does not include
the time to perform local embeddings because of the fact
that the local embeddings are not calculated during the clus-
tering (and projection) process (cf. Section 5). Figure 4(b)
shows that even for computationally expensive NCut, up to
32, 000 subscriptions can be clustered in less than 15 sec-
onds including the communication delays. On the other
hand, clustering using RAssoc is very efficient and takes
approximately 5 seconds. The time efficiency of RAssoc is
due to the computationally less expensive eigen decomposi-
tion problem and the use of only landmark subscriptions for
the calculation of the projection matrix as mentioned above.
Moreover, Figure 4(b) depicts that the distributed k-means
clustering itself is computationally inexpensive and most of

6In this experiment we solely focus on dimensionality re-
duction because it is computationally the most expensive
operation.
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Figure 4: Evaluations for distributed clustering approach

the clustering time comprises communication delays during
the merge and selection phases (cf. Section 4.3), and the
distribution of the cluster centers among subscribers.

Figure 4(c) shows the computational load experienced by
different peers participating in the hierarchical organization
w.r.t. the total number of subscriptions to cluster. The
computational load of a peer is calculated by adding up
times to perform local embedding, projection (global em-
bedding) and clustering at each level of the hierarchy where
the peer participates. In particular, the computational load
of the root which participates at all levels of the hierarchy is
compared with the load on the coordinators of lowest-level
(L0) groups. Figure 4(c) shows that the L0 coordinators
experience a computational load of less than 5 seconds in
the case of NCut, whereas the load is negligible for RAs-
soc. Moreover, the load for L0 coordinators stays constant
with the number of subscriptions. This behavior occurs be-
cause the peers can scale up the hierarchy to manage only a
small number of subscriptions e.g. by dividing a group into
two groups, each managing a smaller number of subscrip-
tions7. The root, on the other hand, participates at higher
level groups and the number of subscriptions managed at
each higher group depends on the subscriptions in the sub-
tree. For instance, in case of 4, 000 subscriptions in the
system, 25% landmarks and 4-level hierarchy, the highest-
level (root) group manages only 63 subscriptions, whereas
for 32, 000 system wide subscriptions, the number rises to
500. Therefore, the computational load of the root rises
with the increase in the number of subscriptions. We ar-
gue that even for 32, 000 subscriptions, the computational
load of the root is negligible in case of RAssoc and is eas-
ily manageable (under 25 seconds) for NCut. However, if

7Dynamic group management in hierarchical overlay net-
works is a well-researched topic [6, 7]. In our evaluations, a
modified version of the NICE protocol [6] is used for man-
aging hierarchy.

the reduction in the load of the root (or the coordinators at
the intermediate levels) is still desirable there are two possi-
ble strategies that can be employed. First, the requirement
that all the embedding calculations are performed by the
coordinator of a group can be easily removed by allowing
the coordinator to assign another participant peer from the
group to perform calculations8. This way the root can of-
fload its computational load to different peers at different
levels of the hierarchy. Second, the computationally expen-
sive local embedding calculations can be optimized to reduce
their time. The local embeddings are calculated by the co-
ordinator peers in a centralized fashion (cf. Section 4.2) and
therefore the optimizations available for reducing the time
of centralized spectral mechanisms [27], [16] can be directly
applied.
Figures 4(d) and (e) show the quality of the clusters cre-

ated during the evaluations of Figure 4(b). It is clear from
the figures that the quality of clusters obtained by NCut de-
creases slightly with the increase in the number of subscrip-
tions. NCut preserves the geometries at local neighborhood
and is sensitive to the weights between the neighbors in the
similarity graph (cf. Equation 4). With the increase in the
number of subscriptions, the number of groups in the hierar-
chical organization also increases (to scale with the compu-
tational load as mentioned above) and therefore the neigh-
borhood information across the groups at the same level
degrades, resulting in some loss of cluster quality. However,
the quality of clusters obtained by NCut can be enhanced
by increasing the percentage of landmark subscriptions. In
the case of RAssoc, the quality of the clusters improves with
the number of subscriptions. This is because RAssoc does
not preserve the geometries at the neighborhood but rather
captures the global structure and therefore benefits from the

8The selection of another peer can be done in a random fash-
ion or by considering some appropriate performance metrics.
We envision study of such a strategy as future work.



number of subscriptions used as landmarks at the root. An
increase in the number of subscriptions in the system results
in a large number of landmarks managed by the root and
thus in an improvement in the quality of clusters.

Finally, Figure 4(f) shows the quality of the created clus-
ters w.r.t. the false positives in the system. The figure dis-
plays similar behavior as depicted by Figures 4(d) and (e).
The evaluated scenario shows that NCut, which is computa-
tionally more expensive, is slightly better at reducing false
positives for a moderate number of subscriptions, whereas
RAssoc, which is computationally less expensive, performs
relatively better in the presence of a very large number of
subscriptions.

7. RELATED WORK
In the past few years, many content-based publish/sub-

scribe systems have been developed [28, 5, 9, 12, 23, 32, 8].
The main goal is to preserve the scalability of the system
while at the same time guaranteeing the expressiveness of
the subscription model. Clustering subscribers with simi-
lar interests has been identified as a promising technique to
achieve scalability [7, 31, 10, 28, 25, 12, 35, 20, 37]. Sub-2-
Sub [37] completely eliminates false positives by clustering
subscribers with non-intersecting subscriptions. However,
the number of clusters depends on the run-time interactions
between the subscribers that are active in the system and
are impossible to limit [30]. Tariq et al. [34, 33] on the
other hand, allow individual subscribers to dynamically ad-
just their rate of false positives according to their delay con-
straints and bandwidth requirements, but assume predefined
set of attribute in the subscription model. DR-Tree [7, 3]
uses distributed version of R-Trees to arrange subscribers
in height balance topology, but restricts the expressiveness
of the subscriptions to a small set of numeric attributes.
Anceaume et al. [2] build separate trees for every attribute
in the system. Published events are disseminated on every
tree with matching attribute, which results in large number
of false positives. Semcast [28] groups subscribers into se-
mantic multicast channels for disseminating events, but this
requires central coordination. Similarly, Riabov et al. [31]
propose offline approaches to group subscribers into limited
number of multicast channels using techniques from data
mining. Our work differs from the current state of the art
clustering approaches in four important ways. First, most of
the existing approaches either assumes point (topic-based)
subscriptions or only consider the structural (absolute) sim-
ilarities between the subscriptions. For instance [29, 19, 4,
13, 26] address clustering in a topic based publish/subscribe
systems. Similarly [7, 3, 31, 37, 10, 34] assume a predefined
set of numeric attributes restricting the expressiveness of the
subscription model. Second, the current load of the system
in terms of event traffic is mostly neglected [7, 10, 37] and
thus the efforts to place two subscriptions in a cluster are
wasted if they will not be matched by any event [30]. Third,
the approaches which take into account the current event
load of the system are centralized [31, 28, 25, 12]. They as-
sume the presence of a central coordinator which keeps track
of the changing subscriptions and event load in the system.
Furthermore, these approaches assume the presence of a ded-
icated network of brokers [12, 25, 5], which is fundamentally
different from the P2P architecture of our work. Fourth,
spectral clustering in the context of publish/subscribe sys-
tems has not been addressed previously in the literature.

Spectral clustering has been shown to be more effective
than traditional mechanisms such as k-means [24]. However,
nearly all existing spectral approaches are centralized and
hence they cannot be directly applied in a distributed set-
tings. Dhillon et al. [16] developed a centralized multilevel
approach to perform clustering using different graph par-
titioning objective functions without eigenvector computa-
tion. Ning et al. [27] proposed an incremental but centralized
algorithm to project new samples in non-linear space with-
out recalculating the whole embedding. Fowlkes et al. [18]
reduced the overhead of Normalized cut by first solving the
problem for a small random subset of data points and then
extrapolating this solution to the full data set. However,
the orthogonalization of eigenvectors require complex calcu-
lations which cannot be performed in a distributed manner.
Our approach for non-linear embedding is inspired from the
work of Fang et al. [17]. Similar to our work, Fang et al.
perform non-linear dimensionality reduction by minimizing
the least square error. However, Fang et al. approach is
offline and centralized, which cannot be directly applied in
distributed settings. Moreover, Fang et al. consider Ratio
Cut [16] as a graph partitioning objective function, which
results in a different eigenvalue problem in comparison to
the Normalized Cut and Ratio Association objective func-
tions addressed in this paper. Nevertheless, none of the ap-
proaches is targeted to handle continuously evolving work-
loads as is the case in P2P based systems.

8. CONCLUSIONS
In this paper we have presented an approach to perform

spectral clustering in a distributed manner. Although we
focused on subscription clustering in a content-based pub-
lish/subscribe system, the proposed methods are general and
can be applied to other areas such as document clustering or
data mining. We have identified different spectral methods
to perform subscription clustering and adapted them to work
in distributed settings. In particular, we have developed
mechanisms to perform linear and non-linear dimensional-
ity reduction as well as k-means clustering using the hierar-
chical overlay organization. The evaluations show that our
distributed mechanisms can i) drastically reduce the time
(86% − 99%) to perform clustering, ii) effectively identify
good quality clusters, and iii) significantly reduce the cost
of event dissemination (18%− 34%) in a content based pub-
lish/subscribe system.
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