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Abstract—Recent forecasts predict that the amount of cellular
data traffic will significantly increase within the next few years.
The reason for this trend is on the one hand the high growth rate
of mobile Internet users and on the other hand the growing pop-
ularity of high bandwidth streaming applications. Given the fact
that cellular networks (e.g. UMTS) have only limited capacity,
the existing network infrastructure will soon reach its limits. As
a result, the concept of traffic offloading attracts more and more
attention in research since it aims at the reduction of cellular
traffic by shifting it to local-area networks like Wi-Fi. One
particular form of traffic offloading is known as opportunistic
traffic offloading and follows the basic idea to shift traffic from
the cellular network to the level of inter-device communication
of mobile devices. To perform opportunistic traffic offloading in
an efficient way, assumptions about the prospective inter-device
connectivity of the mobile devices have to be made. In general,
the more inter-device connections are possible the more traffic
can be offloaded. To utilize this fact, we developed the TOMP
system. TOMP is the first opportunistic traffic offloading system
that uses movement predictions of mobile users to analyze the
prospective inter-device connectivity. In this paper we propose
three different metrics for analyzing movement predictions and
present an algorithm, which uses these metrics to utilize an
efficient opportunistic traffic offloading. To evaluate TOMP, we
show by simulation that we can save up to 40% of cellular
messages in comparison to a typical cellular network.

Index Terms—Mobile Computing, Energy-aware systems

I. INTRODUCTION

Within the last few years the vision of an ubiquitous Internet

access came true. With the introduction of powerful smart-

phones and the increasing availability of reasonable mobile

data rates, the number of mobile Internet users significantly

grew. Simultaneously, applications like audio or video stream-

ing, which demand high bandwidth, are getting more and more

popular. These two trends led to an enormous increase in

the amount of data that is transmitted via cellular networks

(e.g. UMTS or HSDPA), which have only limited capacity.

According to the latest forecasts, these trends will continue and

the volume of cellular data traffic will further increase within

the next years. For instance, Cisco predicted that the number

of mobile Internet users is expected to double every year until

2015 [1]. In accordance with that, Ericsson recently forecasted

that the amount of smartphone traffic will increase by factor

ten until 2016 [2]. Both studies show that the traffic load on

cellular networks may soon reach the networks’ critical limit.

Some mobile service providers already reacted by decreasing

network cell sizes or by going back to volume-based pricing

models [3]. Apart from that, some first research publications

propose an alternative way for reducing cellular traffic, which

is known as cellular traffic offloading.

The basic idea of cellular traffic offloading is to automat-

ically shift traffic from the cellular network to a local-area

network that provides higher bandwidth and is usually less

loaded. Given a message m and a set of mobile devices that

should receive m, the goal is to reduce the total amount

of cellular traffic that the message delivery causes, in order

to unburden the cellular network. Most of the prevailing

approaches rely on the availability of publicly accessible Wi-

Fi hotspots that can be used to relay m (e.g. [4]). Instead

of sending m via the cellular network, message m can be

sent to these hotspots, which distribute m via WLAN to

the devices. Obviously, this is not suitable when no Wi-Fi

hotspots are available or the hotspots are closed to public

access. In contrast, another set of approaches uses the fact

that mobile devices can set up inter-device connections (e.g.

via Bluetooth) to exchange data (e.g. [5],[6]). For instance,

we consider an application that runs in the infrastructure and

wants to send a message m with a size of several MB (e.g.

a video clip) to a set of mobile devices N that are located

within the same neighborhood. Instead of individually sending

m via the cellular network to all n ∈ N , the application can

send it to only a subset T ⊂ N of the mobile devices. These

devices then start to locally distribute m to the other devices

that have not received m so far. Obviously, this reduces the

load on the cellular network and works without any public

Wi-Fi hotspots. Since the inter-device communication is of

opportunistic nature, this method is known as opportunistic
traffic offloading.

A typical scenario for opportunistic traffic offloading is the

delivery of information to a particular interest group. For in-

stance, consider the mobile subscribers of a news portal which

publishes articles that include audio and video files. Whenever

a new article should be distributed to the subscribers, the news

agency can use opportunistic traffic offloading to reduce the

cellular network load. Another application is the distribution

of sensing tasks, which is relevant in the context of our Public

Sensing system Com’N’Sense1. In this context, opportunistic

1http://www.comnsense.de
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traffic offloading helps to efficiently distribute sensing tasks to

mobile devices that are eligible for recording sensor data (e.g.

[7], [8], [9]).

In general, the goal in opportunistic traffic offloading is

to find an optimal subset of prospective message receivers,

called target set T , to which m should be sent via the

cellular network, in order to ensure that m is opportunistically

forwarded to as many receivers as possible. For identifying

an optimal target set, some information about the prospective

inter-device connectivity has to be assumed. For instance, Han

et al. [5] use the history of social relations of the mobile

device owners to identify those devices that are most likely

to meet many other devices. This increases the chance that m
is widely distributed. Obviously, the drawback of this solution

lies in the fact that knowledge about the social history is not

available in most cases. Moreover, even if the system would

be able to collect this data over time, the data collection

would be very critical with respect to privacy issues. In

contrast to the prevailing approaches in opportunistic traffic

offloading, TOMP is the first that uses predictions about the

future movement of the mobile devices to estimate the inter-

device connectivity. Therefore, it only needs information about

the position and speed of the mobile devices and thus is

easily deployable in existing cellular networks. Based on the

movement predictions, TOMP delivers the cellular messages to

those devices that are most likely to meet many other devices.

More precisely, our contributions are as follows:

1) We introduce the TOMP systems for opportunistic traffic

offloading that is easily deployable in a conventional

cellular network.

2) We provide a target set selection algorithm that chooses

an appropriate target set for message distribution.

3) We present three different metrics for predicting the

future movement of mobile devices. These metrics serve

as input to the target set selection algorithm.

4) We show by extensive simulation that TOMP helps to

reduce the number of cellular messages by up to 40%

in comparison to a conventional cellular network.

The rest of this paper is structured as follows: In Section

II we introduce our system model and then give a problem

statement in Section III. For an easy solution to this problem,

we first introduce an naive algorithm in Section IV. Section V

introduces the basic message delivery process of the algorithm

used in TOMP. Section VI defines three basic metrics upon

which the target set selection algorithm, presented in Section

VII, works. In Section VIII we introduce a simple random

node selection algorithm, which we use for comparing our

system in the following evaluation in Section IX. In Section

X we give an overview of the related work in traffic offloading,

before Section XI concludes this work.

II. SYSTEM MODEL

For reasons of scalability, the geographical covered area of

TOMP is subdivided into adjacent and non-overlapping service

areas SA1, · · · , SAn. Each service area SAi has a responsible

server Si that operates in the infrastructure. A service area

Mobile Nodes

Server

Interface

Fig. 1. System Components

can contain an arbitrary number of mobile nodes. We assume

that a server always knows the set of mobile nodes that are

currently located in its service area by some node registration

mechanism (e.g. using the one introduced by Farrell et al.

[10]). Moreover, the system provides a central input interface,

which is described in Section IV in more detail. An overview

of the system components is depicted in Figure 1.

A mobile node is equipped with a GPS sensor for de-

termining its current position and speed. It is carried by a

person that moves according to an underlying road graph.

Neither movement direction nor speed of that person can be

influenced by the system. The servers are connected with

each other through a fast broadband communication network.

A server can communicate with the mobile devices in its

service area via a cellular network. To estimate the delay

of this network, we introduce a parameter τm that describes

the estimated message delivery time for message m. This

parameter describes the time span from the start of sending m
via the cellular network until successfully receiving m on a

mobile devices. Note that τm gives only an estimation on the

message delivery time since in general no real-time guarantees

for the message delivery time can be provided in cellular

networks. To get a feasible estimation for τm, we refer to

Section IX in which we determine τm for a concrete scenario.

Mobile nodes can use ad-hoc communication (e.g. Wi-Fi

Direct or Bluetooth) to exchange data with each other. The

range of this communication is limited to radhoc. We assume

that the size of a message that should be delivered with

TOMP is limited in such a way that it can be exchanged

during the meeting time of two mobile nodes. This highly

depends on the particular technology that is used for the ad-

hoc communication (for more details see Section IX). We

assume that all devices in the system cooperate by running

a corresponding app that manages the opportunistic data

forwarding. For instance, the willingness for cooperation can

be achieved by providing incentives by the cellular service

provider, who is interested in avoiding overloaded cellular

networks.

III. PROBLEM STATEMENT

The problem that TOMP tackles can be described as fol-

lows. Given is a message m, a message delivery time td and a
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Fig. 2. Three Phases of Message Delivery

set of mobile nodes N . Message m should be delivered to all

nodes n ∈ N before time td. As real-time guarantees for the

message delivery time cannot be provided, td is not a strict

deadline, i.e. delays are tolerated but should be avoided. A

mobile node can receive m either directly from the server

via cellular communication or from another node via ad-

hoc communication. The goal of our system is to provide

an algorithm that ensures that all nodes receive m while the

amount of cellular traffic is minimal and the delay of m with

respect to td is minimal. In the remainder, we are going to

present different algorithms to tackle this problem. We start

by presenting a straightforward algorithm, before we introduce

the optimized algorithms we developed for TOMP.

IV. NAIVE MESSAGE DELIVERY

First, we introduce a naive message delivery approach.

TOMP takes inputs of the format 〈m,N, td〉 via its input

interface. The input interface is deployed in the infrastructure

and publicly accessible (e.g. realized through a web service).

For this and all the following approaches, we assume that all

n ∈ N are located in the same service area and the request can

be processed by a single server, referred to as Si. Nevertheless,

all the presented concepts can be extended straightforward to

deal with the case in which multiple servers are involved.

Upon receiving an input message 〈m,N, td〉, the system

assigns the message to server Si. The subsequent message

delivery process is different in each approach. In the naive

approach, after Si has received 〈m,N, td〉 it immediately

sends m individually to all n ∈ N via cellular communication.

Note that this approach corresponds to a conventional message

delivery, which is applied in cellular networks nowadays.

Therefore, this approach will serve as a reference for the

following approaches.

V. BASIC OPPORTUNISTIC FORWARDING

To reduce the amount of cellular traffic compared to the

naive approach, TOMP uses opportunistic message forward-

ing. We say a message m is opportunistically forwarded if a

node ni ∈ N successfully sends m via ad-hoc communication

to another node nj ∈ N , which did not receive m before.

While the message delivery in the naive approach only consists

of a single step in which m is sent to all n ∈ N , the message

delivery with opportunistic forwarding can be divided into

three phases that are introduced subsequently.

A. Three Phases of Message Delivery

Upon receiving an input message, the server Si initiates the

following message delivery process (see Figure 2):

1) Si queries each n ∈ N for its position and chooses a

target set T ⊆ N (see Section VII). This point in time

is indicated as tstart. Subsequently, the server sends m
along with value td to each n ∈ T .

2) Upon receiving m from Si, a node sends an ACK

message to Si. The node starts forwarding m oppor-

tunistically to all nodes n ∈ N it encounters until time

td. Each node n ∈ N that receives m sends an ACK to

the server and also starts forwarding m.

3) The server checks after time tmax = td − τm if it

received an ACK from all n ∈ N . If that is not true

for a node n, the server sends m directly to n.

Note that Phase (3) ensures that finally all n ∈ N receive

m, which is not guaranteed by the opportunistic forwarding

used in Phase (2). In comparison to the naive approach, this

approach uses additional cellular messages, namely for getting

the positions of the nodes in Phase (1) and for sending the

ACKs in Phase (2). Unless the size of m is not very small, the

size of such control messages is negligible since the savings

in cellular traffic for sending m outweighs this overhead (see

Section IX). Next, we investigate the message delivery process

in more detail to find an optimization criterion for reducing

the amount of cellular traffic.

B. Optimization Criterion

For finding an optimization criterion, we have to take into

account that the only system parameter that we can influence

in the message delivery process is the choice of the target

set T ⊆ N in Phase (1). Since the composition of T has

an indirect impact on the number of messages sent in Phase

(3), we have to choose T in a way that the sum of cellular

messages sent in Phase (1) and (3) is minimal. To investigate

the relation between these phases we look in the following at

the number of cellular messages sent in each phase separately.

Let cell1(T ) and cell3(T ) indicate the number of cellular

messages for sending m in Phase (1) and (3) for a chosen

target set T . Moreover, let ah(T ) indicate the number of

successful message forwardings in Phase (2) for target set T .

The total number of cellular messages cell(T ) that are based

on the target set T can then be described as:

cell(T ) = cell1(T )︸ ︷︷ ︸
|T |

+ cell3(T )︸ ︷︷ ︸
|N |−|T |−ah(T )

= |N | − ah(T )

Note that the server sends m in Phase (3) to all n ∈ N that are

not in T and that did not receive m from another node. Since

N is given, we can conclude from this formula that we need

to maximize the number of message forwardings in order to

minimize the number of cellular messages. The problem is that

we cannot determine how many message forwardings will take

place if a particular target set T was chosen since we cannot

foresee the future movements of mobile nodes. As a result,

conventional optimization techniques for finding an optimal

target set T cannot be applied to this problem. Thus, to find

a T that results in a high number of message forwardings we
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Fig. 3. Free Space Coverage Metric

use a heuristic. In the next section, we introduce three different

metrics that estimate for each pair of nodes how good the

chances for a message forwarding between these nodes are.

In the subsequently following Section VII, we then present an

algorithm that selects a target set T that minimizes the number

of cellular messages with respect to these metrics.

VI. COVERAGE METRICS

Before we present the coverage metrics, we first define the

notion of coverage upon which these metrics are based. We say

node ni covers node nj , if ni is able to send m to nj before

time tmax. Note that in contrast to the notion of forwarding,

coverage only states that two nodes are able to exchange m at

some time before tmax. To quantify this coverage, we define

for each pair of nodes a coverage relation that is stored in

a |N | × |N | matrix, referred as coverage matrix. Each entry

(ni, nj) in this matrix takes values from the range [0, 1] and

describes the confidence that ni can cover nj . Since the actual

coverage relations cannot be foreseen, the entries of this matrix

are of a probabilistic nature. For defining the coverage matrix,

we introduce three different coverage metrics. The resulting

matrix serves as input for the target set selection algorithm,

which is introduced in the subsequent section.

A. Static Coverage

The static coverage metric analysis the coverage relations

of two nodes based on their current positions. It does not take

into account the future movement of the nodes and is therefore

especially applicable if no information about the nodes’ speed

is available. The idea of the metric is to determine for each

node n the set of other nodes to which n could immediately

send m at the start of Phase (2). These relations are stored in

the |N | × |N | matrix s-cover. With dist(ni, nj) depicting the

Euclidean distance between the nodes ni and nj , the matrix

has the following entries:

s-cover(ni, nj) =

{
1, if dist(ni, nj) ≤ radhoc

0, else

Note that this metric only analyzes the nodes’ positions at

the start of the message delivery process and does not consider

that a node may move around and cover further nodes until

time tmax. To also include this aspect, we present in the

following two mobility-based coverage metrics.

(a) Possible Positions (b) Possible Meeting Points

Fig. 4. Graph-based Coverage Metric

B. Free Space Coverage

The free space coverage metric is an extension of the static

coverage metric, which also considers the possible movement

of the nodes in free space. Even though we assume that the

mobile nodes move according to an underlying road graph,

this metric works without any knowledge about this graph. As

stated in the system model, we assume that we do not know

anything about the future movement of a node, i.e. neither

its prospective speed nor its direction. Therefore, we have to

estimate the coverage relation between two nodes on base of

their current position and speed.

For the free space metric, we define the |N | × |N | ma-

trix fs-cover. If node ni and nj can exchange a message

directly at time tstart (i.e. s-cover(ni, nj) = 1), we set fs-
cover(ni, nj) = 1. If that is not the case, we use the meeting

probability of two nodes at time tmax, referred to as fs-pij , as a

heuristic for their coverage relation. The higher this probability

is, the higher is the chance that their movement trajectory

may overlap and they can exchange m. Knowing a node’s

n position (xn, yn) and its maximum speed vmax, we can

determine all possible positions of n at time tmax. These

positions constitute a circle that is centered at (xn, yn) and

has as radius the maximum distance dmax = vmax · Δt that

node n can pass in time Δt = tmax − tstart (see Fig. 3(a)).

We refer to this circle as C(n) and to the area of this circle as

A(C(n)). For defining the meeting probability of two nodes

ni and nj , we construct the respective movement circles C(ni)
and C(nj). The area of intersection of these circles constitutes

the possible meeting points of the two nodes (see Fig. 3(b)).

Note that this area can be the empty set if the two nodes are

located far away from each other. The meeting probability in

free-space is given as:

fs-pij =
A(C(i) ∩ C(j))

A(C(i)) ·A(C(j))

Where the numerator constitutes the number of possible com-

mon points, while the denominator denotes the number of

combinations of all possible positions of ni and nj . As a result,

we define the entries of the matrix fs-cover as:

fs-cover(ni, nj) =

{
1, if dist(ni, nj) ≤ radhoc

fs-pij else

Note that each matrix entry takes values from the range [0, 1].
Since an entry (ni, nj) only has value 1 if s-cover(ni, nj) = 1,

this case implies the highest confidence in a coverage.
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C. Graph-based Coverage Metric

The graph-based coverage metric follows the same idea as

the free space metric, but in contrast also takes the structure of

the underlying road graph into account. With the help of this

additional information, we can limit the movement prediction

of the mobile nodes to the road graph. This results in a better

estimation for the coverage relations of the nodes.

Again, we use the meeting probability of two nodes at

time tmax as heuristic for determining their coverage relation.

Given the maximum distance dmax = vmax·Δt that a node can

pass until tmax, we determine for every node n those points

P (n) on the road graph that can be reached by the node from

its starting point (xn, yn). As a result, P (n) contains all road

points that are not more than dmax away from (xn, yn) when

traversing the shortest path (shown as the dashed segments

in Fig. 4(a)). Given the two sets P (ni) and P (nj), we can

determine the set of road points P (ni) ∩ P (nj) that can be

reached by both nodes ni and nj (shown as solid segments

in Fig. 4(b)). With the help of these definitions, we define the

graph-based meeting probability of the two nodes ni and nj

as:

gb-pij =
|P (ni) ∩ P (nj)|
|P (ni)| · |P (nj)|

For determining the graph-based coverage metric we intro-

duce the |N | × |N | matrix gb-cover, which has the entries:

gb-cover(ni, nj) =

{
1, if dist(ni, nj) ≤ radhoc

gb-pij else

Analogous to the free space coverage metric, a matrix entry

(ni, nj) = 1 implies the highest confidence in a coverage.

VII. TARGET SET SELECTION ALGORITHM

Having defined the coverage metrics, the last step is to

choose those nodes out of N that are most promising to reduce

the total amount of cellular messages. Before we present an

algorithm for this selection, we have a closer a look at the

complexity of this problem.

A. Problem Analysis

As already pointed out, in order to reduce cellular traffic we

have to maximize the number of ad-hoc forwardings. Since

the coverage metrics give an indication if such a forwarding

between two nodes is possible or not, we select those nodes for

the target set that are most promising to result in a high number

of forwardings. To analyze the complexity of this selection,

we first have a look on the target set selection when using the

matrix s-cover that is based on the static coverage metric.

Matrix s-cover contains only binary relations, i.e. ni covers

nj ((ni, nj) = 1) or not ((ni, nj) = 0). In order to minimize

the number of cellular traffic, the target set T should contain

the minimal set of nodes that cover all other nodes, i.e.:

∀n ∈ N, ∃n′ ∈ T : s-cover(n′, n) = 1

This condition ensures that each node in N is covered by at

least one node that is in T . Delivering m at time tstart to

Require: cover(nij)
1: T ← ∅
2: CV [1...|N |] ← CALC-CV(cover(nij)) {// see Eq.(1)}
3: while ∃i : CV [i] ≥ 1 do
4: nmax ← GET-MAX(CV )

5: T ← T ∪ nmax

6: for j = 1 → |N | do
7: if cover(nmax, nj) > 0 then
8: sub ← cover(nmax, nj)
9: for i = 1 → |N | do

10: cover(ni, nj) ← max(0, cover(ni, nj)− sub)
11: end for
12: end if
13: end for
14: CV [nmax] ← 0
15: CV [1...|N |] ← CALC-CV(cover(nij))
16: end while
17: return T

Fig. 5. Greedy Target Set Selection Algorithm

all n ∈ T then means that all nodes are immediately covered

and cell(T ) = cell1(T ) = |T |. Looking at the complexity

of finding such a minimal set T , we see that this problem

is equivalent to the well-studied set-coverage problem [11].

Unfortunately, the set-coverage problem is known to be NP-

hard, which makes the computational effort for an algorithm

that always returns the optimal T unfeasible.

For the target set selection based on fs-cover and gb-
cover, we face a similar problem with the difference that

the respective matrix can contain all values from the range

[0, 1]. Nevertheless, we again want to find a minimal set of

nodes that covers all other nodes. Facing the same problem

but dealing with more possible values, we can conclude that

the aforementioned problem is a special case of this more

complex problem. As a result, this problem is NP-hard as

well. To tackle this problem in an efficient way, we present

an intuitive greedy algorithm for the selection of T .

B. Greedy Algorithm

For solving the target set selection problem, we extend the

greedy set cover algorithm of Johnson [12] to deal with non-

integer values and apply it to our problem. As input we use one

of the coverage matrices defined in the previous section (s-, fs-,
or gb-cover). We refer to this input as the cover matrix. Given

the cover matrix, we first define the coverage value cv(ni) for

a single node ni by calculating the sum of its matrix line i:

cv(ni) =

|N |∑
j=1

cover(ni, nj) (1)

This coverage value constitutes the selection criterion for our

greedy algorithm. The general idea of the algorithm is to

greedily choose the node with highest coverage value for the

target set T since this promises the most message forwardings.

After selecting a node n for T , we have to adapt the coverage
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Fig. 6. Example Matrix Manipulation

matrix, since the coverage relations of n should no longer

be considered for the next selections. The single steps of the

algorithm are presented in the following.

The algorithm (see Fig. 5) starts by computing the corre-

sponding coverage value for every line of the matrix (Line 2),

before it enters a loop that contains the greedy selection (Line

3–16). After having added the node nmax with the highest

coverage value to T (Line 5), the algorithm checks which other

nodes nj are covered by nmax (i.e. cover(nmax, nj) > 0). For

all covered nodes nj the algorithm subtracts the cover value of

nmax from all entries in the column of nj . Since this column

contains the cover value of all other nodes that also cover nj ,

we assume for further iterations that nj is already cover by

nmax. An example of this operations for a 5 × 5 matrix is

shown in Fig. 6. Therein, n0 it chosen to be added to T since

it has the highest coverage value (left matrix). Accordingly,

the respective cover values are subtracted from all other nodes

(right matrix). After one iteration the coverage value of nmax

is set to 0 to exclude it from the following greedy selections

(Line 14). Furthermore, the coverage value of each line is

recalculated since the matrix entries changed (Line 15). The

iteration ends if there is no coverage values left that is bigger

than 1. Since in every coverage metric a node covers itself (i.e.

cover(ni, ni) = 1), a coverage value smaller than 1 means

that the node is covered by some other node and should not

be included in T .

VIII. RANDOM NODE SELECTION

For comparing the concepts developed for TOMP, we briefly

introduce a simple algorithm that selects the target set in a

probabilistic way. One basic way to do this is utilized by Han

et al. [5] who randomly select k nodes from N , where k is

fixed. In contrast, we argue that for a good target set selection

the size of k should depend on the size of N and thus choose a

more flexible solution. We define a fixed parameter r ∈ (0, 1)
as a tuning parameter. Based on r, the server randomly chooses

r·|NA| nodes from NA to form T . Accordingly, smaller values

of r result in a small size of the target set (i.e. |T | << |N |).
All other operations are the same as in TOMP.

IX. EVALUATION

To compare the efficiency of message delivery with the

proposed coverage metrics, we implemented our system using

the ns-2 network simulator. The results of these simulations

are presented after the following simulation setup.

A. Simulation Setup

For simulating the movement of mobile nodes, we based

our simulations on movement traces generated by the trace

file generator CanuMobiSim [13]. As input, we used the road

graph of the inner city of Stuttgart, which has a size of 2 km x

2 km. This road graph also constituted the base for the graph-

based coverage metric. In the simulation, we set the size of

message m to 1 MB, the message delivery time td to 300 s

and the number of nodes were varied from 100 to 900.

For ad-hoc communication we simulated a Bluetooth com-

munication with a range of 10 m. Message m can be trans-

ferred via Bluetooth 3.0+HS in less than one second [14],

which is a suitable time for an opportunistic message exchange

considering the speed of human movement. Note that the latest

Bluetooth standards and Wi-Fi-Direct promise even higher data

rates by using the 802.11n specification, which can reach data

rates up to 600 Mbps [15]. These techniques can be used for

delivering messages of a much larger size.

For the cellular network, we simulated a HSDPA network.

To cover the road graph, we followed the assumption from

[16] and simulated 16 base stations located 500 m away from

each other. Based on this, we can estimate the message

delivery time for the network τm as follows: Assuming that

all nodes n ∈ N are uniformly distributed, each base station

has to send m to |N | /16 nodes on average to delivery m
concurrently to all nodes. Considering an average downlink

bandwidth of 2.5 Mbps [16] for each base station, a base

station can send m of size 1 MB to all its nodes in time

τm = |N | /16 · (8Mbit/2.5Mbps) = |N | /5 s. For instance,

running a simulation with |N | = 900, we set τm = 180. Note

that this is only a best case estimation, which is a priori needed

for defining the start of Phase (3). Since nodes are in general

not uniformly distributed, it is possible that a base station has

to send m to more than |N | /16 nodes. This will result in a

larger message delivery time than in the best case estimation.

For the evaluation, we investigate the subsequently listed

approaches:

1) NAIVE – Using the naive approach (see Section IV).

2) RAND – Using the random cellular offloading approach

presented in Section VIII. We set the tuning parameter

to the value of r = 0.1, which turned out to be the best

after running several simulations.

3) S-COVER – Using the TOMP system with the static

coverage metric (see Section VI-A).

4) FS-COVER – Using the TOMP system with the free

space coverage metric (see Section VI-B).

5) GB-COVER – Using the TOMP system with the graph-

based coverage metric (see Section VI-C).

As already mentioned, the naive approach works without

position messages and ACK messages that are used in the

other approaches. Since the size of such ACK messages is

negligible in case of a message sizes of 1 MB, we do not

consider them in the following analysis. Therefore, we only

analyze the number of cellular messages that were sent in each

of the approaches and not the amount of cellular data traffic.
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Fig. 7. Total Number of Cellular Messages

This has the advantage that the amount of cellular traffic for

other message sizes can be derived from the following results.

B. Simulation Results

At first, we analyze the number of cellular messages that

were sent in each of the approaches. In a second step, we

check how many messages arrived before time td. Finally, we

look at the number of cellular messages that were sent in the

different phases of message delivery individually.

1) Total Number of Cellular Messages: We see from Fig.

7 that especially for a large number of nodes the graph-based

approach uses the least amount of messages. Compared to the

naive approach it saves up to 40% of cellular messages and

therefore clearly underlines the advantages for using TOMP.

Even the free space coverage approach, which can be used if

the road graph is unknown, saves up to 30% compared to the

naive approach. Furthermore, we see that the static coverage

approach performs better than the naive approach but not better

than the random approach. This stems from the fact that in the

random approach the nodes can distribute m until time tmax,

while with the static coverage metric m is directly delivered

to all n ∈ N at time tstart. As a result we can conclude that it

is better to fully utilize the whole time until tmax to distribute

m instead of statically calculating the coverage relations.

2) Message Delay: For analyzing the message delay we

set the number of nodes to 600. In Fig. 8 we see for each

approach the percentage of messages that were delivered to

the mobile nodes within the time depicted on the x-axis. For

all approaches more than 90% of the messages are delivered

before time td. Messages that arrive after td are delayed due

to the congestion on the cellular network in Phase (3) of

the message delivery. While the random and the free space

approach come with some delay for a small percentage of

messages, the graph-based approach comes with almost no

delay (< 1% of the messages) and the static coverage delivers

all messages before time td. To understand these results, we

analyze in the following the number of messages send in each

phase of the message delivery process separately.

3) Number of Cellular Messages by Phase: First, we look

in Fig. 9 at the number of cellular messages that are sent in
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Fig. 9. Messages in Phase (1)

Phase (1), i.e. the messages that are sent to the target set. While

the naive and the static coverage approach choose the largest

target set, out of the three other approaches the graph-based

coverage approach delivers to the largest target set. At first,

this looks quite surprising because in total this approach causes

the smallest number of cellular messages, as seen before. If we

also take Fig. 10 into account, we can see that for using this

approach the number of ad-hoc messages that are sent is much

higher than in the other approaches. Furthermore, from Fig.

11 we can see that this leads to a minimal number of messages

that are sent in Phase (3). From this we can conclude that with

the help of the graph-based approach a better target set can

be chosen, which maximizes the number of ad-hoc message

exchanged. Even if the number of cellular messages in Phase

(1) is higher than for the other approaches, this pays off in

Phase (3) since most of the receiver nodes have already been

reached via ad-hoc messages. Again, the free space approach

lies between the graph-based metric and the random approach.

Therefore, the metric does not represent the coverage relations

of the nodes as appropriate as the graph-based metric but

performs better than a random node selection.

From Fig. 11 we can also conclude why the graph-based

approach does not result in a very high delay in contrast to the

random or free-space approach (as depicted in Fig. 8). This can

be explained by the fact that the graph-based approach sends
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less cellular messages in Phase (3) and therefore reduces the

chances for a congestion on the cellular network. As result,

almost all of the messages arrive in time.

C. Discussion

As a conclusion for our simulations, we can say that every

coverage metric introduced by TOMP significantly lowers the

number of cellular messages compared to the naive approach.

Furthermore, we showed that TOMP can use information

about the road graph efficiently to lower the number of cellular

messages. The comparison with the random algorithm also

showed that it is better to fully utilize the whole message

delivery time tmax instead of delivering all message immedi-

ately (as the static coverage approach). Furthermore, the delay

in message delivery for all approaches is rather minimal or not

relevant at all.

X. RELATED WORK

Before we conclude this work, we compare TOMP with

current research on cellular traffic offloading. One of the first

works that came up with a concept to use local-area networks

to unburden data from the cellular network was proposed by

Balasubramanian et al. [17]. Predicting the probability of the

future connectivity of a mobile device to Wi-Fi hotspots, they

decide whether data that is intended to be transferred via the

cellular network can be delayed until a Wi-Fi connection is

available. A similar approach is described by Dimatteo et al.

[18]. In addition to [17], they showed that by a certain number

of available Wi-Fi access points certain quality of service re-

quirements for data delivery can be provided. For distributing

data from Wi-Fi access points to mobile devices, Ristanovic et

al. [4] present a concept using so called HotZones. These are

areas that are covered by Wi-Fi hotspots and are frequently

visited by mobile devices. Instead of communicating data

directly to the mobile devices, data is communicated via Wi-

Fi in these HotZones. All the aforementioned approaches

rely on the availability of publicly accessible Wi-Fi hotspots,

which are not required in opportunistic traffic offloading. For

instance, to upload data to the infrastructure, Thilakarathna

et al. [3] propose the MobiTribe framework. Therein, mobile

devices opportunistically replicate content that is intended for

an upload to other mobile devices that have more energy left.

More similar to TOMP, the following approaches consider

traffic offloading by distributing data from the infrastructure to

a target set of mobile nodes, which then forward the message

via ad-hoc communication. For instance, Li et al. [19] look

at the distribution of multiple messages to a set of mobile

nodes. Assuming that nodes can only store a limited number

of messages, they formulate an optimization problem. The

goal is to find an optimal set of nodes that can store the

messages and are likely to contact many other nodes. Since

they focus on solving the storage problem, they assume that

the messages forwarding between the nodes follows a Poisson

process. Therefore, they do not utilize any position related

information about the nodes. In contrast, Whitbeck et al. [20]

and Han et al. [5] propose target set selection strategies that

utilize available information about the nodes. Whitbeck et al.

[20] use information about the node density to identify the

nodes for the target set. Since node density does not indicate

coverage relations, which are needed for defining the target

set size, they fix the size of the target to a static value that is

set a priori. As a result, there is no relation between the size

of the target set and the meeting probabilities of the nodes,

as in TOMP. Han et al. [5] also take the meeting probabilities

of two nodes into account but they derive it from the social

history of the nodes, which is not needed in TOMP.

XI. CONCLUSION & FUTURE WORK

Facing the problem of overloaded cellular networks, we

introduced TOMP and showed that it can significantly reduce

cellular traffic load. By introducing different coverage metrics

we presented a range of different offload strategies, which

solely require information about the nodes’ position and speed.

In future work we will investigate an adaptive message

delivery mechanism. So far TOMP makes an a priori decision

about the selection of the target set for Phase (1). We will

investigate if it is also beneficial to dynamically update the

coverage metrics to the state of the message delivery (indicated

by the ACK messages). The server could use this information

to send additional cellular messages in Phase (2), which could

help to enhance the ad-hoc message distribution.
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