
Exact Convex Formulations of Network-Oriented
Optimal Operator Placement

Ben W. Carabelli, Andreas Benzing,
Frank Dürr, Boris Koldehofe, Kurt Rothermel

Institute for Parallel and Distributed Systems
University of Stuttgart

70569 Stuttgart, Germany
Email: {firstname.lastname}@ipvs.uni-stuttgart.de

Georg Seyboth, Rainer Blind, Mathias Bürger,
Frank Allgöwer

Institute for Systems Theory and Automatic Control
University of Stuttgart

70550 Stuttgart, Germany
Email: {firstname.lastname}@ist.uni-stuttgart.de

This is the author-prepared version. The definitive version will appear in Proc. 51st IEEE Conf. Decision and Control (CDC).
c© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Data processing tasks are increasingly spread
across the internet to account for the spatially distributed
nature of many data sources. In order to use network resources
efficiently, subtasks need to be distributed in the network so data
can be filtered close to the data sources. Previous approaches
to this operator placement problem relied on various heuristics
to constrain the complexity of the problem. In this paper, we
propose two generic integer constrained problem formulations:
a topology aware version which provides a placement including
the specific network links as well as an end-to-end delay aware
version which relies on the routing capabilities of the network.
A linear programming relaxation for both versions is provided
which allows exact and efficient solution using common solvers.

I. INTRODUCTION

Many data-processing tasks like context reasoning [1],
estimation using Kalman filters in wireless sensor networks
[2] or data aggregation in global sensor networks [3], require
the processing of data received at spatially distributed sources
for the use at specific locations. Rather than gathering all
data at a central location, it is favourable to process the
data already in the underlying communication network. Such
solutions can significantly reduce the network usage. In order
to distribute the data-processing task, it is split into several
subtasks. Local operators receive input data, perform their
subtask and stream processed data further across the network
to other operators. The operators are independent processing
entities and can be executed on any node in the underlying
network.

In many use cases, high-bandwidth data streams are
required to connect operators and provide results in real-time.
Therefore, the placement of operators has a severe impact not
only on the performance of the networked application, but
also on the use of resources of the underlying network [4].
Network usage can colloquially be described as the amount of
data that is currently being transmitted. This quantity scales
with the amount of data transmitted and the time it takes for
that data to reach its destination. In technical terms, network
usage on a particular link is therefore given by the bandwidth-

delay product for that link, and the network usage induced by
a stream processing task is given by the sum of the network
usage on all links occupied by this task. In order to achieve
optimal use of network resources, operators that are not fixed
to a certain location have to be placed in the network such
that the bandwidth-delay product is minimized.

With the emergence of internet-scale networked applica-
tions, the optimal operator placement problem has moved
into the focus of research. A generic overview on placement
strategies for internet-scale systems can be found in [4]. Two
major directions have been pursued in the recent literature.

On the one hand, application oriented placement approaches
focus on the execution cost in terms of CPU and memory
resources. In this context, cost models of centralized ap-
proaches, originally developed for database applications, have
been adapted to networked data-stream-based applications
[5]–[7]. As the system is required to be fully aware of
the operator behaviour, the workload is distributed among
operators in a cost optimal fashion. However, the high
bandwidth applications considered in the present paper require
the optimization of network usage rather than processing cost.

This aspect is addressed by the second major research area.
Network oriented approaches focus on the optimization of the
network usage. Some fully distributed algorithms, which aim
to minimize the network usage, were recently proposed [8]–
[10]. These approaches require only statistical information
about the data rates between operators but no information
about their functionality. The distributed approaches are self-
organizing, i.e., each operator periodically tries to find a better
position in the network based on local knowledge. To make
this problem computationally feasible, the underlying network
is abstracted by a euclidean latency space, used to estimate the
delay between two network nodes. Over time, the placement
continuously improves towards a locally optimal placement.
Since only the abstracted latency space is considered, instead
of a graph model of the actual network, these approaches
cannot be guaranteed to find a globally optimal solution. In
fact, all approaches mentioned above either employ heuristics

for generic placement frameworks or require very specific
information about the operators used by the application. In
contrast, we propose in this paper an exact, network oriented
formulation of the optimal operator placement problem and
show how it can be efficiently solved.

The contributions of this paper are as follows. We model
the network oriented operator placement problem with two
exact integer constrained optimization problems. We then
show, that both problem formulations can be reformulated
as convex linear programs without losing the integrality
structure of the solution. The first problem formulation
explicitly considers the topology of the underlying network.
This problem formulation follows from a direct modelling
of the problem as an interconnection of several shortest-path
problems. We show that the convex relaxation of the integer
linear program yields the exact integer solution.

The second problem formulation we consider ignores the
topology of the underlying network, but requires that the
end-to-end delays between the nodes of the underlay network
are known. This assumption can be useful in order to leverage
routing capabilities provided by the network. The operator
placement problem is formulated as a bilinear integer program.
We show that this bilinear problem can again be reformulated
as a linear program with integer solutions, and the integer
solutions are the exact solutions of the original problem. Both
problem formulations can be solved efficiently for large-scale
networks using standard optimization tools and, in contrast
to the available heuristics, guarantee an optimal solution of
the operator placement problem.

The remainder of this paper is structured as follows. In
Sec. II, the optimal operator placement problem is presented
in a general formulation. Then, in Sec. III, the operator
placement problem is formulated as an integer constrained
linear program. It is shown that the convex relaxation of the
integer constraint leads to the exact solution. An alternative
problem formulation as an integer constraint bilinear program,
which does not require information about the topology of the
underlay network, is presented in Sec. IV. It is shown that
the integer bilinear program can be reformulated as a convex
linear program. To show the practical applicability of our
approach, a simulation study is provided in Sec. V. Finally,
in Sec. VI concluding discussions are provided.

II. THE OPTIMAL OPERATOR PLACEMENT PROBLEM

We consider a network of physical processors, that are
each capable of hosting multiple of the operators required for
a stream processing task. The processors are all connected
through a communication network, e.g., the internet. We refer
to this network in the following as the underlay network,
and model it by a directed graph Gu = (Nu, Eu). Each
edge i ∈ Eu corresponds to a link in the underlay network
used by a node in Nu to transmit data to another node.
The time-delay affecting the data transmission over link i

1

2

4

6

Gu

3

5

Go1

2

3

4

5 6

r3 · do,3

du,1
du,2

Figure 1. Example of an overlay graph Go (top) and an underlay graph
Gu (bottom). The overlay nodes 1, 2, 3 and 6 have fixed positions in the
underlay graph, whereas 4 and 5 are freely placeable. The mapping of the
overlay edge (3, 5) to the underlay graph is highlighted (). The cost
induced by this edge would be given by r3 · do,3 with do,3 = du,1 + du,2
in this example.

is denoted with du,i > 0, i = 1, . . . , |Eu|. For simplicity,
we assume throughout this paper that the time-delay over a
communication link is constant and has been measured a-
priori. As a notational convention, we collect the time-delays
over all edges in the vector du = [du,1, . . . , du,|Eu|]

T.
The objective of this paper is to optimally place the

operators required for a stream processing task on the nodes
of the underlay network. Thus, corresponding to the underlay
network, also the stream processing task is modelled as a
graph, i.e., the operator network also referred to as overlay
network. The overlay network is described by the graph
Go = (No, Eo), which is assumed to be simple and directed.
Each edge l ∈ Eo corresponds to a link in the overlay network
between two stream processing operators in No, which are
denoted by s(l) and e(l). Again, the time-delays over all
edges are collected in the vector do = [do,1, . . . , do,|Eo|]

T.
The required bandwidth of link l is denoted by rl > 0,
l = 1, . . . , |Eo|, and we write r = [r1, . . . , r|Eo|]

T. The
incidence matrix of Go is denoted by Eo.

Some nodes of the operator graph No represent sources
or sinks, where the data stream is generated or terminates,
respectively. We denote those nodes with Fo ⊂ No. All
nodes in Fo have a fixed location in the underlay network and
cannot be moved. All other nodes, i.e. those nodes in No \Fo,
represent freely placeable operators. The relationship between
the underlay and overlay graph as well as the processors and
the freely placeable operators is depicted exemplarily in Fig. 1.
Note that each flow is assumed to be mapped to a single path,
which always leads to an optimal placement, as our analysis
will show. In case of bandwidth restrictions on underlay links,
the splitting of flows over several paths may be necessary
or beneficial. However, we here consider the case without
bandwidth restrictions.

The Operator Placement Problem is now to find an optimal

2

assignment of the freely placeable operators to the nodes of the
underlay network, such that the network usage is minimized.
Thus, we aim to minimize the bandwidth-delay product for
the stream processing task

min
∑
l∈Eo

do,lrl. (1)

subject to all constraints posed by the stream processing task.

III. TOPOLOGY AWARE FORMULATION

In this section, we assume that the entire topology of the
underlay network is known and the network routes must be
configured. The topology of the underlay network is described
by the incidence matrix Eu ∈ R|Nu|×|Eu| of the graph Gu.
The incidence matrix Eu is a {0,±1}-matrix with rows and
columns indexed by the nodes and edges of Gu such that[
Eu

]
ik

has value +1 if i = s(k) (i.e. node i is the initial
node of edge k), −1 if i = e(k) (i.e. i is the terminal node
of k), and 0 otherwise.

A. Linear Program Formulation

To encode the paths in the underlay network that realize
the overlay edges, we define the path indicator vectors xl ∈
{0, 1}|Eu|, l = 1, . . . , |Eo|. The elements of xl are one if the
corresponding underlay edge belongs to the path, and zero
otherwise. Furthermore, we define variables pj ∈ {0, 1}|Nu|,
j = 1, . . . , |No|, which encode the position of operator j in
the underlay network. The indicator vector pj contains only
a single non-zero entry 1 in the element corresponding to the
node in Nu where operator j is located. Hence, 1Tpj = 1
for all j = 1, . . . , |No|.

Having defined these variables, the operator placement
problem can be stated as follows. By using the path indicator
vector xj , the delay of the corresponding overlay edge j can
be calculated from the underlay delay vector as

do,l = dT
uxl. (2)

Moreover, xl represents a path from overlay node s(l) to
overlay node e(l) if and only if Euxl = pe(l) − ps(l). Thus,
the optimal operator placement problem becomes

min dT
u

|Eo|∑
l=1

rlxl (3)

s.t. Euxl = pe(l) − ps(l) l = 1, . . . , |Eo|
xl ∈ {0, 1}|Eu| l = 1, . . . , |Eo|
pj ∈ {0, 1}|Eu|, 1Tpj = 1 j = 1, . . . , |No|
pk = p̄k k ∈ Fo.

Note that the positions of the source and sink operators k ∈ Fo

are constrained to the fixed positions p̄k. The optimization
problem (3) is an integer constrained linear program. Problems
of this kind are in general non-convex and therefore hard to

solve. However, the present problem admits an exact integer
relaxation, which is presented in the following section.

B. Relaxation

We first relax the integer constraints in (3) and then
show that the resulting linear program (LP) solves the
original integer constrained problem exactly. The relaxed
linear program is given by

min dT
u

|Eo|∑
l=1

rlxl (4)

s.t. Euxl = pe(l) − ps(l) l = 1, . . . , |Eo|
xl ≥ 0 l = 1, . . . , |Eo|
pj ≥ 0, 1Tpj = 1 j = 1, . . . , |No|
pk = p̄k k ∈ Fo.

In order to show that the solution of (4) solves the integer
constrained problem (3), we rewrite (4) in standard form

min cTy (5)
s.t. Ay = b

y ≥ 0,

with decision variable

y =
[
xT1 · · · xT|Eo| p

T
1 · · · pT

|No|

]T
(6)

and cost gradient cT =
[
(rT ⊗ dT

u) 0
]
. The constraint matrix

A and constraint vector b can be constructed as

A =

(I|Eo| ⊗ Eu) −(ET
o ⊗ I|Nu|)

0 (I|No| ⊗ 1T|Nu|)

0 (F ⊗ I|Nu|)

, b =

 0

1|No|

p̄

. (7)

The matrix F ∈ {0, 1}|Fo|×|No| has one row for each fixed
operator k ∈ Fo, with a single 1 in column k. The vector p̄
is the stack vector of the corresponding fixed positions p̄k.

To show that the solution of the relaxed problem (4) solves
the integer program (3), we employ the concept of totally
unimodular matrices.

Definition 1 ([11]). A square integer matrix is called
unimodular if its determinant is 0, +1 or −1.

Definition 2 ([11]). A matrix M is called totally unimodular
if each square submatrix of M is unimodular.

Facts ([11]).
1) If M is totally unimodular, then

[
M I

]
is also totally

unimodular.
2) If M is totally unimodular, then MT is also totally

unimodular.
3) Total unimodularity is preserved, if a row with at most

one +1 or −1 is inserted.

3

4) A {0,±1}-matrix with exactly one +1 and one −1 in
each column is totally unimodular. Hence, all incidence
matrices are totally unimodular.

Theorem 1 ([11]). The LP (5) has an integral optimal
solution for all integer vectors b for which it has a finite
optimal solution value, if A is totally unimodular.

Theorem 2 ([12]). A matrix M ∈ {−1, 0,+1}n×m is totally
unimodular if and only if each row-subset I ⊂ {1, . . . , n} of
M can be partitioned into index sets I1 and I2, I1∪I2 = I ,
I1 ∩ I2 = ∅, such that for each column j ∈ {1, . . . ,m},(∑

i∈I1

Mij −
∑
i∈I2

Mij

)
∈ {−1, 0, 1}. (8)

With these preliminaries in place, we are ready to state the
main result of this section.

Theorem 3. The optimal solution of the integer relaxed
linear program (4) also solves the integer constrained linear
program (3).

Proof: According to Thm. 1, the integer relaxed linear
program (4) also solves the integer constrained linear program
(3) if b is integral and A is totally unimodular. The vector
b in (7) is integral, therefore it remains to show that A is
totally unimodular.

Each row of [
0 (F ⊗ I|Nu|)

]
contains exactly one non-zero element. Hence, these rows
can be removed from A and it remains to show that

M =

[
(I|Eo| ⊗ Eu) −(ET

o ⊗ I|Nu|)

0 (I|No| ⊗ 1T|Nu|)

]
(9)

is totally unimodular.
To prove that M is totally unimodular, we introduce

M̂ =

[
−ET

o

I|No|

]
, (10)

which is totally unimodular due to Facts 1, 2, and 4 and
noting that Eo is an incidence matrix. By Thm. 2 we know
that each collection Î of rows of M̂ can be split into two
index sets Î1 and Î2, Î1 ∪ Î2 = Î, Î1 ∩ Î2 = ∅ so that the
sum of the rows in Î1 minus the sum of the rows in Î2 is a
vector with entries only 0, +1 or −1. Next, we show that for
each given row-subset I of M , we can construct an adequate
partition based on the partitioning of Î.

In the following, we will exploit the similarities in the
structure of M and M̂ . Each row in −ET

o of M̂ corresponds
to a block of |Nu| rows in M of the form

R =
[

0 · · · Eu · · · 0 a1I|Nu| · · · a|No|I|Nu|

]
,

where ai are the entries of the corresponding row from −ET
o .

Similarly, each row in I|No| of M̂ corresponds to one block
in I|No| ⊗ 1T|Nu| of M .

Given I, we obtain a row-subset Î of M̂ by choosing
those rows, which correspond to the blocks of M containing
one or more rows of the set I . As already stated, there exists
an adequate partition of Î into Î1 and Î2. The corresponding
partition of I into I1 and I2 can be constructed as follows.
If a row in I is part of a block of M which corresponds to
a row of M̂ in Î1, then this row is assigned to I1 and vice
versa. By construction, all rows of I within one block R are
in the same index set I1 or I2. Since the support columns
of the Eu-blocks in M are all disjunct and each arbitrary
selection of rows of Eu sums up to a {0,±1}-vector, it holds
that (∑

i∈I1

Mij −
∑
i∈I2

Mij

)
∈ {−1, 0, 1}

for each column j = {1, . . . , |Eo||Eu|} of (9). The same holds
for the remaining columns j = {|Eo||Eu|+ 1, . . . , |Eo||Eu|+
|No||Nu|} due to the structure of (9) and (10). Therefore,
M is totally unimodular by Thm. 2 and thus A is totally
unimodular.

Thm. 3 shows that the optimal operator placement problem
can be solved efficiently, despite the integer constraints in the
original problem formulation. It is in fact possible to solve
the exact operator placement problem using standard linear
programming tools. Note that the problem formulation (3)
made no special restrictions on the underlay network topology,
but required complete knowledge thereof. In fact, the solution
of (3) contains explicitly the optimal path vectors in the
underlay network, corresponding to the routing path used for
the data streaming. This implies that an implementation of
the optimal operator placement, according to (3), additionally
provides the routing mechanism of the underlying physical
network. However, the requirement for explicit knowledge
of the underlay network topology might be undesirable for
some applications. Therefore, we now present an alternative
formulation of the optimal operator placement problem, where
only the end-to-end delays must be known.

IV. END-TO-END DELAY AWARE FORMULATION

In this section, we assume that the underlay network
is strongly connected and provides routing in a fashion
transparent to the overlay application. In contrast to the
previous problem formulation, we assume now that only
the end-to-end delay between any two underlay nodes can
be directly measured, while the underlying network topology
is unknown. The end-to-end delays are then collected in the
latency matrix D ∈ R|Nu|×|Nu|

+ , where Di1i2 denotes the
time-delay from underlay node i1 to underlay node i2, and
we assume Dii = 0, ∀i ∈ Eu.

4

A. Bilinear Program Formulation

We consider now only the operator position vectors
pj ∈ {0, 1}|Nu|, as already defined for the topology aware
problem formulation (3), as decision variables. Using the
latency matrix D, the optimal operator placement problem
can now be formulated as the bilinear, integer constrained
problem

min
∑
l∈Eo

rl pT
s(l)D pe(l) (11a)

s.t. pj ∈ {0, 1}|Nu|, 1Tpj = 1, j ∈ No (11b)
pk = p̄k, k ∈ Fo. (11c)

The formulation (11) results from a direct modelling
of the operator placement problem. Note, however, that
the bilinear integer program is non-convex and does not
necessarily possess a unique minimizer. Solving problem (11)
directly using numerical solvers can become computationally
expensive. Due to the non-convexity, it is also not guaranteed
whether numerical solvers can find the global optimal solution.
To overcome these issues, we propose in the following an
exact reformulation of (11) as a linear program, which can
be solved very efficiently.

B. Relaxation

We show first that the problem (11) can be reformulated
as an equivalent integer relaxed linear program, which solves
the original bilinear integer problem exactly. This is done
by introducing the auxiliary variables xl = vec

(
pe(l)p

T
s(l)

)
,

l ∈ Eo, where vec(·) denotes the column-first vectorization
of a matrix, and relaxing the integer constraints (11b) to

pj ≥ 0 and 1Tpj = 1.

The auxiliary variables xl now correspond to the mapping of
an overlay edge l to an underlay path. In order to set up the
linear cost function, we first note that

pT
j1
D pj2

= tr
(
Dpj1

pT
j2

)
= vec

(
DT
)T

vec
(
pj1

pT
j2

)
.

Since for every node j ∈ No, any valid solution pj must be a
canonical basis vector as per (11b), we can set up constraints
for the auxiliary variables using the following identities, which
hold for any pair of nodes j1 and j2:

1T
(
pj1

pT
j2

)
1 = 1,

1T
(
pj1

pT
j2

)
= pT

j2
,

and
(
pj1

pT
j2

)
1 = pj1 .

Now, the bilinear program (11) can be rewritten as a linear
program in standard form (5) and (6) with:

c=
[

rT⊗ vec
(
DT
)T

0T|No|·|Nu|

]T
(12a)

A=



I|Eo| ⊗ 1T|Nu|2 0

I|Eo|·|Nu| ⊗ 1T|Nu| −E+
o
T⊗ I|Nu|

I|Eo|⊗1T|Nu|⊗I|Nu| −E−o
T⊗ I|Nu|

0 F ⊗ I|Nu|

0 F̄ ⊗ 1T|Nu|


b=



1

0

0

p̄

1


(12b)

Here, the matrix E+
o ∈ {0, 1}|No|×|Eo| is composed of the

non-negative entries of Eo, whereas E−o ∈ {0, 1}|No|×|Eo|

is composed of the non-negative entries of −Eo, so that
Eo = E+

o −E−o . In other words, E+
o and E−o contain the start

and end nodes, respectively, of all overlay edges Eo. Again,
p̄ denotes the stack vector of all fixed operator positions p̄k,
and the matrix F has one row for each fixed operator k ∈ Fo,
with a single 1 in column k. Correspondingly, the matrix F̄
has one row for each free operator k ∈ No \Fo, with a single
1 in column k. We show now that the linear program with
cost and constraints defined according to (12) has an integer
solution corresponding to the optimal operator placement.

Theorem 4. The solution of the linear program (5) with A, b
and c as in (12) also solves the integer constrained bilinear
program (11).

We prove this theorem by showing that the feasible set of
the linear program in question is given by an integral poly-
hedron. The total unimodularity argument used in Sec. III-B
is not applicable in this case, and we therefore apply an
alternative argument based on the following theorem.

Theorem 5 ([13]). Consider an integer r×m matrix M with
full row rank r. The polyhedron P (M,v) =

{
x | Mx =

v,x ≥ 0
}

is integral for all integer vectors v if and only if
every r × r submatrix of M is unimodular.

Lemma 1. Let In denote the n× n identity matrix, I ′n the
(n− 1)× n matrix obtained by deleting the first row of In,
and

Bn =

[
I ′n ⊗ 1Tn
1Tn ⊗ In

]
.

For any positive integer n, the following holds.

(i) Bn has full row rank (2n− 1).
(ii) Bn is totally unimodular.

Proof: The matrix Bn has (2n− 1) rows and contains
the nonsingular (2n− 1)× (2n− 1) submatrix

[
0 I ′n; In In

]
,

which proves (i). Furthermore, (ii) can easily be seen to
be true by recognizing that Bn can be obtained from an

5

incidence matrix of a bipartite graph through negation of
rows and addition of unity columns.

As the matrix A in (12b) is rank deficient, we first find
a full rank representation Ãx = b̃ of the equality constraint
given by (12b) using Lem. 1. We then prove Thm. 4 by
showing that every basis of Ã is unimodular.

Proof of Thm. 4: In order to find a full rank repre-
sentation of Ax = b with (12b), we first partition the
rows of A into index sets IE , I+, I−, IN , such that I+
contains the rows corresponding to E+

o , I− contains the
rows corresponding to E−o , and IE contains the rows above
and IN the rows below.

Now, we identify rows of A which correspond to redundant
constraints. Firstly, all rows IE are reduntant, as they can
be expressed as linear combinations of I+ or I−, together
with IN . Secondly, the (k ·|Nu| − 1)th rows out of I+, with
k = 0, . . . , |Eo| − 1, can be expressed as linear combinations
of the remaining rows of I± and IN , and are therefore
redundant. After removal of these redundant rows from A,
and permutations of rows in I± and columns corresponding
to nonzero entries in IN , a full rank representation of A is
given by

C1 C2 C3

Ã =

I|Eo| ⊗B|Nu| ∗ ∗
0 I|Nu|·|Fo| 0
0 0 I|No\Fo| ⊗ 1T|Nu|

, (13)

where the columns are partitioned into sets C1, C2, C3 as
shown above and the ∗ blocks contain some −1 entries. The
corresponding vector b̃ is given by a permuted entry subset
of b and is therefore also integer. It is easy to see that Ã has
full row rank due to its block triangular structure and full
row rank of the B-blocks due to Lem. 1(i).

All basis matrices of Ã are also block triangular and
must contain

(
2·|Nu| − 1

)
linear independent columns from

each B-block in C1, all columns C2 and one column from
each 1T-block in C3, in order to be non-singular. Recall
that the determinant of a block triangular matrix equals the
product of determinants of its diagonal blocks. Therefore,
the determinants of all bases of Ã are given by

∏|Eo|
i=1 det B̂i,

where each B̂i is an arbitrary basis of B|Nu|. By Lem. 1(ii),
all these determinants equal ±1.

This shows that the feasible polyhedron of (5) and (12)
coincides with the integral polyhedron P (Ã, b̃), thereby
concluding the proof of Thm. 4.

V. SIMULATION STUDY

The advantage of the results presented in this paper is that,
now, exact and computationally attractive formulations of the
optimal operator placement problem have been derived. In fact,
both problem formulations (4) and (12) can be solved directly
using standard linear programming solvers. We evaluated the
completion time of Matlab’s default large-scale interior-point

Formulation TA (4) EEDA (12)

Dimension 10 910± 1 262 201 200
Constraints 1 806 2 811
Avg. time E(t) [s] 1.3693 4.7511
Var(t) [s] 0.0358 0.1610

Table I
SIMULATION RESULTS FOR 100 RANDOM UNDERLAY GRAPHS WITH
|Nu| = 200 AND |Eu| = 1942± 50 (EDGE PROBABILITY OF 4.9%).

Formulation TA (4) EEDA (12)

Dimension 126 960± 97 230 201 200
Constraints 1 806 2 811
Avg. time E(t) [s] 3.0550 4.7749
Var(t) [s] 0.0611 0.1989

Table II
SIMULATION RESULTS FOR 100 RANDOM UNDERLAY GRAPHS WITH
|Nu| = 200 AND |Eu| = 25 152± 3 889 (EDGE PROBABILITY 63.2%).

linear programming solver for both optimization problems on
a consumer-grade personal computer. The overlay graph used
was the tree with six nodes shown in Fig. 1, with bandwidth
values chosen as follows:

r1 = 1.0, r2 = 1.0, r3 = 1.0, r4 = 1.5, r5 = 1.8

The underlay network was chosen as a strongly connected
random graph with 200 nodes. Two different scenarios were
considered: first, a loosely connected network with an edge
probability of only about 5%, and second, a densely connected
network with an edge probability of over 60%, both with
random edge delays uniformly distributed between 1 and 10.
Each scenario was evaluated using 100 realizations of the
random graph.

Tables I and II show the problem dimensions, number of
constraints and average execution times of the LP solver for
both the Topology Aware (TA, cf. Sec. III) and the End-to-
End Delay Aware (EEDA, cf. Sec. IV) problem formulations.
Note that the dimension of the TA problem formulation (4)
depends on the number of underlay edges |Eu|, resulting in
a high impact on execution time. For the EEDA problem
formulation (12), the latency matrix D was given by the
all-to-all shortest path latencies of Gu. The simulations show
that our novel problem formulations can be solved very
efficiently within a few seconds. Together with the fact that
both formulations yield exact solutions of the optimal operator
placement problem, these results clearly justify the theoretical
approach pursued in this paper.

VI. CONCLUSION

In this paper, we studied the network oriented optimal
operator placement problem. We provided two formulations
for the problem: First, the problem was formulated as an

6

integer constrained linear program which includes an exact
assignment of data streams to links in the underlying network.
Second, an integer constrained bilinear formulation of the
problem was presented which reduces the complexity of the
problem by relying on the routing capabilities of the underlay
network. We have shown for both problems, that a linear pro-
gramming relaxation of the integrality constraints maintains
the exact solution. Therefore, both problem formulations can
be reduced to standard linear programs, which can be solved
very efficiently. Our simulation study has shown that the
formulations allow the quick solution of the problem using
standard LP solvers.

Based on these problem formulations, we are working
on a distributed version of the optimal operator placement
algorithm. This way, an exact solution to the problem can
be provided without the need to gather data about the entire
network at a central location.

ACKNOWLEDGEMENT

The authors thank the German Research Foundation (DFG)
for financial support of the project within the Cluster of
Excellence in Simulation Technology (EXC 310/1) at the
University of Stuttgart.

R. B., M. B., and F. A. also acknowledge the financial
support by the DFG Priority Program 1305 “Control Theory
of Digitally Networked Dynamical Systems”.

REFERENCES

[1] S. Rizou, K. Häussermann, F. Dürr, N. Cipriani, and K. Rothermel, “A
system for distributed context reasoning,” in Sixth Intl. Conf. Autonomic
and Autonomous Systems (ICAS ’10), Mar. 2010, pp. 84–89.

[2] L. Shi, “Kalman filtering over graphs: Theory and applications,” IEEE
Trans. Automatic Control, vol. 54, no. 9, pp. 2230–2234, Sept. 2009.

[3] A. Benzing, B. Koldehofe, M. Völz, and K. Rothermel, “Multilevel
predictions for the aggregation of data in global sensor networks,” in
Proc. 14th IEEE/ACM Intl. Symp. Distributed Simulation and Real
Time Applications (DS-RT ’10), Oct. 2010, pp. 169–178.

[4] G. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for internet-
scale data stream systems,” IEEE Internet Computing, vol. 12, no. 6,
pp. 50–60, Nov. 2008.

[5] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
control of extreme-scale stream processing systems,” in Proc. 26th
IEEE Intl. Conf. Distributed Computing Systems (ICDCS ’06), 2006,
pp. 71–71.

[6] O. Papaemmanouil, U. Çetintemel, and J. Jannotti, “Supporting generic
cost models for wide-area stream processing,” in Proc. 25th Intl. Conf.
Data Engineering (ICDE ’09), 2009, pp. 1084–1095.

[7] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for
in-network stream query processing,” in Proc. 24th ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems (PODS ’05),
2005, pp. 250–258.

[8] Y. Ahmad and U. Çetintemel, “Network-aware query processing for
stream-based applications,” in Proc. 30th Intl. Conf. Very Large Data
Bases (VLDB ’04), 2004, pp. 456–467.

[9] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proc. 22nd Intl. Conf. Data Engineering (ICDE ’06), Apr.
2006, pp. 49–60.

[10] S. Rizou, F. Dürr, and K. Rothermel, “Fulfilling end-to-end latency
constraints in large-scale streaming environments,” in Proc. 30th IEEE
Intl. Performance Computing and Communications Conf. (IPCCC),
Nov. 2011, pp. 1–8.

[11] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons Inc, 1998.

[12] A. Ghouila-Houri, “Caractérisation des matrices totalement unimodu-
laires,” Comptes Rendus Hebdomadaires des Séances de l’Académie
des Sciences, vol. 254, pp. 1192–1194, 1962.

[13] A. F. Veinott, Jr. and G. B. Dantzig, “Integral extreme points,” SIAM
Rev., vol. 10, no. 3, pp. 371–372, July 1968.

7

