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Abstract. Millions of users use location-based applications (LBAs) to share

their positions with friends, request information from points of interest finders,

or get notifications from event finders, etc. Such LBAs are typically based on

location servers (LSs) managing mobile object positions in a scalable fashion.

However, storing precise user positions on LSs raises privacy concerns, in partic-

ular, if LS providers are non-trusted. To solve this problem, we present PShare-
BSP, a novel approach for the secure management of private user positions on

non-trusted LSs. PShare-BSP splits up precise user positions into position shares

and distributes them to different LSs of different providers. Thus, a compromised

provider only reveals user positions with degraded precision. Nevertheless, LBAs

can combine several shares from different LSs to increase their precision.

PShare-BSP improves on our previous position sharing approaches [4, 15, 17]: It

uses a deterministic share generation approach based on binary space partitioning

to avoid probabilistic attacks based, for instance, on Monte Carlo simulations.

Moreover, it significantly decreases the computational complexity and increases

the efficiency by reducing the update costs for succeeding position updates.
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1 Introduction

The widespread adoption of mobile devices with integrated positioning systems such

as GPS has led to a drastic increase of the usage of location based applications (LBAs).

For instance, points of interest finders such as Qype can be used to determine the next

restaurant or gas station based on the current user position. Friend finder applications

such as Loopt notify users when friends reach their vicinity. Moreover, geosocial net-

works such as Facebook Places, Foursquare, and Yelp let users “check-in” at locations

to share their positions with friends.

LBAs typically make use of so-called location servers (LSs) to manage position

information of mobile objects. Mobile objects send their position to the LS, and LBAs

act as clients to query the LS for mobile object positions. LSs allow for the efficient and

scalable management of mobile object positions, in particular, if position information

is required by several clients since the LS relieves the mobile objects from sending

positions to each client individually. A number of LSs are already provided on the

Internet today, for instance, by Google (Latitude), Yahoo (Fire Eagle), and other service

providers.
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However, providing precise user positions to LSs raises privacy concerns. These

concerns are intensified by a number of incidents where private data was revealed [3]

and where even providers that were deemed to be trustworthy did not succeed to protect

private user data. Such incidents include attacks, leaking or losing personal information.

As a consequence, we cannot trust any provider to protect our data. Thus, security mech-

anisms for the secure management of position information taking non-trusted providers

into account are needed.

Spatial obfuscation [2, 5] is a common principle to protect user location privacy in

non-trusted systems. Instead of providing precise user positions to an LS, users degrade

the precision of their positions and only provide this degraded information to the LS.

However, such spatial obfuscation approaches limit the maximum allowed precision of

a user position that can be provided to the clients of the LS by the trustworthiness of the

LS. Consequently, we cannot provide a client with more precise positions than stored

by the LS, no matter how much we trust the client. This might have severe impact on

LBAs since usually the quality of applications might also degenerate with the quality of

the provided position information. Furthermore, we cannot provide different precisions

to different clients with different quality of service demands and trust levels.

Our position sharing approaches presented in [4, 15, 17] overcome this problem.

Using position sharing, the mobile object splits up its precise position into a set of

position shares, where each share represents an imprecise position, and distributes the

generated shares to different LSs of different providers. Therefore, a compromised LS

only reveals degraded position information, while clients can combine several shares to

increase their precision. Thus, we can provide different precisions to different clients

without storing precise positions at the LSs.

In this paper, we present PShare-BSP, a new position sharing approach based on

binary space partitioning. We improve our previous position sharing approaches de-

veloped in our PriLoc-Project [11] as follows. In comparison to [4, 15], PShare-BSP
uses a deterministic instead of a probabilistic approach to increase robustness against

attacks based on Monte Carlo simulations. Compared to [17], which is based on multi-

secret sharing, PShare-BSP reduces the computational complexity by avoiding complex

cryptographic operations. Moreover, we optimize the communication costs for position

updates significantly by avoiding updating all LSs for each new position.

The rest of this paper is structured as follows: First, we present an overview of the

related work in Sec. 2 and describe our system model in Sec. 3. Then, we introduce our

new position sharing approach in Sec. 4 and analyze its security in Sec. 5. In Sec. 6, we

present our evaluation results, before we summarize the paper in Sec. 7 together with

an outlook onto future work.

2 Related Work

Approaches providing location privacy can be categorized whether they require a

trusted third party or not.

Approaches with trusted third party: The most prominent approach providing

user privacy is k-anonymity [7] guaranteeing that a user is indistinguishable from k −
1 other users. However, k-anonymity and its extensions such as l-diversity [9] and t-
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closeness [8] usually require a trusted anonymizer, whereas we aim to provide user

privacy without any trusted third party.

Approaches without trusted third party: A simple approach to protect private

positions is to store encrypted positions on LSs. This approach does not rely on any se-

curity mechanism of the LSs. However, the LSs cannot perform essential computations

such as nearest neighbor or range queries on the server side.

Existing dummy-approaches such as [12] generate several false positions (dummies)

and send them together with the true position of the user to an LS. However, the pro-

vided privacy of these approaches is reduced if dummies can be identified. As shown

in [10], this is possible even if sophisticated algorithms are used for dummy generation.

Spatial obfuscation approaches such as [2, 5] provide user privacy by sending posi-

tions of degraded precision to the LS. In general, obfuscation does not require a trusted

third party. However, the maximum precision that can be provided to the clients is lim-

ited by the trustworthiness of the LS. Furthermore, an incremental precision increase

for different clients as supported by our position sharing approach is not supported.

Our position sharing approach presented in [4] and its extension to maps [15] pro-

vide different precisions to clients by combining several position shares from different

LSs based on random geometric transformations. Although these approaches provide

sufficient privacy in many scenarios, an attacker can use a Monte Carlo simulation to

derive positions of higher precision than intended with a certain probability. In contrast,

we propose a deterministic approach in this paper that makes such attacks impossible.

In [17] we presented a position sharing approach using a multi-secret sharing

scheme. In this paper, we present PShare-BSP that is based on binary space partitioning

rather than cryptographic operations, which are less complex and thus increase com-

putational efficiency. Finally, PShare-BSP also increases communication efficiency by

implementing a protocol for optimized share updates.

3 System Model

The system model consists of three different components as depicted in Fig. 1.

ClientA

Share generation &
Share distribution

Mobile object

ClientB

LS3LS2LS1

Access control

Share combination

Credentials
to access
LS2 & LS3

Fig. 1. System Components

The mobile object (MO) uses an integrated positioning system, such as GPS, to de-

termine the current MO’s position π. We assume that no malicious software component

is running on the MO that can access π, e.g., using existing mobile trusted computing

approaches such as [6]. We assume π to be a Cartesian point coordinate that is perfectly
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accurate and precise. To map ellipsoidal longitude and latitude coordinates to Cartesian

coordinates, we can use a common map projection such as the Universal Transverse

Mercator (UTM) projection, which divides the Earth into sixty zones, each represent-

ing a six degree band of longitude. In case the MO travels from one zone to another for

a new check-in, the corresponding zone is changed as soon as the obfuscation area of

the MO is completely covered by the new zone.

The MO executes a local software component for share generation splitting up

π into a master share mπ , called m-share, and a set of refinement shares S =
{rπ,1, . . . , rπ,lmax

}, called r-shares, by using the function

generate(π, lmax) = (mπ, {rπ,1, . . . , rπ,lmax
}).

Parameter lmax is defined by the MO and defines the number of lmax+1 different preci-

sion levels offered to clients. The MO’s position of precision level l with 0 ≤ l ≤ lmax

is denoted as p(π, l). The m-share mπ defines position p(π, 0) with a precision which is

low enough to be published without raising privacy concerns. The r-shares can be used

to increase the precision of the m-share (p(π, 0)) by providing refinement information

stored in the r-shares. After shares are generated, they are distributed to different LSs of

different providers. The communication between the MO and the LSs must take place

over secure channels to avoid modification, sniffing, and message injection.

Location servers (LSs) store position shares and answer queries from different

clients by returning the corresponding shares. Each LS implements an access control

mechanism, as presented for example in [1], to manage the access of different clients to

shares. The access rights are defined by the MO and provided to the clients as creden-

tials to access a certain number of shares.

Clients query several shares from different LSs and use share combination

combine(mπ, {rπ,1, . . . , rπ,l}) = p(π, l)

to increase the provided precision of p(π, 0) to p(π, l) with 0 < l ≤ lmax by combining

the m-share mπ and l r-shares from different LSs. The communication between clients

and the LSs must also be protected by secure channels.

4 Position Sharing Approach

In this section, we present our position sharing approach PShare-BSP implementing the

functions for share generation and combination introduced above. Then, we present an

optimization reducing the number of required updates.

4.1 Basic Approach

Both share generation and combination depend on the concept of how to translate the

exact MO’s position π into an obfuscated position p(π, l) of a certain precision level l.
Geometrically, an obfuscated position p(π, l) of a given precision level l is de-

fined as p(π, l) = ((xl, yl), 2
lmax−l) representing a square area that contains π (cf.

Fig. 2). The tuple (xl, yl) denotes the coordinates of the lower left (south-west) corner
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of the square area, and 2lmax−l denotes the side length measured in meters. The side

length 2lmax−l defines the precision of p(π, l). We assume that a maximum precision

of 1meter, which is well below the precision of common positioning systems such as

GPS, is sufficient for every practical application. Therefore, we set the precision of the

position p(π, lmax) of the highest precision level lmax to 1meter. What remains to be

defined is how the coordinates (xl, yl) defining p(π, l) are chosen based on the MO’s

precise position π with the coordinates π.x and π.y. Numerically, π.x and π.y can be

expressed in the binary numeral system with a system-defined bit length n as

π.x =

n−1∑

k=0

αk ∗ 2k = (αn−1 · · ·α1α0)2 and π.y =

n−1∑

k=0

βk ∗ 2k = (βn−1 · · ·β1β0)2.

For p(π, l) we define the coordinates (xl, yl) as the coordinates of π.x and π.y with

the lmax− l least significant bits set to zero. These bits are the undefined bits of p(π, l).
The position of the i-th undefined bit of a coordinate is equal to its (lmax + 1)− i least

significant bit. The precision value of p(π, l) is set to 2lmax−l defining the range of the

lmax − l undefined bits. The less undefined bits exist, the higher is the precision of a

position. As an example consider Fig. 2 where the undefined bits of p(π, l) that were

set to zero are underlined for each level l and lmax = 3.

p(π,2)
p(π,3)

p(π,1)

p(π,0)

(x0,y0)
p(π,3)=((..1101,..1011), 0)

p(π,2)=((..1100,..1010), 1)

p(π,1)=((..1100,..1000), 2)

p(π,0)=((..1000,..1000), 3)

(x1,y1)

(x2,y2)
(x3,y3)

rπ,2.x=0
rπ,2.y=1
rπ,3.x=1
rπ,3.y=1

p(π,0)

2lmax

(x0,y0)

2lmax

rπ,1.x=1
rπ,1.y=0

Fig. 2. Grid and refinement example for p(π, 0) based on lmax = 3

The m-share mπ represents the coarsest obfuscation area p(π, 0) with the coordi-

nates (x0, y0) and the precision value lmax. By replacing the lmax least significant bits

of π.x and π.y by zero when calculating p(π, 0), lmax deterministically defines a parti-

tioning of the movement area into a grid of cells with a side length of 2lmax meter.

To increase the precision of the m-share mπ , the undefined bits of p(π, 0) have to

be defined. To this effect, we use a set S = {rπ,1, . . . , rπ,l} of l ≤ lmax r-shares,

where each r-share rπ,i defines the i-th undefined bit of the x and y value of p(π, 0). At

the same time the precision is improved by decreasing the side length value of p(π, 0).
Thus, position p(π, 0) can be refined up to p(π, l) by incrementally substituting the

undefined bits of p(π, 0) by the corresponding bits of the r-shares. The number of gen-

erated r-shares for each position update is defined by the value lmax such that the pre-

cision of p(π, 0) can be increased up to lmax different precision levels from p(π, 1) to

p(π, lmax). An example is shown in Fig. 2 on the right.

Next, we describe the share generation using function generate(π, lmax ) (cf. Alg. 1).

The m-share is calculated by function generateMShare(π, lmax ) by setting the lmax

least significant bits of π.x and π.y to zero. Each r-share rπ,i with 1 ≤ i ≤ lmax de-

fines the two bits of π.x and π.y corresponding to the bits at the position of the i-th
undefined bit in p(π, 0). These bits are returned by function getBits(π, i).
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Algorithm 1
PShare-BSP: Share generation

Function: generate(π, lmax)
1: mπ ← generateMShare(π, lmax)
2: for i = 1 to lmax do
3: rπ,i ← getBits(π, i)
4: end for
5: S ← {rπ,1, . . . , rπ,lmax}
6: return mπ, S

Algorithm 2
PShare-BSP: Share combination

Function: combine(mπ, {rπ,1, . . . , rπ,l})
1: p(π, 0) ← mπ.p(π, 0)
2: for i = 1 to l do
3: p(π, i) ← setBits(p(π, i− 1), rπ,i)
4: end for
5: return p(π, l)

The share combination function combine(mπ, {rπ,1 , . . . , rπ,l}) is implemented as

shown in Alg. 2. It takes as input the m-share mπ representing the obfuscation area

p(π, 0) and a sequence of r-shares rπ,1 , . . . , rπ,l . In order to be able to refine the posi-

tion up to a certain precision level l, the sequence of r-shares must contain all r-shares

for the levels 1 to l. The refined position p(π, l) is calculated by replacing stepwise the

i-th undefined bit of the x and y values of p(π, 0) by the bits of r-share rπ,i.x and rπ,i.y
for 1 ≤ i ≤ l. This step is implemented by function setBits(p(π, i − 1 ), rπ,i).

To protect multiple position updates, we use the idea of delaying updates if they

would reveal additional information to an attacker. For a detailed description of an at-

tack on multiple position updates we refer to [5]. We analyzed the counter measure of

delayed updates in our previous work [17] and use the same approach for PShare-BSP
to resist attacks on multiple position updates.

4.2 Update Optimization

A drawback of position sharing is that multiple shares have to be updated per position

fix instead of one. To alleviate this problem, we present an optimization called PShare-
BSPopt reducing the number of messages required for position updates significantly.

Existing position sharing approaches [4, 15, 17] and PShare-BSP presented in this

paper need to update the m-share and all r-shares for each new position. The general

idea of PShare-BSPopt is that, initially, the m-share and all r-shares are updated once.

For the following k − 1 position updates, we re-use the r-shares to refine the positions

of several m-shares and update only the m-share for every new position. To this end, an

m-share contains a partially encrypted position that can be decrypted by the bits of the

corresponding key that is split up and stored within different r-shares. Therefore, only

one share has to be updated per new position rather than 1 + lmax (one m-share and

lmax r-shares). In order to allow for the re-use of r-shares for the next k−1 updates, we

have to include additional information for each r-share. The value of k can be defined

by the MO and determines the number of times the r-shares can be re-used before they

must be updated. For simplicity, we limit our explanations to the x coordinate. The y
coordinate is handled identically.

For each position update we use a one-time pad encryption to protect the lmax least

significant bits of π.x. Generally, a one-time pad encryption can be used to protect a

secret by XORing it with a random set of bits defining the key of the encryption. The

result of the encryption is a cipher that does not provide any information about the secret

without the key. We define the secret sx as the lmax least significant bits of π.x. The
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corresponding key is of length lmax and called refinement-key (r-key). The cipher cx is

calculated by bitwise XORing sx with the corresponding r-key as cx = sx XOR r-keyx.

Cipher cx is then stored within the m-share mπ in addition to p(π, 0) as shown in Fig. 3.

The idea is now to split up r-keyx into its lmax bits and distribute them as part of the r-

shares to different LSs. The refinement of p(π, 0) to p(π, l) for a certain precision level

l requires the l most significant bits of the r-keyx, denoted as r-keyx[l]. The refinement

is done by decrypting cx with the combined r-keyx[l] of the r-shares as shown in Fig. 4.

The result of the decryption defines the l most significant bits of sx, denoted as sx[l].
Finally, p(π, 0) is refined to p(π, l) by substituting the l most significant undefined bits

of p(π, 0) by sx[l]. The lmax − l undefined bits remain zero.

π.x αlmax-1...α0

0…..0 sx

lmax-bits

lmax-bits
r-keyx

mπ

XOR

cx

r1

rlmax

…

p(π,0).x

Fig. 3. Share generation overview

mπ

XOR

cx[l]

r1 rl…

r-keyx[l]

sx[l]

0…..0
p(π,0).x

sx[l]

refine
p(π,l).x

0..0

l lmax-l

lmax

Fig. 4. Share combination overview

To fulfill the optimization goal, we provide within each r-share k bits that can be

used to reconstruct the r-keys of k updates. Therefore, the r-share ri stores the i-th bit

of any of the k generated r-keys. The different r-keys are referenced by an id, denoted

as r-keyid. The correlation of r-shares and r-keys is shown in Fig. 5, where LSi stores

the r-share ri representing a secure random set of k bits.

0 1 … 0
1 1 … 0
1 0 … 1
1 1 … 1

r-keyx1

r-keyxk

LS1 LS2 LSlmax

r1.x rlmax.xr2.x

Fig. 5. Correlation of r-shares and r-keys

Next, we describe the detailed algorithms for share generation and combination.

The share generation presented in Alg. 3 checks whether a distributed r-key can be used

for the next update. If no unused r-key is available, a set of k new r-keys and lmax new

r-shares is generated. Then, the id of the r-key to use is set. Finally, Alg. 4 generates the

m-share mπ including cipher cx. After generation, the shares are distributed to the LSs.

Share combination presented in Alg. 5 reconstructs position p(π, l) of precision

level l by combining the m-share mπ with l r-shares r1, . . . , rl. The l r-shares can be

used to compose the corresponding r-keyidx [l] of length l. Then, cipher cx of mπ is

XORed with r-keyidx [l]. The reconstructed refinement bits are then used as substitute

of the corresponding undefined bits. The remaining lmax − l bits are still undefined.

Without knowing the missing lmax − l r-shares and thus the corresponding parts of the

r-key, it is not possible to further increase the precision of p(π, l).
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Algorithm 3
PShare-BSPopt: Share generation

Function: generateSharesOPT (π, lmax)
1: if noUnusedRKeyAvailable() then
2: for id = 1 to k do
3: r-keyidx ← getRandBits(lmax)
4: end for
5: for i = 1 to lmax do
6: ri.x ← getBitsFromRKeys(i)
7: end for
8: S ← {r1, . . . , rlmax}
9: end if

10: id ← getUnusedRKeyID()
11: mπ ← generateMShareOPT (π,

lmax,r-keyidx , id)
12: return mπ, S

Algorithm 4
PShare-BSPopt: m-share generation

Function: generateMShareOPT (π,
lmax,r-keyidx , id)

1: mπ ← generateMShare(π, lmax)
2: sx ← getXRefinement(π.x, lmax)
3: mπ.cx ← sx XOR r-keyidx
4: mπ.rKeyID ← id
5: return mπ

Algorithm 5 PShare-BSPopt: Share combination

Function: combineOPT (mπ, {r1, . . . , rl})
1: r-keyidx [l] ← getRKey(mπ.rKeyID, {r1.x, . . . , rl.x})
2: p(π, l).x ← setXBits(mπ.p(π, 0).x,mπ.cx[l] XOR r-keyidx [l])
3: return p(π, l)

To guarantee the security of PShare-BSPopt, it is essential that each r-key is only

used once. Otherwise the encryption could possibly be broken. Therefore, we use each

r-key only once and renew the r-shares after all k r-keys have been used.

5 Security Analysis

In this section, we present our attacker model and analyze various attacks.

5.1 Attacker Model

We assume malicious clients and malicious LSs that could be compromised as possi-

ble attackers. Malicious clients are a special sub-case of malicious LSs. We consider

the case that the LSs storing the m-share and l r-shares are compromised and collude

together such that the attacker knows an MO’s position p(π, l) of precision level l. An

ideal position sharing approach will not allow an attacker knowing p(π, l) to derive a

position with a precision beyond the precision of p(π, l).
We assume a free-space mobility model where each position π is equally likely.

Different probability distribution functions (pdfs) of positions are part of our future

work. For instance, an attacker could calculate a pdf for p(π, l) using additional map

knowledge and exclude non-reachable areas from p(π, l).

5.2 Attacks on PShare-BSP and PShare-BSPopt

PShare-BSP and PShare-BSPopt both deterministically transform the MO’s position π
for a given value of lmax to position p(π, 0). For each position π′ ∈ p(π, 0) it holds that
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the same position p(π, 0) is calculated. This is guaranteed by mapping the lmax least

significant bits of the x and y coordinate to zero, independent whether the bit was zero

or one before. An attacker knowing p(π, l) trying to increase his precision to level l+1
would have to determine the first unknown bit of the x and the y coordinate of p(π, l).
Thus, the attacker could try to analyze the undefined bits of p(π, l) and try to calculate

the inverse function of the mapping to zero values. However, as values of zero and

one are both mapped to zero, no further information is revealed to the attacker without

knowing the corresponding r-share rl+1. The same holds for an attacker analyzing the

four possible refinement areas of p(π, l) on level l+1. All four areas are of the same size

and share therefore the same probability to cover π. Thus, the probability of selecting

the correct area on level l+1 is equal to randomly guessing a certain area on level l+1.

An attacker knowing mπ in PShare-BSPopt also knows ciphers cx and cy . As proven

in [13], the cipher of a one-time pad encryption provides no information about the

protected secret, even if the attacker has infinite computational power. Thus, it is not

possible for an attacker to increase precision from p(π, l) to p(π, l+1) without knowing

r-share rl+1 defining the corresponding parts of the r-keys to decrypt cx and cy .

In addition to analyzing the undefined bits, an attacker could also try to analyze

the generated positions. For instance, an attacker could try to use a region intersec-
tion attack [16] that can be successful on obfuscation-based approaches if different

obfuscation areas are generated for the same position π. However, we deterministically

generate for each position π and each level l always the same obfuscation area. For the

MO’s value of lmax and two different positions π′ and π′′ either the obfuscation areas

of level l are equal, i.e., p(π′, l) = p(π′′, l), or the areas do not intersect each other, i.e.,

p(π′, l) ∩ p(π′′, l) = ∅. In both cases, an attacker cannot refine p(π, l).
A probability distribution attack [14] calculates the probability that the MO is lo-

cated in certain areas. It is most beneficial for probabilistic privacy algorithms that might

lead to an uneven distribution of (possible) MO positions within the obfuscation area.

For instance, the algorithm presented in [4] leads to a concentration in the center of the

obfuscation area. We try to avoid such concentrations and strive for a uniform distribu-

tion within the obfuscation area. Our deterministic share generation algorithm guaran-

tees that each position π′ ∈ p(π, l) would lead to the obfuscation area p(π, l) with the

same probability for a certain precision level l. Running a Monte Carlo simulation for

the deterministic obfuscation and share generation algorithm over π′ ∈ p(π, l) leads

to a uniform distribution over p(π, l). Therefore, probability distribution attacks do not

provide any additional information to the attacker.

By design, we only generate and update new position shares if they are not vulner-

able to a maximum velocity attack [5] by using delayed updates as counter measure.

Thus, an attacker cannot increase his precision by analyzing succeeding position up-

dates using a maximum velocity attack.

6 Evaluation

Next, we analyze the computational efficiency of our approaches by measuring the per-

formance of share generation and share combination using a prototype implementation

of our system. Afterwards, we analyze the bandwidth efficiency of our approaches.
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6.1 Performance Evaluation

Generally, the share generation is performed on a resource-constrained mobile device

with limited CPU power and battery capacity. Even on such resource-poor devices,

share generation must be possible in short time, which results in a small overhead in

terms of energy. To show the performance of our approaches, we measured the overall

time for share generation on a state of the art mobile device (HTC Desire HD). We

measured the time to create one m-share and one to 15 r-shares and plotted the overall

time over the number of r-shares in Fig. 6. As reference values we used the results

presented in [4] for a random share generation algorithm (denoted as RSG) and [17]

for PShare-GLM based on multi-secret sharing techniques. We limited the number of

generated r-shares to 15, because a precision of 32768 m should be sufficiently coarse

to provide user privacy. As we can see, the share generation of both approaches stays

well below 1 milliseconds even when providing k = 184 different r-keys within the r-

shares. Thus, we can state that the share generation is highly efficient and suitable even

for resource-poor devices.
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Fig. 7. Performance of share combination

In contrast to share generation, the share combination is done by clients (location-

based applications) that typically run in the infrastructure with no energy restriction and

high computational power. We measured the time required to combine one m-share with

up to 15 r-shares on a state of the art personal computer (Intel Core 2 Duo, 2.53 GHz, 3

GB RAM). As we can see in Fig. 7, share combination is calculated very efficiently in

less than 150 microseconds even for a larger number of shares.

6.2 Bandwidth Efficiency

To analyze the efficiency of our approaches in terms of communication overhead, we

compare the number of required update messages for both approaches. We assume that

the MO performs a number of k′ ≤ k succeeding position updates using lmax + 1 LSs

to store the generated m-share and the lmax r-shares. Then, for PShare-BSP the MO

has to send in total k′ ∗ (1 + lmax) update messages, where each of the k′ position

updates triggers an update of the m-share and all lmax r-shares. For PShare-BSPopt we

update once the m-share and all lmax r-shares while for the next k− 1 updates only the

m-share has to be updated. This results in a total number of k′+ lmax update messages.

The r-shares are updated after k′ = k position updates were sent.
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Next, we analyze the generated network load by analyzing the different share sizes

and the overhead of lower level communication protocols. Each share has a share-ID (32

bits), a user-ID (32 bits), and a type definition (8 bits). In PShare-BSP, the m-share mπ

adds position information (112 bits) and a list of ids defining the r-shares of mπ (lmax

* 32 bits). An r-share rπ adds 2 bits for its refinement property. In PShare-BSPopt, the

m-share mopt
π adds cipher cx (lmax bits), cipher cy (lmax bits), and the used r-key id

(32 bits) to mπ . The additional payload of mopt
π compared to mπ is denoted as Δmopt

π .

Each r-share ropt consists of k (32 bits) and 2 ∗ k bits to reconstruct r-keyx and r-keyy .

The network load of PShare-BSP for k′ position updates is NLbasic = k′ ∗
((size(mπ) + o) + lmax ∗ (size(rπ) + o)) bits, where o defines the protocol overhead

introduced by lower level protocols for each message. The network load of PShare-
BSPopt is NLopt = k′ ∗ (size(mopt

π ) + o) + lmax ∗ (size(ropt) + o) bits. Comparing

NLbasic and NLopt leads to

k′ ≥ lmax ∗ (size(ropt) + o)

lmax ∗ (size(rπ) + o)− size(Δmopt
π )

(1)

denoting the number of k′ updates that have to be sent until PShare-BSPopt outperforms

PShare-BSP and NLopt ≤ NLbasic holds. The size of the message overhead measured

for sending a share over TCP/IP is o = 320 bits. For lmax = 16 generated r-shares

and for example k = 128 this results in a value of k′ ≥ 1.72. This means that PShare-
BSPopt outperforms PShare-BSP as soon as the second MO’s position is updated. By

using Equation 1, we can calculate that PShare-BSPopt outperforms PShare-BSP al-

ways with the second update as long as k ≤ 184. For sending k′ = k = 184 position

updates PShare-BSP generates a total network load of NLbasic= 172 040 bytes when

also taking the TCP/IP overhead into account. PShare-BSPopt at the same time only

generates a load of NLopt= 27 896 bytes. This results in a reduction of 83.8% of the

generated network load. By considering the additional overhead required to provide se-

cure channels by using TLS, the overhead of each message is further increased. Thus,

reducing the number of messages by PShare-BSPopt further increases its efficiency.

In addition to optimizing the updates of shares—i.e., the communication between

MO and LSs—, PShare-BSPopt also optimizes the communication between the LSs and

the clients. A client has to query all of its accessible r-shares only once within k updates

instead of querying the r-shares every time a new position of the MO is updated.

7 Summary and Future Work

In this paper, we presented a new position sharing approach protecting user privacy in

non-trusted systems of third-party location servers (LSs) and clients. PShare-BSP splits

up a precise user position into position shares of limited precision, which are distributed

to different LSs of different providers. Different clients can then combine several shares

and increase their provided precision. Our approach has the advantage that a compro-

mised server only reveals positions of degraded precision instead of precise positions.

We improve existing position sharing approaches [4, 15, 17] by providing a deter-

ministic approach using binary space partitioning to avoid probabilistic attacks and by
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decreasing the computational complexity significantly by one order of magnitude com-

pared to [4] and by more than three orders of magnitude compared to [17]. Furthermore,

we presented an extension for PShare-BSP reducing the number of required messages

for multiple position updates significantly.

As future work we will consider map knowledge and semantic knowledge, for in-

stance, periodic behavior of users, knowledge about points of interest, etc. that could

be used by an attacker to increase precision. Furthermore, we will consider replication

strategies to increase the availability of shares without decreasing privacy.
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