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Abstract—Current event processing systems lack methods
to preserve privacy constraints of incoming event streams in
a chain of subsequently applied stream operations. This is a
problem in large-scale distributed applications like a logistic
chain where event processing operators may be spread over
multiple security domains. An adversary can infer from legally
received outgoing event streams confidential input streams
of the event processing system. This paper presents a fine-
grained access management for complex event processing. Each
incoming event stream can be protected by the specification
of an access policy and is enforced by algorithms for access
consolidation. The utility of the event processing system is
increased by providing and computing in a scalable manner a
measure for the obfuscation of event streams. An obfuscation
threshold as part of the access policy allows to ignore access re-
quirements and deliver events which have achieved a sufficient
high obfuscation level.
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I. INTRODUCTION

In business processes, it is essential to detect inconsis-
tencies or failures early. For example, in manufacturing and
logistic processes, items are tracked continuously to detect
loss or to reroute them during transport. To answer this need
complex event processing (CEP) systems have evolved as a
key paradigm for business and industrial applications [1],
[2]. CEP systems allow to detect situations by performing
operations on event streams which emerge from sensors all
over the world, e.g. from packet tracking devices.

While, traditionally event processing systems have applied
powerful operators in a central way, the emerging increase
of event sources and event consumers have raised the need
to reduce the communication load by distributed in-network
processing of stream operations [3], [4], [5], [6]. In addition,
the collaborative nature of today’s economy results in large-
scale networks, where different users, companies, or groups
exchange events. As a result, event processing networks
are heterogeneous in terms of processing capabilities and
technologies, consist of differing participants, and are spread
across multiple security domains [7], [8]. However, the
increasing interoperability of CEP applications raises the
question of security [2]. It is not feasible for a central
instance to manage access control for the whole network.
Instead, every producer of information should be able to
control how its produced data can be accessed. For example,
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a company may restrict certain information to a subset of
authorized users (i.e. that are registered in its domain).

Current work in providing security for event-based sys-
tems covers already confidentiality of individual event
streams and the authorization of network participants [9],
[10], [11]. In CEP systems, however, the provider of an
event looses control on the distribution of dependent event
streams. This constitutes a major security problem, allowing
an adversary to infer information on confidential ingoing
event streams of the CEP system.

As an example consider the logistics process illustrated in
Figure 1 where a manufacturer wants to deliver an item to a
destination. The shipping company determines a warehouse
close to the destination, where the item will be shipped
to before it will be delivered to the customer. The logistic
process is supported by an event processing system, where
operators are hosted in the domain of each party and ex-
change events including potentially confidential information
(e.g. the item’s destination is transmitted to the shipping
company). If now a third party receives events related to the
warehouse, it may draw conclusions about the original event
data (i.e. destination), in spite of the manufacturer declaring
this information as highly confidential and only providing
the shipping company with access rights to it.

The goal of this work is to establish access control
that ensures the privacy of information even over multiple
processing steps in a multi-domain, large scale CEP system.
In particular, our contributions are i) an access policy inher-
itance mechanism to enforce access policies over a chain of
dependent operators and ii) a scalable method to measure the
obfuscation imposed by operators on information exchanged
in event streams. This allows to define as part of the
access policy an obfuscation threshold to indicate when
the event processing systems can ignore access restrictions,
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Figure 2. Attributes in Shipping Scenario

thus increasing the number of events to which application
components can react to and this way increasing also the
utility of the CEP system.

In the remainder of the paper we define the system model
and security goal in Section II and Section III respectively.
Section IV presents the general concept to establish policy
consolidation respecting obfuscation of information. In Sec-
tion V we enhance the general concept by a local policy
consolidation mechanism that overcomes the limitations
regarding the scalability of the approach. The evaluation
results on the overhead of measuring obfuscation are detailed
in Section VI. Finally, we discuss related work in Section VII
and conclude our work in Section VIIIL.

II. SYSTEM MODEL

We assume a distributed correlation network, where dedi-
cated hosts are interconnected. On these hosts we deploy
operators, which are executed to collaboratively detect situ-
ations and form the distributed CEP system. The cooperative
behavior of the operators is modeled by a directed operator
graph G = (€, S) which consists of operators w € € and
event streams (w;,w;) € S C (Q x Q) directed from w;
to w;. Thus, we call w; the event producer and w; the
consumer of these events. Each event contains one or more
event attributes which have discrete values. Every operator w
implements a correlation function f, : I, — O, that maps
incoming event streams [, to outgoing event streams O,,. In
particular, f,, identifies which events of its incoming streams
are selected, how event patterns are identified (correlated)
between events, and finally how events for its outgoing
streams are produced.

Figure 2 illustrates an operator graph of three operators
according to the introduced logistics example, each operator
hosted in a distinct domain. The correlation function f.
is applied to events received from and produced by wy,
on produced items in the manufacturing domain. Events
produced by fs. carry two event attributes, the warehouse
location and estimated day of delivery for shipped items.

III. ACCESS CONTROL FOR CEP

Our approach allows to inherit access requirements by as-
signing them to event attributes in form of an access policy.
This allows to preserve requirements through any chain of
dependent correlation steps of operators in G. In addition, an

obfuscation policy allows to specify an obfuscation threshold
for event attributes. In each correlation step, the obfuscation
of event attributes in produced events is determined by
the proposed access policy consolidation protocol. Once
the obfuscation threshold is reached for an event attribute,
the attribute’s access requirements can be ignored. In the
following, we detail the concepts behind access policies and
obfuscation policies, and formalize the security goal.

A. Access Policies

Access control allows to specify access rights of subjects
(operators) for the set of available objects (event attributes).
These access rights are provided by the owner of an
object (e.g. the producer of an event stream) and may
be granted to operators based on an access requirement.
Such a requirement may be a role, a location or a domain
affiliation. Requirements are usually not direct properties
of the operators, but of the hosts where the operators are
deployed. Formally, we specify the access rights within an
access policy AP for an operator w as a set of (attribute,
access requirement) pairs:

AP, = {(atty,ary), ..., (atty,ary)}.

If there is no requirement specified for an attribute, any
consumer in the network will be able to access it. Note
that we consider attributes to be distinct even if they use the
same name, but are produced at two distinct operators.

An access requirement is a tuple of a property p, a math-
ematical operator op and a value set val: ar = (p, op,val),
where op € {=,<,>,<,>,€}. val can be specified by
a range or a set of values. For the sake of simplicity, in
this paper access requirements are only referring to domain
affiliation and have a structure like this:

ary = (domain, €, {domainA, domainB}).

In our example scenario, the manufacturer’s event attributes
have different access requirements. While the information
about the item’s destination is accessible by the customer,
information about where the item is produced and when
it can be picked up is restricted to the shipping company.
Therefore, the attached AP is defined as follows:

APmanufactuTer =
{(destination,(domain,&,{shippingComp,customer})),



(pickup time, (domain,=,shippingComp)),
(production place, (domain,=,shippingComp))}

With the enforcement and assurance of access policies at
each producer, a consumer will be eligible to access (receive)
an attribute only if the consumer’s properties match the
access requirements defined for the particular attribute. In
this case the consumer is trusted to use the attribute in its
correlation function and adopt the requirements specified for
the attribute in its own access policy for all produced events.

B. Obfuscation of Event Information

While access policies allow a producer to specify access
requirements in a fine-grained manner, the inheritance of
requirements in a chain of succeeding operators is at times
very restrictive and can limit the efficiency and applicability
of the CEP system: in each correlation step of this chain,
the number of access requirements may increase by the
consolidation of requirements from multiple producers. Each
consolidation step can therefore increase the number of
interested consumers which are prevented from access to
the event attributes of produced event streams. This does
not reflect the nature of event processing systems where
basic events like single sensor readings may have only little
influence on the outcome contained in a complex event
representing a specific situation.

In our logistics example, fs. uses destination, production
place and pickup time to determine the estimated day of
delivery. As a consequence, the customer has no access to
the estimated day of delivery of the ordered item, since
she does not fulfill the access requirements for production
place and pickup time. Yet she has a reasonable interest in
this information. And one may claim, that knowledge of
the day of delivery does not necessarily allow to draw a
relevant conclusion on the production place and pickup time
attribute values. We say, the attribute values get obfuscated
during the correlation process and depending on the achieved
level of obfuscation, the access requirements of an attribute
may no longer be needed. In our approach, the level of
obfuscation is a measure, to which extent a consumer of
the produced attribute (estimated day of delivery) can infer
the value of the original attribute (production place). It can
be easily seen in the example, that obfuscation is not only
dependent on the values of the attributes, but also on the
knowledge of the consumer. Since the destination value
has led to the day of delivery as well, knowledge of the
destination would be of great help when trying to infer
the restricted attribute production place because the delivery
time of the item is probably related to the distance between
destination and production place. In this work, we will use
obf(attorq, attpew,w) to refer to the obfuscation achieved
by attye, for atty,q given the knowledge available at a
consumer w € ().

We allow every operator to specify with its access policy
also an obfuscation policy. The obfuscation policy contains

obfuscation thresholds for the attributes the operator pro-
duces. During the processing of an event attribute, its ob-
fuscation w.r.t. each potential consumer is calculated. Once,
the obfuscation threshold for a consumer is reached, the
event attribute can be delivered in spite of conflicting access
requirements. Formally, we define the obfuscation policy
OP for an operator w as a set of (attribute, obfuscation
threshold) pairs:

OP,, = {(atty,0t1), ..(att,,ot,)} .
For instance, the obfuscation policy
OPyanufacturer = { (destination,0.9)}.

allows the shipping company for events addressed to
the consumer to ignore all access rights for destina-
tion in the access policy of attribute day of delivery if
ob f (destination, day of delivery,wc) > 0.9. We detail the
exact semantics of the obfuscation value and its measure in
Section IV.

C. Security Goal

Let atty,;q —. attye, denote that

1) at some operator w € 2, att,q is taken as input to

the correlation function f,, and

2) fw. produces att,.,, in dependence of att,g.
Furthermore, let att,,q —* att,e, denote the transitive
closure of the dependency relation. For any pair of attributes
with atty,q —* attye, we say that att,.., is dependent on
attyrg. Our main goal is to preserve the privacy of event
attributes over multiple correlation steps by respecting the
dependency relationship between the attributes produced by
the CEP system. In particular, access requirements must
not be applied solely to the attribute att,;q, but have to
be inherited to all dependent attributes (att,.,) unless a
sufficient obfuscation threshold for att,,.,, has been reached.

More formally, given for each attribute att an initial set
of access requirements denoted by AR;,;:(att). We require
for any policy consolidation algorithm two conditions to be
met:

Condition 1. For all attributes att € O,, produced at w
ARim;t(att) C AP,,. (1)
Condition 2. For all

(attorq, ttpew) €= with
1) w; has produced att,q with access requirement
AR(attoq) and obfuscation threshold (attoyq, ) €
OPF,,,
2) attyew is produced by w;
3) attnew is consumed by wy
the access requirement in AP, yield

AR(attoa) C AP, if obf(attod, attpew,wr) < x.  (2)

dependent  attribute  pairs

A policy consolidation algorithm needs to ensure Condi-
tion 1 and Condition 2 in the presence of adversaries who
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try to derive event attribute values they are by policy not
allowed to access directly.

We want to avoid that hosts maliciously or inadvertently
obtain information from event streams for which they have
no authorization. Note, by accessing event streams according
to the specified system model, hosts may still be able to
infer event attributes of unauthorized event streams from
legally received event streams. An adversary in our system
is therefore limited to the behavior described in the system
model. The adversary is authenticated and can only access
streams according to its properties. The derived event output
follows the operator specification and the access require-
ments for each executed operator. Each adversary is bound
to analyzing outgoing event streams which it is allowed to
access, for inferring any additional information.

IV. PoLicY CONSOLIDATION AND EVENT OBFUSCATION

To meet the security goal from Section III our approach
establishes secure event streams between each pair of oper-
ators in G. For establishing secure event streams we rely on
mechanisms available in state of the art publish/subscribe
systems including our own work, e.g. [10], [11], [9], [12],
[13]. For our approach it is only important to understand that
each consumer w,. needs to request required event attributes.
The requests are handled at the producer w,;, and w, will need
to authenticate itself against w,, for the corresponding event
attribute. After successful authentication w, will forward
to we

1) only those events matching the request of w,,
2) only those events containing attributes att s.t.

a) the access policy of att allows w. access to att,

b) att has achieved a sufficiently high obfuscation,

ie. V(att;, ot;) € OP,, obf(att;,att,w.) > ot;

To this end w,, will have to perform on its incoming streams

an access policy consolidation to ensure all necessary access

policies can be inherited and a calculation of the obfuscation

values obf (att;, att,w.). In the following we will show the

approach to access consolidation by modeling all potential

dependencies between incoming and outgoing event streams

in an event dependency graph and calculate obfuscation
policies by relying on a Bayesian network.

A. Access Policy Inheritance

Access policy inheritance consists of two basic conceptual
steps: First, domain experts have to identify dependencies
between incoming and outgoing attributes for each operator.

We model these dependencies in a graph as given for our
scenario in Figure 3. Second, an operator maps all access
requirements specified for each of its incoming attributes to
the access policy of all dependent outgoing attributes. In our
example scenario, operator w,. determines the value of the
warehouse attribute. It needs to map the requirement

(domain, €, { shippingCompany, customer})

which is associated to the destination in AP, qn4 facturer tO
the warehouse attribute, since warehouse is dependent on
destination. Hence, only operators hosted by the shipping
company or the customer can access the attribute. After
creating the new access policy for the shipping company
operator, the access policy contains the following entries:

APshipping =
{(warehouse, (domain,&,{shippingComp,customer})),
(estArrivalTime, (domain,=,{shippingComp}))}

Since each operator in G will forward only event streams
whose event attributes are annotated with consolidated ac-
cess policies, it is sufficient to consider possible depen-
dencies between event attributes of incoming streams and
outgoing streams.

B. Event Obfuscation

While it is easy to model and see dependencies between
incoming and outgoing attributes at an operator, it is difficult
to have a general purpose measure for the obfuscation of
values in event attributes. The level of obfuscation is highly
dependent on the correlation function, i.e. how it produces
outgoing events based on incoming events. We exemplary
show this with two basic operators found in all major CEP
systems: a filter, and an aggregator.

A filter’s correlation function is simple: for every incom-
ing event it is checked whether one or more attributes have
a certain value or are within a certain value range. If so, the
events are forwarded to all consumers of the filter operator.
Obviously there is no obfuscation of event information and
for every received attribute, the consumer can directly infer
the values of the original, incoming attributes.

An aggregator is more complex. It collects a set of events
within a time window or for a fixed number of events (count)
before producing any output. The aggregator combines the
attribute values of the incoming events for a newly created
output, e.g. the average. As can be seen, the original values
from the incoming attributes become obfuscated during
the aggregation. The consumers of the aggregated output
cannot directly infer the original attribute values. However,
depending on the aggregation function one may still guess
that the occurrence of some values of incoming attributes
is more likely than others. Our goal is to give a general
measure for this case.
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Obfuscation semantics: By dealing with obfuscation,
our goal is not to influence or control the network partic-
ipants in how they use the CEP system. In a distributed,
heterogeneous CEP system we cannot influence the domain
of attribute values, e.g. increasing its size by adding new
dummy values. Furthermore, we have no control about the
knowledge of operators. This leads to the following strict
assumptions we make for obfuscation measurement: We
assume a consumer of an attribute att has knowledge about
i) the semantics of a correlation function producing att and
ii) the possible values of the unknown event attributes att
is dependent on.

We measure obfuscation of an unknown event attribute by
the equality of likelihood of the different values it can have.
This means, if a consumer cannot — based on its knowledge —
draw any conclusions on the correct value of an attribute, the
attribute is perfectly obfuscated. The obfuscation is perfect
if the probability for all possible values of the incoming
attribute is equal, i.e. the recipient cannot infer on a value
because it was more likely to have occurred. Then, maximum
obfuscation of 1 is achieved. Consequently, if there is only
a single possible value for the incoming attribute, and the
user can directly infer on that value, the achieved obfuscation
should be 0.

Formalizing Obfuscation: The discussed characteristics
lead us to a formalization of attribute inference as a prob-
ability value. This inference probability is known as the
Bayesian inference and gives us an answer to the question:
Given a certain output attribute, and a certain set of input
attributes the consumer knows, how likely is a specific value
for the incoming attribute we need to secure?

We already stated in Section III-B, that the knowledge of
the consumer plays an important role when trying to calcu-
late event obfuscation.We model this knowledge as a func-
tion known,,, (I,,), which returns the set of input attributes
from I, known to the consumer w,, i.e. knowny,, (1) C I,,.

We define that I*(attye.) is the set of att,;q for which
attolg —* attnew. Then the inference probability ip of an
attribute attoq € I*(attnew) used to correlate attye,, for
a consumer w, is the conditional probability distribution of
attold:

ip(attord, attpew,we) =
P(attoa|knowng, (I" (attpew)\I* (attord)), attnew)) (3)

As one can see, the inference probability is not a single
probability value, but a probability distribution over the
value set of the inferred event attribute att,;q. Furthermore,
ip is not only dependent on the operator function, but also
on the knowledge of the consumer. Based on the inference
probability, we can now measure the obfuscation value
achieved for the incoming attribute att,;q with respect to
the outgoing event att,.,, by calculating the entropy of the
inference probability distribution:

Obf(attold7 attnewv wc) = H(ip(attold» attnew; wc)) (4)

The entropy gives the desired measure for obfuscation.
If the probability for all possible values of the incoming
attribute is equal, the entropy of the distribution is 1.
Consequently, if there is only a single possible value for the
incoming attribute, the entropy and therefore the achieved
obfuscation is 0.

Measuring Obfuscation: To measure the obfuscation
between two attributes a Bayesian Network is used, since it
answers probabilistic queries about the attribute inference
[14]. Before being able to query the Bayesian network,
it needs to be trained by observing the in- and outgoing
events. Every event attribute represents a variable (i.e. node)
in the Bayesian Network and every dependency between
attributes represents an edge. However, in addition to the
dependencies of event attributes, every Bayesian Network
associates a probability function with an event attribute. The
training algorithm checks, which particular attributes were
used by the creation of another attribute. Based on these
observations, probability tables are created for every event
attribute (cf. Figure 4).

Once the Bayesian network is trained, it can be queried
about the inference probability of certain attributes. Query-
ing means to provide information about some known event
attributes and to calculate the conditional probability dis-
tribution of the unknown event attributes. Fitting to our
needs, we query the network like this: By providing in-
formation about the observed attribute outcome, we receive
the probability distribution of the attribute values that have
led to the observed outcome. In particular, we can query
the inference probability ip(atted, attpew,w.) by telling the
Bayesian network the observed values for known,,, (1) and
attnew-
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Scalability Analysis: While the introduced mechanisms
fulfill our security goals, the naive application of Bayesian
networks does not allow for a scalable introduction for CEP.
Calculating the inference probability is NP-hard, adding
a potentially infeasible amount of latency to the event
processing, if the size of the Bayesian network is big.

To meet the large computational effort of calculating
Bayesian inference, two different types of optimizations
exist. On the one hand, sampling techniques can be used
to estimate the conditional probabilities of the Bayesian
network (e.g. [15], [16]). However, their precision depends
strongly on the number of samples taken from the network,
and no approximation scheme exists that allows to draw
samples in polynomial time to achieve a certain precision.
This makes the approximate algorithms infeasible for se-
curity applications, since no guarantees can be made in
appropriate time [14]. On the other hand the complexity of
calculating exact inference can be reduced by storing partial
results of the inference calculation which otherwise would
have to be calculated multiple times (e.g. [17]). However,
the benefit of these optimizations is heavily dependent on
the structure of the Bayesian network. They work well in
simple, single connected Bayesian networks (cf. Figure 5)
where the time-complexity can be reduced to be linear to
the number of attribute values.

Besides the computational effort, creating and querying
a Bayesian network also requires communication, if the
needed information is spread among a network. Also, in
order to calculate obfuscation over a chain of operators,
additional communication will be needed, since the infer-
ence probability relies on the consumer’s knowledge (cf.
Equation 5).

As can be seen, the time and communication needed
to calculate the inference probability can be huge be-
cause all dependent event attributes need to be consid-
ered (I*(attpner )). Hence, calculating the inference for the
transitive closure of dependable attributes is not scalable.
We tackle this by dividing the problem, and therefore the
Bayesian Network, in multiple parts that allow to be treated
independently.

V. SCALABLE ACCESS PoLICY CONSOLIDATION

Instead of accounting for a global Bayesian network, we
propose to exploit local knowledge available at each host.
This allows us to reduce the number of relations of incoming

Consumer

Single- and multiply-connected correlation networks

Algorithm 1 Local Obfuscation Calculation

procedure INITIALIZE(w)
for all operator w do
D, < FINDMULTIPATHOPERATORS(w)
end for
for all w € D, do
rel Atts <~ FINDRELATEDATTRIBUTES
for all (attnew,attod) € rel Atts do
TRANSMIT P(attnew|attord) TO w
end for
end for
end procedure

procedure UPONRECEIVEEVENT(e)
for all att € e do
if 3 multPathDependency(att) then
CALCULATEWORSTCASEOBFUSCATION(ATT)
else
CALCULATELOCALOBFUSCATION(ATT)
end if
end for
end procedure

and outgoing attributes and thus leads to a huge gain in pro-
cessing overhead. The idea of our approach is that a host in
the CEP network creates a local Bayesian network for each
of its deployed operators. The handling (i.e. forwarding) of
the event is based on the locally achieved obfuscation. This
limits the computational effort by accepting that obfuscation
is not measured over multiple correlation steps, and therefore
some events may be treated more restrictive than actually
needed.

A. Measuring Local Obfuscation

In the approach, every host calculates obfuscation only for
the locally known attribute dependencies (i.e. attoiq —
allneqw) In contrast to calculating the obfuscation for every
pair of dependent attributes (i.e. atto;q —* attpew). This
has three major benefits: i) a smaller dependency graph,
ii) less communication overhead, and iii) the network is
not multiply connected, because there exist only paths of
length 1. As a consequence, every host can create a local
dependency graph on its own instead of creating a global
dependency graph for all dependent attributes. Furthermore,
we can efficiently calculate the exact inference probabilities
by applying variable elimination optimization for single
connected networks to efficiently determine the obfuscation
value (cf. Section IV-B).



Even in a local approach for obfuscation calculation the
multi-path dependencies of attributes need to be considered.
Attributes might reach the recipient via multiple paths (i.e.
parallel chains of operators in a multiply-connected correla-
tion network, cf. Figure 5). An adversary that can subscribe
to such attributes may be able to infer the original value
by combining the event information received through the
multiple paths. We meet this by analyzing the entire operator
graph during initialization of our algorithm (c.f. Algorithm
1). For every attribute pair with multi-path dependencies
the operators that reside on distinct paths exchange the
dependency functions w.r.t. the attributes. For example, in
a scenario as depicted in Figure 5, the inference probability
is calculated as follows:

P(attoalatty, atts) 5)
= Q* P(attold) * P(attl \attold) * P(att2|attold)

where « is the normalization constant 1/P(atts).

Hence, P(atty|attyq) is sent to operator we and
P(atts|attyq) to operator wy vice versa.

After performing the initialization, each operator can
calculate the obfuscation value from local knowledge only.
In the above example, if operator w; now calculates the
obfuscation of an incoming attribute att,;q for the outgoing
attribute att;, it uses the dependency functions received
during the initialization phase. There, it searches for the
outcome atty which has the highest chance for inferring
attolq, 1.e. the entry with the highest probability. This value
is then used in the calculation of P(att,q|atty,atts), as it
results in the minimal achievable obfuscation.

Note that the initialization needs to be performed with
each change of the correlation graph and follows the learning
phase of the Bayesian networks. However, changes to the
operator graph typically are for many practical settings a
result of changes to the business logic. Hence, we expect
only rare interruptions of the event processing service.

B. Correctness

As our work addresses mainly how to establish producer
centric access policies in CEP in a scalable way, we give
only informal correctness arguments under the limitations
for the adversary introduced in Section III. Three main
properties guarantee that the proposed approach is correct
in terms of the defined security goal:

1) According to our assumptions in Section III, an adver-
sary tries to infer additional information by analyzing
all event streams which it is allowed to access. The
proposed algorithm considers the complete knowledge
the consumer might have. That means, it is considered
that every attribute influencing the requested local
obfuscation (obf (attorq, attpew,we)) that is accessible
to the consumer is known.

2) In accordance to Property 1, every path from att,q
to attyeq is considered in the algorithm. That means,
every piece of information an adversary may access in
order to infer att,;q is included when calculating the
inference.

3) Locally unknown events (which may occur in multi-
path dependency calculations) are always handled as
a worst-case-consideration. We always use the value
in our calculations which would give an adversary the
most inference information, i.e. the value resulting in
the worst obfuscation.

Since all sources of event information which might influence
the obfuscation value of any operator are considered in our
approach, the obfuscation value calculated at an operator
cannot further be lowered by any means. Hence, with the
presented approach, we guarantee: If the consumer does
not fulfill the access requirements for an attribute att,;q,
it will also not be able to access any attribute att,,.,, if the
attributes depend on each other ((attoiq —* attnew) unless a
sufficient obfuscation threshold for att,,.,, has been reached.
We do not guarantee, though, that the consumer will receive
every attribute that has achieved a sufficient obfuscation.

VI. DISCUSSION AND EVALUATION

We implemented the presented approach within the DHEP
framework [7] which enables CEP in a heterogeneous envi-
ronment. That means, hosts may be spread among different
security domains and have differing processing capabili-
ties or use different correlation engines. Hence, using the
framework allows us to create multi-domain distributed CEP
networks.

To achieve policy consolidation, every operator receiv-
ing a request provides the requester with the information
needed for further processing: the access policy as well
as the obfuscation policy. The policies might be different
depending on the consumer (see Section IV). The events
a consumer receives as well as its adherence to access
policy inheritance is dependent on whether it fulfills the
access requirements. To realize the obfuscation measurement
we make use of the Weka framework [18]. Weka is a
data mining tool which comes with a Bayesian network
implementation. Furthermore, it allows us to add hidden
variables which is needed to compute multi-path inference
as discussed in Section V. Every host in our framework
runs its own implementation of Weka. For every event
attribute produced, we calculate the achieved obfuscation
and forward it to potential recipients in accordance to the
obfuscation. Weka does not provide any optimization for
calculating the Bayesian inference. Instead, it uses the naive
full calculation. To measure the computational effort of the
variable elimination optimization (see Section IV-B), we
provide an own algorithm implementation.

Access policy consolidation reduces the network usage.
This is due to the fact that both number and size of events



decrease because not all events or event attributes will be
received by an operator. However, it can be easily seen that
this reduction is fully dependent on the application character-
istics, especially on the access rights of the operators and the
frequency distribution of event attribute values. Therefore it
is not possible to provide meaningful evaluations and we
focus on evaluations of the additional latency caused by our
approach.

Despite reducing the network usage, policy consolidation
will also cause additional latency for event processing on the
network nodes. Although we can reduce the computational
effort by only considering local obfuscation, the computation
still takes a considerable amount of time. The computational
effort is mainly dependent on the size of the Bayesian
Network and the number of consumers, since different
consumers can have differing obfuscation. We analyzed
the additional latency caused by our policy consolidation
mechanism both dependent on the number of input attributes
as well as the number of attribute values. We used a simple
setup, where one operator receives events containing one
attribute. In our evaluations, both the size of the attribute
domain as well as the number of event sources vary. The
operator is hosted on a machine with a 2GHz CPU and
3GB main memory, where the introduced Weka framework
(as well as our external optimization algorithm) is deployed.
The incoming events are processed by an ESPER correla-
tion engine which creates an output event, containing one
attribute, once events from all sources are received. For the
new created event, we calculate the achieved obfuscation for
a consumer. To have results independent of the processing
time of the used correlation engine, we extracted and de-
picted only the time needed for calculating inference in the
Bayesian Network, since it is the main source for additional
latency caused in our approach.

Figure 6(a) depicts the additional latency depending on the
number of event sources. The number of event sources has a
direct influence on the size of the locally created dependency
graph, hence on the size of the Bayesian Network. No
ingoing attribute was known to the consumer. The size of the
attribute domain was fixed to two, meaning that every event
attribute was boolean. The results show that the increase of
the latency, caused by the computation of obfuscation values
increases exponentially with the total number of attributes.
This behavior is expected (c.f. Section IV-B). However,
computations are fast for networks with a small number of
attributes, as they are common in many CEP applications.
Since security-related event systems have, depending on the
network and event parameters, a processing time in the
range of one millisecond and more per event [19], [20], [9],
we consider a latency of up to 1ms as acceptable for our
approach. In our second evaluation, we leave the number
of event sources fixed at two but varied the domain size
(cf. Figure 6(b)). Furthermore, we calculate the achieved
obfuscation for two different consumers. One consumer has
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no knowledge about any ingoing attribute, while the other
has knowledge about one ingoing attribute. We calculate
the obfuscation for the other event attribute, which both
consumers might try to infer. As can be seen, the optimized
algorithm proves to be significantly faster than the standard
calculations, if there is more than one unknown event
source. It can be seen that variable elimination reduces the
complexity to be linear dependent on the size of the attribute
domain, and our approach benefits heavily from it.

Our results show that the additional processing time is
highly dependent on the number of unknown attributes in
the dependency graph as well as the number of potential
values each of the unknown attributes might have. It can be
seen, that the size of the attribute domain is less critical
than the number of attributes. This fits well with many
CEP systems, where it is unusual to correlate events from
many different sources, but rather have a limited number
of sources with potentially large attribute value ranges. We
conclude that obfuscation calculation is reasonable if the
application characteristics allow for it. The calculation may
not be feasible for applications with very high event rates,
since measuring the obfuscation would take too long and the
processing of events would be slowed down. One solution
for this kind of applications may be to calculate a static,
worst case obfuscation instead of calculating the obfuscation
for every new event.



VII. RELATED WORK

With the increasing popularity of event-driven systems, a
lot of effort has been spent to make the systems secure.
For example, a role-based access control is proposed in [3].
Pesonen et al. and Bacon et al. discuss how publish/subscribe
systems can be secured by introducing access control poli-
cies in a multi-domain architecture [10], [11]. They describe
how event communication between the domains can be
supported. Opyrchal et al. present the concept of event
owners that can be specified. These are used to provide
access to their events [21]. Tariq et al. propose a solution
to provide authentication and confidentiality in broker-less
content-based publish/subscribe systems [9]. Our work is
based on the previous work which make event communi-
cation secure among different entities in the system. We
assume the presence of a system that can handle access
control on events. Based on this, we use policy composition
in order to derive the necessary access policies at any point
during the event processing steps.

Access policy composition has found a lot of consid-
eration in distributed systems. Bonatti et al. defined a
well recognized algebra for composing access policies [22].
Especially in the area of web service composition, the
composition of security policies plays an important role, as
different policies have to be combined for every combination
of web services (e.g. [23], [24]). We adopt some of these
concepts into our distributed CEP system, which allows us
to inherit access restrictions during the different processing
steps in the operators of our system.

To realize our concepts we make use of techniques
from statistical inference. More specific, we calculate the
Bayesian inference after creating a Bayesian network and
learning the dependencies (e.g. [14], [18]). Since Bayesian
inference is a complex calculation, several Monte-Carlo
algorithms have been proposed to estimate the inference
value(s). They all have in common to arbitrarily pick sam-
ples from the Bayesian network probability distribution, and
estimate the values based on the samples. The precision of
the estimated inference values is dependent on the number of
samples. A commonly used technique is the Gibbs sampler
[15], [16].

VIII. CONCLUSION

This paper addressed the inheritance and consolidation of
access policies in heterogeneous CEP systems. We identified
a lack of security in multi-hop event processing networks
and proposed a solution to close this gap. More specific, we
presented an approach that allows the inheritance of access
requirements, when events are correlated to complex events.
Our algorithm includes the obfuscation of information,
which can happen during the correlation process, and uses
the obfuscation value as a decision-making basis whether
inheritance is needed. We presented an implementation of
our approach, based on Bayesian Network calculations.

The analysis and evaluations show that the approach is
computation-intensive, once the Bayesian Network grows,
hence raising the processing time of an event. To deal
with the calculation cost, we introduced a local approach,
where every participant calculates local obfuscation achieved
during the correlation process. We use a variable elimination
optimization to further reduce the computational effort for
calculating obfuscation. Future work will concentrate on
enhancing the obfuscation calculation and methods to in-
crease the Bayesian Network size so we are able to measure
obfuscation over more than one correlation steps.
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