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Abstract—Current event processing systems lack methods
to preserve privacy constraints of incoming event streams in
a chain of subsequently applied stream operations. This is a
problem in large-scale distributed applications like a logistic
chain where event processing operators may be spread over
multiple security domains. An adversary can infer from legally
received outgoing event streams confidential input streams
of the event processing system. This paper presents a fine-
grained access management for complex event processing. Each
incoming event stream can be protected by the specification
of an access policy and is enforced by algorithms for access
consolidation. The utility of the event processing system is
increased by providing and computing in a scalable manner a
measure for the obfuscation of event streams. An obfuscation
threshold as part of the access policy allows to ignore access re-
quirements and deliver events which have achieved a sufficient
high obfuscation level.
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I. INTRODUCTION

In business processes, it is essential to detect inconsis-

tencies or failures early. For example, in manufacturing and

logistic processes, items are tracked continuously to detect

loss or to reroute them during transport. To answer this need

complex event processing (CEP) systems have evolved as a

key paradigm for business and industrial applications [1],

[2]. CEP systems allow to detect situations by performing

operations on event streams which emerge from sensors all

over the world, e.g. from packet tracking devices.

While, traditionally event processing systems have applied

powerful operators in a central way, the emerging increase

of event sources and event consumers have raised the need

to reduce the communication load by distributed in-network

processing of stream operations [3], [4], [5], [6]. In addition,

the collaborative nature of today’s economy results in large-

scale networks, where different users, companies, or groups

exchange events. As a result, event processing networks

are heterogeneous in terms of processing capabilities and

technologies, consist of differing participants, and are spread

across multiple security domains [7], [8]. However, the

increasing interoperability of CEP applications raises the

question of security [2]. It is not feasible for a central

instance to manage access control for the whole network.

Instead, every producer of information should be able to

control how its produced data can be accessed. For example,
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Figure 1. Access Control & Event Dependency

a company may restrict certain information to a subset of

authorized users (i.e. that are registered in its domain).

Current work in providing security for event-based sys-

tems covers already confidentiality of individual event

streams and the authorization of network participants [9],

[10], [11]. In CEP systems, however, the provider of an

event looses control on the distribution of dependent event

streams. This constitutes a major security problem, allowing

an adversary to infer information on confidential ingoing

event streams of the CEP system.

As an example consider the logistics process illustrated in

Figure 1 where a manufacturer wants to deliver an item to a

destination. The shipping company determines a warehouse

close to the destination, where the item will be shipped

to before it will be delivered to the customer. The logistic

process is supported by an event processing system, where

operators are hosted in the domain of each party and ex-

change events including potentially confidential information

(e.g. the item’s destination is transmitted to the shipping

company). If now a third party receives events related to the

warehouse, it may draw conclusions about the original event

data (i.e. destination), in spite of the manufacturer declaring

this information as highly confidential and only providing

the shipping company with access rights to it.

The goal of this work is to establish access control

that ensures the privacy of information even over multiple

processing steps in a multi-domain, large scale CEP system.

In particular, our contributions are i) an access policy inher-
itance mechanism to enforce access policies over a chain of

dependent operators and ii) a scalable method to measure the

obfuscation imposed by operators on information exchanged

in event streams. This allows to define as part of the

access policy an obfuscation threshold to indicate when

the event processing systems can ignore access restrictions,
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Figure 2. Attributes in Shipping Scenario

thus increasing the number of events to which application

components can react to and this way increasing also the

utility of the CEP system.

In the remainder of the paper we define the system model

and security goal in Section II and Section III respectively.

Section IV presents the general concept to establish policy

consolidation respecting obfuscation of information. In Sec-

tion V we enhance the general concept by a local policy

consolidation mechanism that overcomes the limitations

regarding the scalability of the approach. The evaluation

results on the overhead of measuring obfuscation are detailed

in Section VI. Finally, we discuss related work in Section VII

and conclude our work in Section VIII.

II. SYSTEM MODEL

We assume a distributed correlation network, where dedi-

cated hosts are interconnected. On these hosts we deploy

operators, which are executed to collaboratively detect situ-

ations and form the distributed CEP system. The cooperative

behavior of the operators is modeled by a directed operator

graph G = (Ω, S) which consists of operators ω ∈ Ω and

event streams (ωi, ωj) ∈ S ⊆ (Ω × Ω) directed from ωi

to ωj . Thus, we call ωi the event producer and ωj the

consumer of these events. Each event contains one or more

event attributes which have discrete values. Every operator ω
implements a correlation function fω : Iω → Oω that maps

incoming event streams Iω to outgoing event streams Oω . In

particular, fω identifies which events of its incoming streams

are selected, how event patterns are identified (correlated)

between events, and finally how events for its outgoing

streams are produced.

Figure 2 illustrates an operator graph of three operators

according to the introduced logistics example, each operator

hosted in a distinct domain. The correlation function fsc
is applied to events received from and produced by ωm

on produced items in the manufacturing domain. Events

produced by fsc carry two event attributes, the warehouse

location and estimated day of delivery for shipped items.

III. ACCESS CONTROL FOR CEP

Our approach allows to inherit access requirements by as-

signing them to event attributes in form of an access policy.

This allows to preserve requirements through any chain of

dependent correlation steps of operators in G. In addition, an

obfuscation policy allows to specify an obfuscation threshold
for event attributes. In each correlation step, the obfuscation

of event attributes in produced events is determined by

the proposed access policy consolidation protocol. Once

the obfuscation threshold is reached for an event attribute,

the attribute’s access requirements can be ignored. In the

following, we detail the concepts behind access policies and

obfuscation policies, and formalize the security goal.

A. Access Policies

Access control allows to specify access rights of subjects

(operators) for the set of available objects (event attributes).

These access rights are provided by the owner of an

object (e.g. the producer of an event stream) and may

be granted to operators based on an access requirement.
Such a requirement may be a role, a location or a domain

affiliation. Requirements are usually not direct properties
of the operators, but of the hosts where the operators are

deployed. Formally, we specify the access rights within an

access policy AP for an operator ω as a set of (attribute,

access requirement) pairs:

APω = {(att1, ar1), ..., (attn, arn)} .
If there is no requirement specified for an attribute, any

consumer in the network will be able to access it. Note

that we consider attributes to be distinct even if they use the

same name, but are produced at two distinct operators.

An access requirement is a tuple of a property p, a math-

ematical operator op and a value set val: ar = (p, op, val),
where op ∈ {=, <,>,≤,≥,∈}. val can be specified by

a range or a set of values. For the sake of simplicity, in

this paper access requirements are only referring to domain

affiliation and have a structure like this:

ar1 = (domain,∈, {domainA, domainB}).
In our example scenario, the manufacturer’s event attributes

have different access requirements. While the information

about the item’s destination is accessible by the customer,

information about where the item is produced and when

it can be picked up is restricted to the shipping company.

Therefore, the attached AP is defined as follows:

APmanufacturer =
{(destination,(domain,∈,{shippingComp,customer})),



(pickup time, (domain,=,shippingComp)),

(production place, (domain,=,shippingComp))}
With the enforcement and assurance of access policies at

each producer, a consumer will be eligible to access (receive)

an attribute only if the consumer’s properties match the

access requirements defined for the particular attribute. In

this case the consumer is trusted to use the attribute in its

correlation function and adopt the requirements specified for

the attribute in its own access policy for all produced events.

B. Obfuscation of Event Information
While access policies allow a producer to specify access

requirements in a fine-grained manner, the inheritance of

requirements in a chain of succeeding operators is at times

very restrictive and can limit the efficiency and applicability

of the CEP system: in each correlation step of this chain,

the number of access requirements may increase by the

consolidation of requirements from multiple producers. Each

consolidation step can therefore increase the number of

interested consumers which are prevented from access to

the event attributes of produced event streams. This does

not reflect the nature of event processing systems where

basic events like single sensor readings may have only little

influence on the outcome contained in a complex event

representing a specific situation.
In our logistics example, fsc uses destination, production

place and pickup time to determine the estimated day of

delivery. As a consequence, the customer has no access to

the estimated day of delivery of the ordered item, since

she does not fulfill the access requirements for production
place and pickup time. Yet she has a reasonable interest in

this information. And one may claim, that knowledge of

the day of delivery does not necessarily allow to draw a

relevant conclusion on the production place and pickup time
attribute values. We say, the attribute values get obfuscated
during the correlation process and depending on the achieved

level of obfuscation, the access requirements of an attribute

may no longer be needed. In our approach, the level of

obfuscation is a measure, to which extent a consumer of

the produced attribute (estimated day of delivery) can infer

the value of the original attribute (production place). It can

be easily seen in the example, that obfuscation is not only

dependent on the values of the attributes, but also on the

knowledge of the consumer. Since the destination value

has led to the day of delivery as well, knowledge of the

destination would be of great help when trying to infer

the restricted attribute production place because the delivery

time of the item is probably related to the distance between

destination and production place. In this work, we will use

obf(attold, attnew, ω) to refer to the obfuscation achieved

by attnew for attold given the knowledge available at a

consumer ω ∈ Ω.
We allow every operator to specify with its access policy

also an obfuscation policy. The obfuscation policy contains

obfuscation thresholds for the attributes the operator pro-

duces. During the processing of an event attribute, its ob-

fuscation w.r.t. each potential consumer is calculated. Once,

the obfuscation threshold for a consumer is reached, the

event attribute can be delivered in spite of conflicting access

requirements. Formally, we define the obfuscation policy

OP for an operator ω as a set of (attribute, obfuscation

threshold) pairs:

OPω = {(att1, ot1), ..(attn, otn)} .
For instance, the obfuscation policy

OPmanufacturer = {(destination, 0.9)}.
allows the shipping company for events addressed to

the consumer to ignore all access rights for destina-
tion in the access policy of attribute day of delivery if

obf(destination, day of delivery, ωC) ≥ 0.9. We detail the

exact semantics of the obfuscation value and its measure in

Section IV.

C. Security Goal
Let attold →ω attnew denote that

1) at some operator ω ∈ Ω, attold is taken as input to

the correlation function fω , and

2) fω produces attnew in dependence of attold.

Furthermore, let attold →∗ attnew denote the transitive

closure of the dependency relation. For any pair of attributes

with attold →∗ attnew we say that attnew is dependent on

attold. Our main goal is to preserve the privacy of event

attributes over multiple correlation steps by respecting the

dependency relationship between the attributes produced by

the CEP system. In particular, access requirements must

not be applied solely to the attribute attold, but have to

be inherited to all dependent attributes (attnew) unless a

sufficient obfuscation threshold for attnew has been reached.
More formally, given for each attribute att an initial set

of access requirements denoted by ARinit(att). We require

for any policy consolidation algorithm two conditions to be

met:

Condition 1. For all attributes att ∈ Oω produced at ω

ARinit(att) ⊂ APω. (1)

Condition 2. For all dependent attribute pairs
(attold, attnew) ∈→∗ with

1) ωi has produced attold with access requirement
AR(attold) and obfuscation threshold (attold, x) ∈
OPωi ,

2) attnew is produced by ωj

3) attnew is consumed by ωk

the access requirement in APωj
yield

AR(attold) ⊂ APωj if obf(attold, attnew, ωk) < x. (2)

A policy consolidation algorithm needs to ensure Condi-

tion 1 and Condition 2 in the presence of adversaries who
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Figure 3. Dependency Graph of the Shipping Company Operator

try to derive event attribute values they are by policy not

allowed to access directly.

We want to avoid that hosts maliciously or inadvertently

obtain information from event streams for which they have

no authorization. Note, by accessing event streams according

to the specified system model, hosts may still be able to

infer event attributes of unauthorized event streams from

legally received event streams. An adversary in our system

is therefore limited to the behavior described in the system

model. The adversary is authenticated and can only access

streams according to its properties. The derived event output

follows the operator specification and the access require-

ments for each executed operator. Each adversary is bound

to analyzing outgoing event streams which it is allowed to

access, for inferring any additional information.

IV. POLICY CONSOLIDATION AND EVENT OBFUSCATION

To meet the security goal from Section III our approach

establishes secure event streams between each pair of oper-

ators in G. For establishing secure event streams we rely on

mechanisms available in state of the art publish/subscribe

systems including our own work, e.g. [10], [11], [9], [12],

[13]. For our approach it is only important to understand that

each consumer ωc needs to request required event attributes.

The requests are handled at the producer ωp and ωc will need

to authenticate itself against ωp for the corresponding event

attribute. After successful authentication ωp will forward

to ωc

1) only those events matching the request of ωc,

2) only those events containing attributes att s.t.

a) the access policy of att allows ωc access to att,
b) att has achieved a sufficiently high obfuscation,

i.e. ∀(atti, oti) ∈ OPωp
obf(atti, att, ωc) ≥ oti

To this end ωp will have to perform on its incoming streams

an access policy consolidation to ensure all necessary access

policies can be inherited and a calculation of the obfuscation

values obf(atti, att, ωc). In the following we will show the

approach to access consolidation by modeling all potential

dependencies between incoming and outgoing event streams

in an event dependency graph and calculate obfuscation

policies by relying on a Bayesian network.

A. Access Policy Inheritance

Access policy inheritance consists of two basic conceptual

steps: First, domain experts have to identify dependencies

between incoming and outgoing attributes for each operator.

We model these dependencies in a graph as given for our

scenario in Figure 3. Second, an operator maps all access

requirements specified for each of its incoming attributes to

the access policy of all dependent outgoing attributes. In our

example scenario, operator ωsc determines the value of the

warehouse attribute. It needs to map the requirement

(domain,∈, {shippingCompany, customer})

which is associated to the destination in APmanufacturer to

the warehouse attribute, since warehouse is dependent on

destination. Hence, only operators hosted by the shipping

company or the customer can access the attribute. After

creating the new access policy for the shipping company

operator, the access policy contains the following entries:

APshipping =
{(warehouse, (domain,∈,{shippingComp,customer})),

(estArrivalTime, (domain,=,{shippingComp}))}

Since each operator in G will forward only event streams

whose event attributes are annotated with consolidated ac-

cess policies, it is sufficient to consider possible depen-

dencies between event attributes of incoming streams and

outgoing streams.

B. Event Obfuscation

While it is easy to model and see dependencies between

incoming and outgoing attributes at an operator, it is difficult

to have a general purpose measure for the obfuscation of

values in event attributes. The level of obfuscation is highly

dependent on the correlation function, i.e. how it produces

outgoing events based on incoming events. We exemplary

show this with two basic operators found in all major CEP

systems: a filter, and an aggregator.

A filter’s correlation function is simple: for every incom-

ing event it is checked whether one or more attributes have

a certain value or are within a certain value range. If so, the

events are forwarded to all consumers of the filter operator.

Obviously there is no obfuscation of event information and

for every received attribute, the consumer can directly infer

the values of the original, incoming attributes.

An aggregator is more complex. It collects a set of events

within a time window or for a fixed number of events (count)

before producing any output. The aggregator combines the

attribute values of the incoming events for a newly created

output, e.g. the average. As can be seen, the original values

from the incoming attributes become obfuscated during

the aggregation. The consumers of the aggregated output

cannot directly infer the original attribute values. However,

depending on the aggregation function one may still guess

that the occurrence of some values of incoming attributes

is more likely than others. Our goal is to give a general

measure for this case.
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Figure 4. Bayesian Network consisting of Topology and Conditional Probability Tables

Obfuscation semantics: By dealing with obfuscation,

our goal is not to influence or control the network partic-

ipants in how they use the CEP system. In a distributed,

heterogeneous CEP system we cannot influence the domain

of attribute values, e.g. increasing its size by adding new

dummy values. Furthermore, we have no control about the

knowledge of operators. This leads to the following strict

assumptions we make for obfuscation measurement: We

assume a consumer of an attribute att has knowledge about

i) the semantics of a correlation function producing att and

ii) the possible values of the unknown event attributes att
is dependent on.

We measure obfuscation of an unknown event attribute by

the equality of likelihood of the different values it can have.

This means, if a consumer cannot – based on its knowledge –

draw any conclusions on the correct value of an attribute, the

attribute is perfectly obfuscated. The obfuscation is perfect

if the probability for all possible values of the incoming

attribute is equal, i.e. the recipient cannot infer on a value

because it was more likely to have occurred. Then, maximum

obfuscation of 1 is achieved. Consequently, if there is only

a single possible value for the incoming attribute, and the

user can directly infer on that value, the achieved obfuscation

should be 0.

Formalizing Obfuscation: The discussed characteristics

lead us to a formalization of attribute inference as a prob-

ability value. This inference probability is known as the

Bayesian inference and gives us an answer to the question:

Given a certain output attribute, and a certain set of input
attributes the consumer knows, how likely is a specific value
for the incoming attribute we need to secure?

We already stated in Section III-B, that the knowledge of

the consumer plays an important role when trying to calcu-

late event obfuscation.We model this knowledge as a func-

tion knownωc(Iω), which returns the set of input attributes

from Iω known to the consumer ωc, i.e. knownωc(Iω) ⊆ Iω .

We define that I∗(attnew) is the set of attold for which

attold →∗ attnew. Then the inference probability ip of an

attribute attold ∈ I∗(attnew) used to correlate attnew for

a consumer ωc is the conditional probability distribution of

attold:

ip(attold, attnew, ωc) =

P (attold|knownωc
(I∗(attnew)\I∗(attold)), attnew)) (3)

As one can see, the inference probability is not a single

probability value, but a probability distribution over the

value set of the inferred event attribute attold. Furthermore,

ip is not only dependent on the operator function, but also

on the knowledge of the consumer. Based on the inference

probability, we can now measure the obfuscation value

achieved for the incoming attribute attold with respect to

the outgoing event attnew by calculating the entropy of the

inference probability distribution:

obf(attold, attnew, ωc) = H(ip(attold, attnew, ωc)) (4)

The entropy gives the desired measure for obfuscation.

If the probability for all possible values of the incoming

attribute is equal, the entropy of the distribution is 1.

Consequently, if there is only a single possible value for the

incoming attribute, the entropy and therefore the achieved

obfuscation is 0.

Measuring Obfuscation: To measure the obfuscation

between two attributes a Bayesian Network is used, since it

answers probabilistic queries about the attribute inference

[14]. Before being able to query the Bayesian network,

it needs to be trained by observing the in- and outgoing

events. Every event attribute represents a variable (i.e. node)

in the Bayesian Network and every dependency between

attributes represents an edge. However, in addition to the

dependencies of event attributes, every Bayesian Network

associates a probability function with an event attribute. The

training algorithm checks, which particular attributes were

used by the creation of another attribute. Based on these

observations, probability tables are created for every event

attribute (cf. Figure 4).

Once the Bayesian network is trained, it can be queried
about the inference probability of certain attributes. Query-

ing means to provide information about some known event

attributes and to calculate the conditional probability dis-

tribution of the unknown event attributes. Fitting to our

needs, we query the network like this: By providing in-

formation about the observed attribute outcome, we receive

the probability distribution of the attribute values that have

led to the observed outcome. In particular, we can query

the inference probability ip(attold, attnew, ωc) by telling the

Bayesian network the observed values for knownωc(I
∗
ω) and

attnew.
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Scalability Analysis: While the introduced mechanisms

fulfill our security goals, the naive application of Bayesian

networks does not allow for a scalable introduction for CEP.

Calculating the inference probability is NP-hard, adding

a potentially infeasible amount of latency to the event

processing, if the size of the Bayesian network is big.

To meet the large computational effort of calculating

Bayesian inference, two different types of optimizations

exist. On the one hand, sampling techniques can be used

to estimate the conditional probabilities of the Bayesian

network (e.g. [15], [16]). However, their precision depends

strongly on the number of samples taken from the network,

and no approximation scheme exists that allows to draw

samples in polynomial time to achieve a certain precision.

This makes the approximate algorithms infeasible for se-

curity applications, since no guarantees can be made in

appropriate time [14]. On the other hand the complexity of

calculating exact inference can be reduced by storing partial

results of the inference calculation which otherwise would

have to be calculated multiple times (e.g. [17]). However,

the benefit of these optimizations is heavily dependent on

the structure of the Bayesian network. They work well in

simple, single connected Bayesian networks (cf. Figure 5)

where the time-complexity can be reduced to be linear to

the number of attribute values.

Besides the computational effort, creating and querying

a Bayesian network also requires communication, if the

needed information is spread among a network. Also, in

order to calculate obfuscation over a chain of operators,

additional communication will be needed, since the infer-

ence probability relies on the consumer’s knowledge (cf.

Equation 5).

As can be seen, the time and communication needed

to calculate the inference probability can be huge be-

cause all dependent event attributes need to be consid-

ered (I∗(attnew)). Hence, calculating the inference for the

transitive closure of dependable attributes is not scalable.

We tackle this by dividing the problem, and therefore the

Bayesian Network, in multiple parts that allow to be treated

independently.

V. SCALABLE ACCESS POLICY CONSOLIDATION

Instead of accounting for a global Bayesian network, we

propose to exploit local knowledge available at each host.

This allows us to reduce the number of relations of incoming

Algorithm 1 Local Obfuscation Calculation

procedure INITIALIZE(ω)
for all operator ω do

Dω ← FINDMULTIPATHOPERATORS(ω)
end for
for all ω ∈ Dω do

relAtts ←FINDRELATEDATTRIBUTES

for all (attnew, attold) ∈ relAtts do
TRANSMIT P(attnew|attold) TO ω

end for
end for

end procedure
procedure UPONRECEIVEEVENT(e)

for all att ∈ e do
if ∃ multPathDependency(att) then

CALCULATEWORSTCASEOBFUSCATION(ATT)
else

CALCULATELOCALOBFUSCATION(ATT)
end if

end for
end procedure

and outgoing attributes and thus leads to a huge gain in pro-

cessing overhead. The idea of our approach is that a host in

the CEP network creates a local Bayesian network for each

of its deployed operators. The handling (i.e. forwarding) of

the event is based on the locally achieved obfuscation. This

limits the computational effort by accepting that obfuscation

is not measured over multiple correlation steps, and therefore

some events may be treated more restrictive than actually

needed.

A. Measuring Local Obfuscation

In the approach, every host calculates obfuscation only for

the locally known attribute dependencies (i.e. attold →ω

attnew) in contrast to calculating the obfuscation for every

pair of dependent attributes (i.e. attold →∗ attnew). This

has three major benefits: i) a smaller dependency graph,

ii) less communication overhead, and iii) the network is

not multiply connected, because there exist only paths of

length 1. As a consequence, every host can create a local
dependency graph on its own instead of creating a global

dependency graph for all dependent attributes. Furthermore,

we can efficiently calculate the exact inference probabilities

by applying variable elimination optimization for single

connected networks to efficiently determine the obfuscation

value (cf. Section IV-B).



Even in a local approach for obfuscation calculation the

multi-path dependencies of attributes need to be considered.

Attributes might reach the recipient via multiple paths (i.e.

parallel chains of operators in a multiply-connected correla-

tion network, cf. Figure 5). An adversary that can subscribe

to such attributes may be able to infer the original value

by combining the event information received through the

multiple paths. We meet this by analyzing the entire operator

graph during initialization of our algorithm (c.f. Algorithm

1). For every attribute pair with multi-path dependencies

the operators that reside on distinct paths exchange the

dependency functions w.r.t. the attributes. For example, in

a scenario as depicted in Figure 5, the inference probability

is calculated as follows:

P (attold|att1, att2)
= α ∗ P (attold) ∗ P (att1|attold) ∗ P (att2|attold)

(5)

where α is the normalization constant 1/P (att2).

Hence, P (att1|attold) is sent to operator ω2 and

P (att2|attold) to operator ω1 vice versa.

After performing the initialization, each operator can

calculate the obfuscation value from local knowledge only.

In the above example, if operator ω1 now calculates the

obfuscation of an incoming attribute attold for the outgoing

attribute att1, it uses the dependency functions received

during the initialization phase. There, it searches for the

outcome att2 which has the highest chance for inferring

attold, i.e. the entry with the highest probability. This value

is then used in the calculation of P (attold|att1, att2), as it

results in the minimal achievable obfuscation.

Note that the initialization needs to be performed with

each change of the correlation graph and follows the learning

phase of the Bayesian networks. However, changes to the

operator graph typically are for many practical settings a

result of changes to the business logic. Hence, we expect

only rare interruptions of the event processing service.

B. Correctness

As our work addresses mainly how to establish producer

centric access policies in CEP in a scalable way, we give

only informal correctness arguments under the limitations

for the adversary introduced in Section III. Three main

properties guarantee that the proposed approach is correct

in terms of the defined security goal:

1) According to our assumptions in Section III, an adver-

sary tries to infer additional information by analyzing

all event streams which it is allowed to access. The

proposed algorithm considers the complete knowledge

the consumer might have. That means, it is considered

that every attribute influencing the requested local

obfuscation (obf(attold, attnew, ωc)) that is accessible

to the consumer is known.

2) In accordance to Property 1, every path from attold
to attnew is considered in the algorithm. That means,

every piece of information an adversary may access in

order to infer attold is included when calculating the

inference.

3) Locally unknown events (which may occur in multi-

path dependency calculations) are always handled as

a worst-case-consideration. We always use the value

in our calculations which would give an adversary the

most inference information, i.e. the value resulting in

the worst obfuscation.

Since all sources of event information which might influence

the obfuscation value of any operator are considered in our

approach, the obfuscation value calculated at an operator

cannot further be lowered by any means. Hence, with the

presented approach, we guarantee: If the consumer does

not fulfill the access requirements for an attribute attold,

it will also not be able to access any attribute attnew if the

attributes depend on each other ((attold →∗ attnew) unless a

sufficient obfuscation threshold for attnew has been reached.

We do not guarantee, though, that the consumer will receive

every attribute that has achieved a sufficient obfuscation.

VI. DISCUSSION AND EVALUATION

We implemented the presented approach within the DHEP

framework [7] which enables CEP in a heterogeneous envi-

ronment. That means, hosts may be spread among different

security domains and have differing processing capabili-

ties or use different correlation engines. Hence, using the

framework allows us to create multi-domain distributed CEP

networks.

To achieve policy consolidation, every operator receiv-

ing a request provides the requester with the information

needed for further processing: the access policy as well

as the obfuscation policy. The policies might be different

depending on the consumer (see Section IV). The events

a consumer receives as well as its adherence to access

policy inheritance is dependent on whether it fulfills the

access requirements. To realize the obfuscation measurement

we make use of the Weka framework [18]. Weka is a

data mining tool which comes with a Bayesian network

implementation. Furthermore, it allows us to add hidden

variables which is needed to compute multi-path inference

as discussed in Section V. Every host in our framework

runs its own implementation of Weka. For every event

attribute produced, we calculate the achieved obfuscation

and forward it to potential recipients in accordance to the

obfuscation. Weka does not provide any optimization for

calculating the Bayesian inference. Instead, it uses the naive

full calculation. To measure the computational effort of the

variable elimination optimization (see Section IV-B), we

provide an own algorithm implementation.

Access policy consolidation reduces the network usage.

This is due to the fact that both number and size of events



decrease because not all events or event attributes will be

received by an operator. However, it can be easily seen that

this reduction is fully dependent on the application character-

istics, especially on the access rights of the operators and the

frequency distribution of event attribute values. Therefore it

is not possible to provide meaningful evaluations and we

focus on evaluations of the additional latency caused by our

approach.

Despite reducing the network usage, policy consolidation

will also cause additional latency for event processing on the

network nodes. Although we can reduce the computational

effort by only considering local obfuscation, the computation

still takes a considerable amount of time. The computational

effort is mainly dependent on the size of the Bayesian

Network and the number of consumers, since different

consumers can have differing obfuscation. We analyzed

the additional latency caused by our policy consolidation

mechanism both dependent on the number of input attributes

as well as the number of attribute values. We used a simple

setup, where one operator receives events containing one

attribute. In our evaluations, both the size of the attribute

domain as well as the number of event sources vary. The

operator is hosted on a machine with a 2GHz CPU and

3GB main memory, where the introduced Weka framework

(as well as our external optimization algorithm) is deployed.

The incoming events are processed by an ESPER correla-

tion engine which creates an output event, containing one

attribute, once events from all sources are received. For the

new created event, we calculate the achieved obfuscation for

a consumer. To have results independent of the processing

time of the used correlation engine, we extracted and de-

picted only the time needed for calculating inference in the

Bayesian Network, since it is the main source for additional

latency caused in our approach.

Figure 6(a) depicts the additional latency depending on the

number of event sources. The number of event sources has a

direct influence on the size of the locally created dependency

graph, hence on the size of the Bayesian Network. No

ingoing attribute was known to the consumer. The size of the

attribute domain was fixed to two, meaning that every event

attribute was boolean. The results show that the increase of

the latency, caused by the computation of obfuscation values

increases exponentially with the total number of attributes.

This behavior is expected (c.f. Section IV-B). However,

computations are fast for networks with a small number of

attributes, as they are common in many CEP applications.

Since security-related event systems have, depending on the

network and event parameters, a processing time in the

range of one millisecond and more per event [19], [20], [9],

we consider a latency of up to 1ms as acceptable for our

approach. In our second evaluation, we leave the number

of event sources fixed at two but varied the domain size

(cf. Figure 6(b)). Furthermore, we calculate the achieved

obfuscation for two different consumers. One consumer has
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no knowledge about any ingoing attribute, while the other

has knowledge about one ingoing attribute. We calculate

the obfuscation for the other event attribute, which both

consumers might try to infer. As can be seen, the optimized

algorithm proves to be significantly faster than the standard

calculations, if there is more than one unknown event

source. It can be seen that variable elimination reduces the

complexity to be linear dependent on the size of the attribute

domain, and our approach benefits heavily from it.

Our results show that the additional processing time is

highly dependent on the number of unknown attributes in

the dependency graph as well as the number of potential

values each of the unknown attributes might have. It can be

seen, that the size of the attribute domain is less critical

than the number of attributes. This fits well with many

CEP systems, where it is unusual to correlate events from

many different sources, but rather have a limited number

of sources with potentially large attribute value ranges. We

conclude that obfuscation calculation is reasonable if the

application characteristics allow for it. The calculation may

not be feasible for applications with very high event rates,

since measuring the obfuscation would take too long and the

processing of events would be slowed down. One solution

for this kind of applications may be to calculate a static,

worst case obfuscation instead of calculating the obfuscation

for every new event.



VII. RELATED WORK

With the increasing popularity of event-driven systems, a

lot of effort has been spent to make the systems secure.

For example, a role-based access control is proposed in [3].

Pesonen et al. and Bacon et al. discuss how publish/subscribe

systems can be secured by introducing access control poli-

cies in a multi-domain architecture [10], [11]. They describe

how event communication between the domains can be

supported. Opyrchal et al. present the concept of event

owners that can be specified. These are used to provide

access to their events [21]. Tariq et al. propose a solution

to provide authentication and confidentiality in broker-less

content-based publish/subscribe systems [9]. Our work is

based on the previous work which make event communi-

cation secure among different entities in the system. We

assume the presence of a system that can handle access

control on events. Based on this, we use policy composition

in order to derive the necessary access policies at any point

during the event processing steps.

Access policy composition has found a lot of consid-

eration in distributed systems. Bonatti et al. defined a

well recognized algebra for composing access policies [22].

Especially in the area of web service composition, the

composition of security policies plays an important role, as

different policies have to be combined for every combination

of web services (e.g. [23], [24]). We adopt some of these

concepts into our distributed CEP system, which allows us

to inherit access restrictions during the different processing

steps in the operators of our system.

To realize our concepts we make use of techniques

from statistical inference. More specific, we calculate the

Bayesian inference after creating a Bayesian network and

learning the dependencies (e.g. [14], [18]). Since Bayesian

inference is a complex calculation, several Monte-Carlo

algorithms have been proposed to estimate the inference

value(s). They all have in common to arbitrarily pick sam-

ples from the Bayesian network probability distribution, and

estimate the values based on the samples. The precision of

the estimated inference values is dependent on the number of

samples. A commonly used technique is the Gibbs sampler

[15], [16].

VIII. CONCLUSION

This paper addressed the inheritance and consolidation of

access policies in heterogeneous CEP systems. We identified

a lack of security in multi-hop event processing networks

and proposed a solution to close this gap. More specific, we

presented an approach that allows the inheritance of access

requirements, when events are correlated to complex events.

Our algorithm includes the obfuscation of information,

which can happen during the correlation process, and uses

the obfuscation value as a decision-making basis whether

inheritance is needed. We presented an implementation of

our approach, based on Bayesian Network calculations.

The analysis and evaluations show that the approach is

computation-intensive, once the Bayesian Network grows,

hence raising the processing time of an event. To deal

with the calculation cost, we introduced a local approach,

where every participant calculates local obfuscation achieved

during the correlation process. We use a variable elimination

optimization to further reduce the computational effort for

calculating obfuscation. Future work will concentrate on

enhancing the obfuscation calculation and methods to in-

crease the Bayesian Network size so we are able to measure

obfuscation over more than one correlation steps.
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