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Abstract—The proliferation of modern smartphones has
given rise to Public Sensing, a new paradigm for data ac-
quisition systems utilizing smartphones of mobile participants.
In this paper, we present DrOPS, a system for improving
the efficiency of data acquisition in Public Sensing systems.
DrOPS utilizes a model-driven approach, where the number
of required readings from mobile smartphones is reduced by
inferring readings from the model. Furthermore, the model
can be used to infer readings for positions where no sensor is
available. The model is directly constructed from the observed
phenomenon in an online fashion. Using such models together
with a client-specified quality bound, we can significantly
reduce the effort for data acquisition while still reporting data
of required quality to the client. To this effect, we develop a set
of online learning and control algorithms to create and validate
the model of the observed phenomenon and present a sensing
task execution system utilizing our algorithms in this paper.
Our evaluations show that we obtain models in a matter of
just hours or even minutes. Using the model-driven approach
for optimizing the data acquisition, we can save up to 80 % of
energy for communication and provide inferred temperature
readings for uncovered positions matching an error-bound of
1◦

C up to 100 % of the time.

I. INTRODUCTION

The proliferation of modern smartphones has given rise

to Public Sensing (PS), a new paradigm for sensor data

acquisition utilizing smartphones of mobile participants [1].

These devices are equipped with various sensors such as

accelerometers, cameras, light sensor, and positioning sen-

sors like GPS. Together with their capability of processing

and communicating captured sensor data, smartphones have

become powerful networked sensor platforms that can be

used to obtain sensor data without the cost of managing a

dedicated fixed sensor network.

However, due to the mobility of participants, capturing

sensor data at certain points of interests (POI) is more

challenging than for fixed sensor networks where a sensor

could simply be installed at each POI. In [2], we introduced

the concept of virtual sensors (v-sensors for short) as a

mobility-transparent abstraction of the PS system. Similar

to the sensors of a fixed sensor network, v-sensors can be

placed at POIs and report readings with a certain client-

defined sampling rate. The PS system is responsible for

selecting suitable mobile devices in the vicinity of the v-

sensor to capture the data associated with this v-sensor.

While being a powerful abstraction, the PS system faces

the problem of a v-sensor being temporarily unavailable if

no mobile device is in its vicinity. Clearly, the probability

for a v-sensor being unavailable increases with an increasing

v-sensor sampling rate and a decreasing sensing device

density. We alleviate this problem by a model-driven data

acquisition approach, which uses a model to infer readings

of unavailable v-sensors. Moreover, we can save energy

for sensing and communicating data on mobile devices by

inferring readings of v-sensors even if they are available

when inferred readings are sufficiently accurate. Keeping the

energy consumption for PS to a minimum is important, as

otherwise participants might be unwilling to support PS.

Model-driven sensing has already proven to increase the

performance of fixed sensor networks [3], [4]. These ap-

proaches target long-running queries and use either expert

knowledge or a pilot deployment, typically lasting at least

several days, to learn the model a priori. However, to provide

significant energy savings in PS, any optimization technique

may take at most a fraction of the recharge cycle duration,

which is typically one or two days, to set up. Furthermore,

PS systems are built for heterogeneous types of queries with

a-priori unknown duration, spontaneously issued by clients.

For example, people commuting to their workplace may

be interested in the microclimate along potential routes to

avoid bad weather conditions. Such queries, each defining an

individual set of v-sensors, would be posted just before the

start of a commute and canceled shortly thereafter. Clearly,

maintaining models proactively for all possible types of

queries is counter-productive if the query is never issued.

Therefore, we propose model-driven Optimizations for PS

(DrOPS), a PS system that obtains a model online on-

demand within minutes from the start of a query.

In detail, the contributions of this paper are: (1) An

execution model for optimized PS systems using model-

driven data acquisition. (2) An online learning algorithm

(OLA) for multivariate Gaussean models of spatially dis-

tributed phenomenons that can obtain training data from

running queries and creates a model suitable for model-

driven sensing in a few minutes. To minimize energy as

well as the time to learn a model, we re-use historic

readings and only update portions of the model if possible.

(3) An online model validity check algorithm (MOCHA)
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that verifies whether a model still accurately reflects the

underlying phenomenon. To minimize the energy spent for

checking the validity, MOCHA uses only a small fraction of

additional control readings which are continuously compared

to inferred readings. Moreover, MOCHA applies smoothing

techniques to avoid abandoning models too quickly.

Our evaluations show that we obtain models in a matter

of minutes on average. Using our model-driven approach,

we can save up to 80 % of energy for communication and

provide inferred readings for unavailable positions matching

an error-bound of 1◦C up to 100 % of the time.

The remainder of this paper is structured as follows.

We present the system model and problem statement in

Section II before discussing the basic operation of DrOPS

in Section III. Section IV details the optimized operation

and gives a brief overview of to the spatial models used

in DrOPS, while Section V presents our online learning

and validation algorithms. We evaluated DrOPS in a real-

world testbed and a simulated environment, whose setup

and results are discussed in Section VI. Related work is

discussed in Section VII, before we conclude this paper with

a summary and outlook onto future work in Section VIII.

II. SYSTEM MODEL AND GOALS

Before introducing the system model, we first define some

terminology. Moreover, we formulate the problem to be

solved by our PS system.

A. Definitions

We refer to applications requesting data from the PS system

as clients. Smartphones carried by participants sharing re-

sources for the PS system are referred to as mobile nodes.

Clients can define virtual sensors (v-sensors for short). Each

v-sensor v is associated with a type of reading v.type,

e.g., temperature or light intensity, a point in space v.loc

indicating its location where data is supposed to be sensed,

and a coverage area v.area defined relative to its location.

v.area can be defined arbitrarily, as long as the coverage

areas of all v-sensors are pairwise disjoint to ensure a unique

mapping of mobile nodes to v-sensors. If there is at least one

mobile node located in v.area to capture sensor readings for

v, we say that v is available. Otherwise, v is unavailable.

Virtual sensors provide measurements called virtual read-

ings, which can either be effective readings or inferred

readings. An effective reading r is taken by a mobile node

at position pos(r) ∈ v.area, whereas an inferred reading

is computed using a model of the observed phenomenon

without interaction with any mobile node.

B. System Model and Architecture

Next, we describe the components and interfaces of DrOPS.

Note that this system model follows the general design of

PS systems, e.g., [5], [6]. Therefore, other systems could be

extended with the DrOPS query mechanisms.
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Figure 1. Overview of Sensing Task Execution

The DrOPS system consists of a gateway server and a

set of mobile nodes. The gateway serves as an interface to

submit queries to the system. Note that to ensure scalability

of the system, the gateway server may be implemented as a

distributed service using a partitioned service area. However,

such an extension is beyond the scope of this work.

Mobile nodes can determine their position using a po-

sitioning system, e.g., GPS, and use a set of environmen-

tal sensors (light, sound, temperature, air pollution, etc.)

to observe their environment. DrOPS does not make any

assumption about the mobility of nodes. We assume that all

nodes are equipped with the appropriate sensor hardware to

provide readings for all data requests posted to the system.

Furthermore, nodes are equipped with a mobile Internet

connection allowing for communication with the gateway.

DrOPS accepts queries Q = (V,p,QoS) issued by clients,

which are executed until canceled by the client. In a query,

V represents the set of v-sensors. Note that the v-sensors are

created by each query independently. Parameter p denotes

the sampling period, while QoS is a set of quality parameters

required by the client. The content of QoS depends on the

selected algorithms and, therefore, will be explained in detail

in the corresponding sections. At the end of every sampling

period, a result set RQ is sent to the client. RQ contains all

effective readings as well as inferred readings computed by

the gateway for virtual sensors where no effective reading

was taken.

C. Problem Statement

Our goal is to create a system for efficiently obtaining data

on spatially distributed environmental phenomena according

to a client-defined quality bound Q.QoS. We maximize the

number |V ′| of virtual sensors for which the quality con-

straint is fulfilled while minimizing the number of effective

readings taken.

III. BASIC SENSING ALGORITHM

Next, we explain the basic execution of queries, before

we describe the optimized model-driven operation and the

process of model maintenance in subsequent sections. The



basic sensing algorithm is used to illustrate the operation of

DrOPS and will later serve as a baseline for comparing the

performance of our optimized approaches.

To issue a query Q = (V,p,QoS), the client submits it to the

gateway. The gateway then performs a temporal decompo-

sition of the query by generating a new task T = (V,QoS)
every p seconds at the beginning of each sampling period.

Since the basic algorithm is not model-driven, all sensors

should report effective readings. As the gateway does not

track the position of mobile nodes, it does not know which

nodes are close to a v-sensor. Therefore, each T is broadcast

to all mobile nodes. This process is illustrated in Fig. 1.

On receiving a task, each node determines whether it is

located within the coverage area of any virtual sensor v ∈ V .

In this case, it takes a reading r and returns (v, r, pos(r)) to

the gateway. Otherwise, it discards the task. In case there are

multiple readings taken for v, the gateway selects the reading

r with minimum Euclidean distance δ(pos(r), v.loc). The

gateway stores all selected readings together with the starting

time of the corresponding sampling period. At the end of

each sampling period, the collected effective readings are

returned to the client as result RQ. Note that with this basic

algorithm readings are returned only for available v-sensors.

In the following sections, we extend this basic sensing

algorithm with our model-driven approach to compensate

for unavailable v-sensors and to minimize the number of

necessary effective readings.

IV. MODEL-DRIVEN APPROACH

DrOPS learns and maintains a model of the phenomenon

observed in a query Q to optimize the data acquisition

process. Initially, DrOPS uses the basic sensing algorithm to

execute the query and learns the model in parallel. Once a

model is created, DrOPS switches to an optimized operation

phase and uses the model-driven sensing algorithm. A valid-

ity check algorithm continuously monitors model accuracy

and causes an update of the model if necessary. Next, we

present the model-driven optimizations before introducing

the learning and validation algorithms in Section V.

Since our focus is on obtaining data for spatially dis-

tributed environmental phenomena, we use multivariate

Gaussian distributions (MGD), a popular modeling tech-

nique for such phenomena (e.g., [4], [7]).

In an MGD, a set of v-sensors is modeled as a set of

correlated one-dimensional Gaussean distributions, stored

as a mean vector and a covariance matrix. Capturing the

correlation of values between all v-sensors of Q without

depending on indirect criteria such as proximity of v-sensors

is the core feature of an MGD. Consider a placement of light

sensors at buildings on a university campus. Sensors placed

on walls facing the sun will report values similar to each

other and sensors placed on walls facing away from the sun

will report similar values, i.e., sensors in each group show a

high correlation. Note that capturing other phenomena, e.g.,

discrete environmental phenomena such as individual events

(e.g., lightning strikes), may require a different model.

We exploit this knowledge about the correlation of values.

First, we can infer readings for unavailable v-sensors using

the model. The details of this process are omitted due to

space constraints but can be found in [7]. We will refer to

this inference process as function INFER(MGD, P), where P

denotes available effective readings. Second, we can identify

strongly correlated v-sensors which can be used to infer

other sensors’ values. We use this to minimize the number

of effective readings, thus, reducing the effort required for

task execution.

We will briefly show how to apply MGDs to optimize

readings in principle, before we present an extended version

of DrOPS based on these principles. For more in-depth

information about the use of MGDs, we refer to [4], [7].

A. Near-Optimal Sensor Selection

As stated before, we strive to minimize the number of

effective readings to achieve the best optimization. The

rationale behind this is that for sets of strongly correlated

v-sensors, effective readings for a small subset are sufficient

to yield accurate inferred readings (i.e., readings with a

variance below a given threshold σ2
max) for all v-sensors.

Guestrin et al. have shown that this problem is NP hard

[4] and have developed a set of near-optimal heuristic

algorithms to address this problem. Given a task T = (V,QoS)

and an MDG model, their GREEDY algorithm partitions V

into two subsets Veff and Vinf , where Veff contains all v-

sensors for which effective readings should be taken and

Vinf denotes all v-sensors for which readings are computed

using INFER. The v-sensors in Veff are selected according to

a mutual information criterion which minimizes the variance

of inferred readings. Note that the selection only depends on

the properties of the model, not on current observations.

Whereas the original algorithm in [4] limits the set of v-

sensors to a fixed size, we modify the algorithm to use a

target maximum variance QoS.σ2
max provided as a quality

parameter. The modified sensor selection algorithm will then

add as many sensors as necessary to Veff to ensure that the

variance of any v-sensor is less or equal to QoS.σ2
max.

As discussed previously, the gateway does not track

positions of mobile nodes and thus is not aware of v-sensor

availability. Therefore, selecting Veff is done in an optimistic

fashion, assuming that all v ∈ V will be available. This is

not a problem for a dense coverage. For instance, as our

experiments show, selecting unavailable v-sensors reduces

the quality of inferred readings by at most 12 percentage

points. Compensating for unavailable v-sensors in sparse

environments is subject to future work.

B. Model-Driven Sensing Algorithm

Based on INFER and GREEDY, we now present the model-

driven sensing algorithm. Given an MGD and a sensing task



Require: Q = (V, p,QoS), MGDV

for all task ∈ temporalDecomposition(p) do

2: Veff ← GREEDY(V,MGDV , QoS.σ2

max)
task.V ← Veff ; readings← ∅

4: RQ ← execute(task)
RQ ← RQ ∪ INFER(MGDV , RQ)

6: return Final Result RQ

end for

Figure 2. Model-driven sensing task execution

T = (V,QoS), we modify the operations of DrOPS to use

the model as shown in Fig. 2. At the beginning of each

sampling period, we use the modified GREEDY-Algorithm

to select a set Veff ⊆ V of virtual sensors (l. 2). As the

selection of Veff only depends on the model, it is not strictly

necessary to recompute Veff for every task. However, this

execution model allows us to easily integrate our validity

check algorithm later on. Note that the selection of v-

sensors does not change for the same model. However, due

to node mobility, it is unlikely that a node has to provide

multiple consecutive readings unless it remains stationary

for a longer period of time. Therefore, we did not include

explicit mechanisms for fair load balancing.

The task is then executed in lines 3 to 4 as in the basic

algorithm. At the end of the sampling period, after collecting

all effective readings at the gateway, the gateway performs

the inference step. Using INFER, readings for v-sensors

in V +
inf = Vinf ∪ unavailable v-sensors in Veff are inferred

locally from the effective readings reported by mobile nodes

in line 5. Thus, virtual readings for all v-sensors are provided

by the system. For mimicking a classic sensor network, we

output the inferred mean values for each v ∈ V +
inf as an

inferred reading. If a client demands additional information,

we also include the variances in the result RQ.

V. MODEL MANAGEMENT

Next, we present our algorithms for creating and maintain-

ing the model required for model-driven sensing. Existing

approaches for optimizing data acquisition, e.g., [3], [4] aim

to create a model that is accurate at all times. For instance,

consider modelling temperatures which rise in the morning

and drop in the afternoon. Training data from several days

is required for an accurate model. However, as motivated in

Section I, optimizations in a PS system must use training

periods significantly less than a single day.

Therefore, the basic idea of our approach is to derive

a model of the observed phenomenon on demand that is

sufficiently accurate for the near future using an online

learning algorithm (OLA). The runtime of a query is divided

into basic operation phases and optimized operation phases.

During a basic operation phase, queries are executed using

the basic sensing algorithm, i.e., Veff = V . In parallel, OLA

works to create a new MGD. As soon as a new model is

output by OLA, the basic operation phase ends.

Require: Final Result RQ, Control Readings CVctl
, Threshold QoS.T , Acceptable

Violations QoS.violations
RMSE← 0

2: for all c ∈ Vctl, c available do

RMSE← RMSE + (Rc − Cc)
2

4: end for

RMSE←
√

RMSE
|Vctl|

6: if RMSE ≥ QoS.T then

Add “violation” to window

8: else

Add “no violation” to window

10: end if

if Num. of violations in window > QoS.violations then

12: return “Model Invalid”

end if

14: return “Model Valid”

Figure 3. MOCHA algorithm. C denotes the set of v-sensors used for
control readings.

After the basic operation phase, we switch to the opti-

mized operation phase, where we use the MGD as described

in Section IV to reduce the number of effective readings

taken. Since such a model might not reflect changes hap-

pening over a longer time period—such as the temperature

profile in the previous example—, we continuously monitor

model accuracy using an online model validity check algo-

rithm (MOCHA). When MOCHA considers the MGD to be

inaccurate, we switch to the next basic operation phase.

Next, we start by presenting our online model validity

check algorithm MOCHA, before we present our online

learning algorithm in detail.

A. MOCHA

The goal of MOCHA is to check a model for correctness.

Intuitively, a model is correct if the Gaussian distributions of

inferred readings fit the real data, i.e., inferred values from

v-sensors v ∈ V +
inf center around the true mean value and

the variance matches the true variance. However, checking

this property for every v would require constant sampling

of all v-sensors and thus render the optimization useless.

Therefore, we take a different approach for MOCHA

(see Fig. 3). At the beginning of each sampling period, we

randomly choose a set of control sensors Vctl ⊆ Vinf of size

QoS.ctrl. In addition to the v-sensors Veff selected by the

GREEDY algorithm, we request effective readings for Vctl.

At the end of the sampling period, only effective readings

from (available) v-sensors in Veff are used as input for the

inference algorithm. We then compute the root mean squared

error (RMSE, lines 1 to 5) of mean values of inferred

readings and their corresponding effective control readings.

Using the RMSE, we avoid the problem of comparing

individual samples to inferred distributions since we can

compare absolute values directly. Furthermore, by adjusting

the size of Vctl, we can trade off the costs for effective

sampling and the probability of detecting inaccurate models

(Quality of Service).

If RMSE > QoS.T , where QoS.T is a predefined

threshold (part of the quality specification QoS of a sensing
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Figure 4. Overview of the basic operation phase

Require: Q = (V, p,QoS), MGDV

∀v ∈ V : M ′
V [v] = ⊥

2: W ← ∅
for all v ∈ V do

4: data← getHistoricData(v, [QoS.maxAge, now()]))
if |data| > 0 then

6: M ′
V [v]← mean(data)

else

8: W ← W ∪ {v}
end if

10: end for

M ′
V [W ]← INFER(MGDV ,M ′

V )
12: return MGD′

V

Figure 5. Instant Mean Update Step

task), we say that the threshold has been violated. To avoid

discarding an accurate model in case the observed violation

was an outlier, we use a sliding window approach to dampen

the reactivity of MOCHA (l. 6–14). We define a model to be

inaccurate if there are QoS.violations within the last QoS.win

samples. For example, for QoS.win = 2 and QoS.violations

= 1, we discard the model after two consecutive violations.

Using MOCHA, we next introduce our online learning

algorithm OLA.

B. OLA

During the basic operation phase, OLA aims to create a new

MGD of the observed phenomenon. To this end, the basic

operation phase is subdivided into four steps (cf. Fig. 4). In

each step, a new model is created using all available data

obtained in the current basic operation phase and all previous

phases (both basic and optimization) for the same query

up to a certain age given in QoS.maxAge. While reducing

QoS.maxAge reduces the runtime of the learning algorithm,

it should be set to a large enough value to accommodate

expected periodic shifts. For example, for temperature shifts

in day/night cycles, QoS.maxAge should be set to a multiple

of the cycle duration. In our experiments, QoS.maxAge =

3 days showed best results.

At the end of every step, we replay GREEDY, INFER, and

MOCHA on data from the last QoS.win sampling periods.

If the new model is considered valid by MOCHA, we

immediately switch to the next optimized operation phase

using this model, thus, ensuring that OLA terminates in the

earliest possible step. Next, we explain each step in detail.

In the instant mean update step (Fig. 5) we update only

the mean vector of the previous MGD from existing data.

Require: Q = (V, p,QoS), MGDV

waitStart← now()
2: repeat

wait for next sampling period

4: Veff ← V
request data

6: until |{v ∈ V ||getHistoricData(v, [waitStart, now()])| ≥
QoS.minRdg}| ≥ QoS.minSens or totalWaitTime > QoS.totalWaitTime

return INSTANTMEANUPDATE(R,MGDV )

Figure 6. Delayed Mean Update Step

Require: Q = (V, p,QoS)
data← getHistoricData(V, [QoS.maxAge, now()])

2: return learnModel(data)

Figure 7. Instant Full Update Step

This is motivated by the observation that when an MGD is

considered invalid, the covariance matrix is often still correct

while the mean vector failed to account for a global shift in

the observed phenomenon. To avoid costly effective readings

from all v-sensors, the mean vector is directly computed

from data currently available on the gateway (l. 3–10). If

no effective readings have been reported in the considered

history, a mean value for this v-sensor is inferred using the

old model (l. 11). This might yield a greater error in inferred

readings, which, however, would be detected by MOCHA.

If the new model is invalid, all v-sensors are queried for

effective readings in the delayed mean update step (Fig. 6).

When QoS.minRdg effective readings have been received

from at least QoS.minSens v-sensors each (l. 6), a new model

is constructed as in the previous step (l. 7).

If the model is still considered invalid after the delayed

mean update step, we update both the mean vector and

covariance matrix in the instant full update step (Fig. 7)

using an existing offline learning algorithm [8]. If the

number of effective readings available for a v-sensor v at

the end of the basic operation phase is insufficient for the

offline learning algorithm, v is excluded from the model.

If the new model remains invalid, we continue with the

delayed full update step (Fig. 8). In this step, we request

fresh effective readings from all v-sensors and execute the

offline learning algorithm when sufficient data has arrived.

We repeat this step until a valid model has been created.

Note that OLA will remain in this step indefinitely if

either a sufficiently large fraction of v-sensors remains

unavailable or the replay of sensor data causes a model

to be falsely considered invalid. Therefore, we introduce a

hard runtime limit QoS.totalWaitTime, after which a new

full model is learned from the available data and consid-

ered to be valid without further checking. Should the new

model be invalid, this is detected by MOCHA after at most

QoS.window sampling periods.

VI. EVALUATION

In this section, we evaluate the performance of the DrOPS

system. As a proof of concept, we implemented DrOPS in



Require: Q = (V, p,QoS)
waitStart← now()

2: repeat

wait for next sampling period

4: Veff ← V
request data

6: until |{v ∈ V ||getHistoricData(v, [waitStart, now()])| ≥
QoS.minRdg}| ≥ QoS.minSens or totalWaitTime > QoS.totalWaitTime

data← getHistoricData(V, [QoS.maxAge, now()])
8: return learnModel(data)

Figure 8. Delayed Full Update Step

Figure 9. Public Sensing Testbed

a small-scale real-world testbed as discussed in the next

section. To get more insight about the behavior of our system

for large-scale tasks, we implemented DrOPS in a simulated

environment as discussed in later sections.

A. Testbed Evaluation

Our testbed, depicted in Fig. 9, consists of a laptop, serving

as the gateway and presenting a user interface for submitting

queries and browsing obtained data. While it is possible

to use our implementation to run a full-scale PS system,

an experiment with hundreds of people participating is not

feasible. Therefore, we select an evaluation scenario that can

be handled by two people. Two smartphones are used for

taking light intensity readings. Furthermore, we use a light

source with predetermined movement to mimic the changing

position of the sun over a day. Two v-sensors are placed

directly under the initial position of the light source, two

are placed at a distance, and another two are placed behind

an obstacle shadowing the v-sensors from the light source.

The smartphones then move among these v-sensors.

Figure 10 shows the output of our testbed evaluation.

DrOPS runs for roughly three minutes in a basic operation

phase to learn a model of the light intensity at the v-sensors.

Note that in the basic operation phase in each sampling

period only readings for available v-sensors are included

in the mean light intensity. Thus, node mobility leads to

shifting availability causing readings to appear fluctuating.

During the optimized operation phase, readings for all v-

sensors are included, yielding a smooth mean. Up to 900 s,

we do not change system conditions, thus, the model remains

accurate and readings are inferred with low error except

for outliers. At 900 s the light source is moved, causing

the existing model to become inaccurate. At this point, the

error briefly goes up before MOCHA recognizes the model
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Figure 10. Output of the testbed evaluation. 15 s sampling period.

as inaccurate. After an additional 100 s, a new model is

available and readings are again inferred with low error.

B. Simulation Setup

While our real-world testbed allows for insight into the

operation of a model-driven PS system, it is far too small

to provide information on the overall performance of the

DrOPS system. Therefore, we extend our evaluation to a

large-scale system using an implementation of DrOPS in

a simulated environment implemented in the OMNeT++

network simulator. We first present a brief overview of the

simulation setup before presenting simulation results.

To make our evaluation comparable to a real deployment,

we use two real-world datasets as input: Ten days from the

Intel Lab data set [3] and three non-consecutive weeks of

data from the Lausanne Urban Canopy Experiment (LUCE)

[9]. Both data sets contain environmental readings, e.g.,

temperature reported by a large set of fixed sensors.

We generate queries by placing a v-sensor for temperature

data at the position of every real sensor in each data set

in order to generate a temperature map of the area. The

sampling period is adapted to match the interval at which

data is provided by the data set. Other quality parameters

used in the evaluation are shown in Table I. Simulations

run for 6 h each, with a time offset between simulations

increasing in steps of 3 h from the start of the data set.

To generate node mobility for the Intel Lab data, we

place 200 mobile nodes on an abstract representation of the

lab’s floor plan. Nodes move around randomly along the

available paths. For the LUCE data, we use CanuMobiSim

[10] to generate random mobility traces for 400 nodes on a

road graph of the deployment area. For reference, we also

simulate our algorithms in a static sensor network to analyze

how close our approach is to optimum performance.

We use empirical energy models for a 3G radio [11] and

built-in sensors [12] to measure energy consumption. Energy

for positioning is not taken into account, since our algorithm

does not change the number of position fixes taken by each

node with respect to the basic sensing algorithm. Exploiting

the additional potential for saving energy by reducing the

number of position fixes is part of future work.



Parameter Intel Lab LUCE

Error Threshold Q.T 1 ◦C 1 ◦C

Max. Variance Q.σ2
max

0.1 0.1
Window Size Q.win 10 10
Violations Q.violations 3 4
Control Readings Q.ctrl 3 1
Max. Learning Time Q.totalWaitTime 1 hour 1 hour
Maximum Age Q.maxAge 3 days 3 days

OLA Paramters
Q.minRdg 5 5
Q.minSens 49 98

Table I
QUALITY PARAMETERS USED IN THE SIMULATION
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Figure 11. Quality Results. Average over all simulations (Avg), Median
over all simulations (ME) and average over all reference simulations (Ref).

C. Simulation Results

We analyze the performance of DrOPS with regard to several

metrics. Effectiveness is the fraction of tasks executed in an

optimized operation phase, thus characterizing the time spent

where the model-driven sensing algorithm is used. Good

Tasks is the fraction of tasks where QoS-constraints are

met, thus characterizing the data quality a client can expect.

In addition, we compute the average duration of basic

operation phases. Finally, Relative Energy Consumption is

defined as the total energy consumption of all nodes divided

by the total energy consumption of all nodes under the basic

sensing algorithm for the same simulation parameters.

Figure 11 depicts the results for effectiveness and good

tasks, shown as the average (Avg) and the median of all

simulations (ME), and the average of the reference simu-

lations (Ref). For effectiveness, results for both data sets

are almost identical to the reference values from the sensor

network whereas for good tasks, average values are 10 to 13

percentage points below the reference values. This indicates

that the overall performance of our approach is basically

similar to the reference system, except for a larger number

of individual outliers caused by unavailable v-sensors both

while learning a model and while optimizing execution. Note

that for the LUCE data, in only 5 % of cases good tasks

is below 50 %. For the Intel Lab data, in less than 5 % of

cases the error threshold is violated by more than 0.2 ◦C. On

average, basic operation phases last for 7.5 minutes for the

Intel Lab data and 16 minutes for the LUCE data, showing

that DrOPS can learn a model in a matter of minutes.
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Figure 12. Cumulated relative energy for communication and sensing.

Finally, we analyze the energy consumption of our system.

Note that the energy consumption for all nodes in each

simulation is nearly uniformly distributed. This indicates

that the energy consumption is dominated by the reception

of tasks, especially by the size of task messages, which

in turn depends on the number of v-sensors selected for

effective readings. We can see from Fig. 12 that energy

savings up to 80 % compared to the basic sensing algorithm

are achieved in 3 % and 6 % of simulations (Intel Lab data

and LUCE data, respectively). On average, 59 % of energy is

saved for the Intel Lab data, and 74 % for the LUCE data.

In a few extreme cases, next to no energy is saved. This

happens when effective readings for most or all v-sensors

are requested even in an optimized operation phase, i.e.,

when no correlation could be identified.

VII. RELATED WORK

Research interest in PS has grown over the last few years

[1]. Several prototype systems and system architectures

have been proposed [5], [6], [13], [14]. However, all of

these approaches focus on applications and general system

challenges, and neither discusses possible optimizations.

Several prototype systems for monitoring environmental

variables have been developed [15], [16]. However, they

require energy-intensive constant sampling by all nodes.

Previous work on optimized PS focused on optimizations

for individual v-sensors. Lu et al. present a first approach

for location-centric sensing task execution [17] at a single

v-sensor. In our previous research, we presented optimiza-

tions for reading fixed sensors via mobile phones [18] and

for executing tasks at multiple v-sensors [2] in parallel.

Furthermore, we extended the idea to continuous sampling

along road segments [19] and updating of road-maps [20].

However, none of these works deals with optimizing data

acquisition across multiple v-sensors.

Reddy et al. present an approach to manually select the

best set of mobile nodes for data acquisition in a PS system

based on long-term profiles for mobility and participation

[21]. In contrast, DrOPS provides automatic operation and

short setup times.

Closest to our work, model-driven approaches for fixed

sensor networks limit data acquisition to sensors with the



best informational value [3], [4]. In actuated sensing, optimal

paths for mobile sensors are computed from the model

[22], which assumes that node mobility is controlled by

the system. None of these systems has to deal with online

learning of models.

VIII. CONCLUSION

In this work, we presented the DrOPS system for monitoring

environmental values using Public Sensing. DrOPS uses a

model-driven sensing approach based on multivariate Gaus-

sian distributions to infer readings, in order to reduce the

set of mobile nodes that are queried for effective readings

to reduce the energy consumption. Moreover, we can com-

pensate for missing readings due to unavailable virtual sen-

sors. Furthermore, we introduced OLA, an online learning

algorithm to learn multivariate Gaussian distributions over

short time periods, and MOCHA, an online model validity

check algorithm to determine whether a given multivariate

Gaussian distribution fits current sensor readings.

Our evaluations show that we obtain optimization models

in a matter of minutes on average. Using the model-driven

approach for optimizing the data acquisition, we can save

up to 80 % of energy for communication and sensing and

provide inferred readings for uncovered positions matching

an error-bound of 1◦C up to 100 % of the time.

In future work, we plan to increase energy savings for

communication further by introducing an efficient hybrid

3G/WiFi ad-hoc routing scheme and to reduce the energy

cost for positioning by an improved query execution model

reducing the number of position fixes. Furthermore, we are

going to extend DrOPS to work in sparse environments by

detecting and adapting to unavailable v-sensors.
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