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Abstract—The proliferation of modern smartphones has
given rise to Public Sensing, a new paradigm for data ac-
quisition systems utilizing smartphones of mobile participants.
In this paper, we present DrOPS, a system for improving
the efficiency of data acquisition in Public Sensing systems.
DrOPS utilizes a model-driven approach, where the number
of required readings from mobile smartphones is reduced by
inferring readings from the model. Furthermore, the model
can be used to infer readings for positions where no sensor is
available. The model is directly constructed from the observed
phenomenon in an online fashion. Using such models together
with a client-specified quality bound, we can significantly
reduce the effort for data acquisition while still reporting data
of required quality to the client. To this effect, we develop a set
of online learning and control algorithms to create and validate
the model of the observed phenomenon and present a sensing
task execution system utilizing our algorithms in this paper.
Our evaluations show that we obtain models in a matter of
just hours or even minutes. Using the model-driven approach
for optimizing the data acquisition, we can save up to 80 % of
energy for communication and provide inferred temperature
readings for uncovered positions matching an error-bound of
1°C up to 100 % of the time.

I. INTRODUCTION

The proliferation of modern smartphones has given rise
to Public Sensing (PS), a new paradigm for sensor data
acquisition utilizing smartphones of mobile participants [1].
These devices are equipped with various sensors such as
accelerometers, cameras, light sensor, and positioning sen-
sors like GPS. Together with their capability of processing
and communicating captured sensor data, smartphones have
become powerful networked sensor platforms that can be
used to obtain sensor data without the cost of managing a
dedicated fixed sensor network.

However, due to the mobility of participants, capturing
sensor data at certain points of interests (POI) is more
challenging than for fixed sensor networks where a sensor
could simply be installed at each POI. In [2], we introduced
the concept of virtual sensors (v-sensors for short) as a
mobility-transparent abstraction of the PS system. Similar
to the sensors of a fixed sensor network, v-sensors can be
placed at POIs and report readings with a certain client-
defined sampling rate. The PS system is responsible for
selecting suitable mobile devices in the vicinity of the v-
sensor to capture the data associated with this v-sensor.

While being a powerful abstraction, the PS system faces
the problem of a v-sensor being temporarily unavailable if
no mobile device is in its vicinity. Clearly, the probability
for a v-sensor being unavailable increases with an increasing
v-sensor sampling rate and a decreasing sensing device
density. We alleviate this problem by a model-driven data
acquisition approach, which uses a model to infer readings
of unavailable v-sensors. Moreover, we can save energy
for sensing and communicating data on mobile devices by
inferring readings of v-sensors even if they are available
when inferred readings are sufficiently accurate. Keeping the
energy consumption for PS to a minimum is important, as
otherwise participants might be unwilling to support PS.

Model-driven sensing has already proven to increase the
performance of fixed sensor networks [3], [4]. These ap-
proaches target long-running queries and use either expert
knowledge or a pilot deployment, typically lasting at least
several days, to learn the model a priori. However, to provide
significant energy savings in PS, any optimization technique
may take at most a fraction of the recharge cycle duration,
which is typically one or two days, to set up. Furthermore,
PS systems are built for heterogeneous types of queries with
a-priori unknown duration, spontaneously issued by clients.
For example, people commuting to their workplace may
be interested in the microclimate along potential routes to
avoid bad weather conditions. Such queries, each defining an
individual set of v-sensors, would be posted just before the
start of a commute and canceled shortly thereafter. Clearly,
maintaining models proactively for all possible types of
queries is counter-productive if the query is never issued.
Therefore, we propose model-driven Optimizations for PS
(DrOPS), a PS system that obtains a model online on-
demand within minutes from the start of a query.

In detail, the contributions of this paper are: (1) An
execution model for optimized PS systems using model-
driven data acquisition. (2) An online learning algorithm
(OLA) for multivariate Gaussean models of spatially dis-
tributed phenomenons that can obtain training data from
running queries and creates a model suitable for model-
driven sensing in a few minutes. To minimize energy as
well as the time to learn a model, we re-use historic
readings and only update portions of the model if possible.
(3) An online model validity check algorithm (MOCHA)
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that verifies whether a model still accurately reflects the
underlying phenomenon. To minimize the energy spent for
checking the validity, MOCHA uses only a small fraction of
additional control readings which are continuously compared
to inferred readings. Moreover, MOCHA applies smoothing
techniques to avoid abandoning models too quickly.

Our evaluations show that we obtain models in a matter
of minutes on average. Using our model-driven approach,
we can save up to 80 % of energy for communication and
provide inferred readings for unavailable positions matching
an error-bound of 1°C up to 100 % of the time.

The remainder of this paper is structured as follows.
We present the system model and problem statement in
Section II before discussing the basic operation of DrOPS
in Section III. Section IV details the optimized operation
and gives a brief overview of to the spatial models used
in DrOPS, while Section V presents our online learning
and validation algorithms. We evaluated DrOPS in a real-
world testbed and a simulated environment, whose setup
and results are discussed in Section VI. Related work is
discussed in Section VII, before we conclude this paper with
a summary and outlook onto future work in Section VIIL.

II. SYSTEM MODEL AND GOALS

Before introducing the system model, we first define some
terminology. Moreover, we formulate the problem to be
solved by our PS system.

A. Definitions

We refer to applications requesting data from the PS system
as clients. Smartphones carried by participants sharing re-
sources for the PS system are referred to as mobile nodes.
Clients can define virtual sensors (v-sensors for short). Each
v-sensor v is associated with a type of reading v.type,
e.g., temperature or light intensity, a point in space v.loc
indicating its location where data is supposed to be sensed,
and a coverage area v.area defined relative to its location.
v.area can be defined arbitrarily, as long as the coverage
areas of all v-sensors are pairwise disjoint to ensure a unique
mapping of mobile nodes to v-sensors. If there is at least one
mobile node located in v.area to capture sensor readings for
v, we say that v is available. Otherwise, v is unavailable.

Virtual sensors provide measurements called virtual read-
ings, which can either be effective readings or inferred
readings. An effective reading r is taken by a mobile node
at position pos(r) € v.area, whereas an inferred reading
is computed using a model of the observed phenomenon
without interaction with any mobile node.

B. System Model and Architecture

Next, we describe the components and interfaces of DrOPS.
Note that this system model follows the general design of
PS systems, e.g., [5], [6]. Therefore, other systems could be
extended with the DrOPS query mechanisms.

Temporal
Decomposition

O Mobile Node x i}irtual Sensor

Figure 1. Overview of Sensing Task Execution

The DrOPS system consists of a gateway server and a
set of mobile nodes. The gateway serves as an interface to
submit queries to the system. Note that to ensure scalability
of the system, the gateway server may be implemented as a
distributed service using a partitioned service area. However,
such an extension is beyond the scope of this work.

Mobile nodes can determine their position using a po-
sitioning system, e.g., GPS, and use a set of environmen-
tal sensors (light, sound, temperature, air pollution, etc.)
to observe their environment. DrOPS does not make any
assumption about the mobility of nodes. We assume that all
nodes are equipped with the appropriate sensor hardware to
provide readings for all data requests posted to the system.
Furthermore, nodes are equipped with a mobile Internet
connection allowing for communication with the gateway.

DrOPS accepts queries Q = (V,p,QoS) issued by clients,
which are executed until canceled by the client. In a query,
V represents the set of v-sensors. Note that the v-sensors are
created by each query independently. Parameter p denotes
the sampling period, while QoS is a set of quality parameters
required by the client. The content of QoS depends on the
selected algorithms and, therefore, will be explained in detail
in the corresponding sections. At the end of every sampling
period, a result set R, is sent to the client. R¢ contains all
effective readings as well as inferred readings computed by
the gateway for virtual sensors where no effective reading
was taken.

C. Problem Statement

Our goal is to create a system for efficiently obtaining data
on spatially distributed environmental phenomena according
to a client-defined quality bound ).QQoS. We maximize the
number |V’| of virtual sensors for which the quality con-
straint is fulfilled while minimizing the number of effective
readings taken.

III. BASIC SENSING ALGORITHM

Next, we explain the basic execution of queries, before
we describe the optimized model-driven operation and the
process of model maintenance in subsequent sections. The



basic sensing algorithm is used to illustrate the operation of
DrOPS and will later serve as a baseline for comparing the
performance of our optimized approaches.

To issue a query Q = (V,p,QoS), the client submits it to the
gateway. The gateway then performs a temporal decompo-
sition of the query by generating a new task T = (V, QoS)
every p seconds at the beginning of each sampling period.
Since the basic algorithm is not model-driven, all sensors
should report effective readings. As the gateway does not
track the position of mobile nodes, it does not know which
nodes are close to a v-sensor. Therefore, each T is broadcast
to all mobile nodes. This process is illustrated in Fig. 1.

On receiving a task, each node determines whether it is
located within the coverage area of any virtual sensor v € V.
In this case, it takes a reading r and returns (v, 7, pos(r)) to
the gateway. Otherwise, it discards the task. In case there are
multiple readings taken for v, the gateway selects the reading
7 with minimum Euclidean distance §(pos(T),v.loc). The
gateway stores all selected readings together with the starting
time of the corresponding sampling period. At the end of
each sampling period, the collected effective readings are
returned to the client as result Rg. Note that with this basic
algorithm readings are returned only for available v-sensors.

In the following sections, we extend this basic sensing
algorithm with our model-driven approach to compensate
for unavailable v-sensors and to minimize the number of
necessary effective readings.

IV. MODEL-DRIVEN APPROACH

DrOPS learns and maintains a model of the phenomenon
observed in a query () to optimize the data acquisition
process. Initially, DrOPS uses the basic sensing algorithm to
execute the query and learns the model in parallel. Once a
model is created, DrOPS switches to an optimized operation
phase and uses the model-driven sensing algorithm. A valid-
ity check algorithm continuously monitors model accuracy
and causes an update of the model if necessary. Next, we
present the model-driven optimizations before introducing
the learning and validation algorithms in Section V.

Since our focus is on obtaining data for spatially dis-
tributed environmental phenomena, we use multivariate
Gaussian distributions (MGD), a popular modeling tech-
nique for such phenomena (e.g., [4], [7]).

In an MGD, a set of v-sensors is modeled as a set of
correlated one-dimensional Gaussean distributions, stored
as a mean vector and a covariance matrix. Capturing the
correlation of values between all v-sensors of () without
depending on indirect criteria such as proximity of v-sensors
is the core feature of an MGD. Consider a placement of light
sensors at buildings on a university campus. Sensors placed
on walls facing the sun will report values similar to each
other and sensors placed on walls facing away from the sun
will report similar values, i.e., sensors in each group show a
high correlation. Note that capturing other phenomena, e.g.,

discrete environmental phenomena such as individual events
(e.g., lightning strikes), may require a different model.

We exploit this knowledge about the correlation of values.
First, we can infer readings for unavailable v-sensors using
the model. The details of this process are omitted due to
space constraints but can be found in [7]. We will refer to
this inference process as function INFER(MGD, P), where P
denotes available effective readings. Second, we can identify
strongly correlated v-sensors which can be used to infer
other sensors’ values. We use this to minimize the number
of effective readings, thus, reducing the effort required for
task execution.

We will briefly show how to apply MGDs to optimize
readings in principle, before we present an extended version
of DrOPS based on these principles. For more in-depth
information about the use of MGDs, we refer to [4], [7].

A. Near-Optimal Sensor Selection

As stated before, we strive to minimize the number of
effective readings to achieve the best optimization. The
rationale behind this is that for sets of strongly correlated
v-sensors, effective readings for a small subset are sufficient
to yield accurate inferred readings (i.e., readings with a
variance below a given threshold ¢2,,,) for all v-sensors.

Guestrin et al. have shown that this problem is NP hard
[4] and have developed a set of near-optimal heuristic
algorithms to address this problem. Given a task 7 = (V,QoS)
and an MDG model, their GREEDY algorithm partitions V'
into two subsets V.g and Vi, where V.g contains all v-
sensors for which effective readings should be taken and
Vint denotes all v-sensors for which readings are computed
using INFER. The v-sensors in Vg are selected according to
a mutual information criterion which minimizes the variance
of inferred readings. Note that the selection only depends on
the properties of the model, not on current observations.

Whereas the original algorithm in [4] limits the set of v-
sensors to a fixed size, we modify the algorithm to use a
target maximum variance QoS.02,,. provided as a quality
parameter. The modified sensor selection algorithm will then
add as many sensors as necessary to V.g to ensure that the
variance of any v-sensor is less or equal to Q0S.02,,..

As discussed previously, the gateway does not track
positions of mobile nodes and thus is not aware of v-sensor
availability. Therefore, selecting Vg is done in an optimistic
fashion, assuming that all v € V will be available. This is
not a problem for a dense coverage. For instance, as our
experiments show, selecting unavailable v-sensors reduces
the quality of inferred readings by at most 12 percentage
points. Compensating for unavailable v-sensors in sparse
environments is subject to future work.

B. Model-Driven Sensing Algorithm

Based on INFER and GREEDY, we now present the model-
driven sensing algorithm. Given an MGD and a sensing task



Require: Q = (V,p, QoS), MGDvy
for all task € temporalDecomposition(p) do
2: Vetr < GREEDY(V, MG Dy, QoS.c2, )
task.V < Vyg; readings < 0

4: Rg < execute(task)
Rg < Rg UINFER(MGDv, Rq)
6: return Final Result Rg
end for
Figure 2. Model-driven sensing task execution

T = (V,QoS), we modify the operations of DrOPS to use
the model as shown in Fig. 2. At the beginning of each
sampling period, we use the modified GREEDY-Algorithm
to select a set Vog € V of virtual sensors (I. 2). As the
selection of Vg only depends on the model, it is not strictly
necessary to recompute Vg for every task. However, this
execution model allows us to easily integrate our validity
check algorithm later on. Note that the selection of v-
sensors does not change for the same model. However, due
to node mobility, it is unlikely that a node has to provide
multiple consecutive readings unless it remains stationary
for a longer period of time. Therefore, we did not include
explicit mechanisms for fair load balancing.

The task is then executed in lines 3 to 4 as in the basic
algorithm. At the end of the sampling period, after collecting
all effective readings at the gateway, the gateway performs
the inference step. Using INFER, readings for v-sensors
in V;j;f = Vinf U unavailable v-sensors in Vg are inferred
locally from the effective readings reported by mobile nodes
in line 5. Thus, virtual readings for all v-sensors are provided
by the system. For mimicking a classic sensor network, we
output the inferred mean values for each v € Vl;ff as an
inferred reading. If a client demands additional information,
we also include the variances in the result R.

V. MODEL MANAGEMENT

Next, we present our algorithms for creating and maintain-
ing the model required for model-driven sensing. Existing
approaches for optimizing data acquisition, e.g., [3], [4] aim
to create a model that is accurate at all times. For instance,
consider modelling temperatures which rise in the morning
and drop in the afternoon. Training data from several days
is required for an accurate model. However, as motivated in
Section I, optimizations in a PS system must use training
periods significantly less than a single day.

Therefore, the basic idea of our approach is to derive
a model of the observed phenomenon on demand that is
sufficiently accurate for the near future using an online
learning algorithm (OLA). The runtime of a query is divided
into basic operation phases and optimized operation phases.
During a basic operation phase, queries are executed using
the basic sensing algorithm, i.e., Vg = V. In parallel, OLA
works to create a new MGD. As soon as a new model is
output by OLA, the basic operation phase ends.

Require: Final Result R, Control Readings C'v_,, Threshold QoS.T', Acceptable
Violations QoS.violations
RMSE <+ 0
2: for all ¢ € V1, c available do
RMSE <« RMSE + (R. — C.)?
4: end for

RMSE
RMSE « /{8

6: if RMSE > QoS.T then
Add “violation” to window
8: else
Add “no violation” to window
10: end if
if Num. of violations in window > QoS.violations then
12: return “Model Invalid”
end if
14: return “Model Valid”

Figure 3.  MOCHA algorithm. C' denotes the set of v-sensors used for
control readings.

After the basic operation phase, we switch to the opti-
mized operation phase, where we use the MGD as described
in Section IV to reduce the number of effective readings
taken. Since such a model might not reflect changes hap-
pening over a longer time period—such as the temperature
profile in the previous example—, we continuously monitor
model accuracy using an online model validity check algo-
rithm (MOCHA). When MOCHA considers the MGD to be
inaccurate, we switch to the next basic operation phase.

Next, we start by presenting our online model validity
check algorithm MOCHA, before we present our online
learning algorithm in detail.

A. MOCHA

The goal of MOCHA is to check a model for correctness.
Intuitively, a model is correct if the Gaussian distributions of
inferred readings fit the real data, i.e., inferred values from
V-Sensors v € Vl:ff center around the true mean value and
the variance matches the true variance. However, checking
this property for every v would require constant sampling
of all v-sensors and thus render the optimization useless.

Therefore, we take a different approach for MOCHA
(see Fig. 3). At the beginning of each sampling period, we
randomly choose a set of control sensors Vi C Vi of size
QoS.ctrl. In addition to the v-sensors V.g selected by the
GREEDY algorithm, we request effective readings for V..
At the end of the sampling period, only effective readings
from (available) v-sensors in Vg are used as input for the
inference algorithm. We then compute the root mean squared
error (RMSE, lines 1 to 5) of mean values of inferred
readings and their corresponding effective control readings.
Using the RMSE, we avoid the problem of comparing
individual samples to inferred distributions since we can
compare absolute values directly. Furthermore, by adjusting
the size of Vi, we can trade off the costs for effective
sampling and the probability of detecting inaccurate models
(Quality of Service).

If RMSE > QoS.T, where QoS.T is a predefined
threshold (part of the quality specification QoS of a sensing
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Figure 4. Overview of the basic operation phase

Require: Q = (V,p, QoS), MGDvy
Yo eV :Mv]=1

for all v € V do
4: data « getHistoricData(v, [QoS.maxz Age,now()]))
if |data| > O then

6: My, [v] + mean(data)
else

8: W+ WU {v}
end if

10: end for

My, [W] « INFER(MGDv, My,)
12: return MGD},

Figure 5. Instant Mean Update Step

task), we say that the threshold has been violated. To avoid
discarding an accurate model in case the observed violation
was an outlier, we use a sliding window approach to dampen
the reactivity of MOCHA (1. 6-14). We define a model to be
inaccurate if there are QoS.violations within the last QoS.win
samples. For example, for QoS.win = 2 and QoS.violations
= 1, we discard the model after two consecutive violations.

Using MOCHA, we next introduce our online learning
algorithm OLA.

B. OLA

During the basic operation phase, OLA aims to create a new
MGD of the observed phenomenon. To this end, the basic
operation phase is subdivided into four steps (cf. Fig. 4). In
each step, a new model is created using all available data
obtained in the current basic operation phase and all previous
phases (both basic and optimization) for the same query
up to a certain age given in QoS.maxAge. While reducing
QoS.maxAge reduces the runtime of the learning algorithm,
it should be set to a large enough value to accommodate
expected periodic shifts. For example, for temperature shifts
in day/night cycles, QoS.maxAge should be set to a multiple
of the cycle duration. In our experiments, QoS.maxAge =
3 days showed best results.

At the end of every step, we replay GREEDY, INFER, and
MOCHA on data from the last QoS.win sampling periods.
If the new model is considered valid by MOCHA, we
immediately switch to the next optimized operation phase
using this model, thus, ensuring that OLA terminates in the
earliest possible step. Next, we explain each step in detail.

In the instant mean update step (Fig. 5) we update only
the mean vector of the previous MGD from existing data.

Require: Q = (V,p,QoS), MGDy
waitStart < now()
2: repeat
wait for next sampling period
4: Vet < V
request data
6: until [{v € V|| getHistoricData(v, [waitStart, now()])| >
QoS.minRdg}| > QoS.minSens or totalWaitTime > QoS.totalWaitTime
return INSTANTMEANUPDATE(R, M GDv )

Figure 6. Delayed Mean Update Step

Require: Q = (V,p, QoS)
data < getHistoricData(V, [QoS.maxz Age, now()])
2: return learnModel(data)

Figure 7. Instant Full Update Step

This is motivated by the observation that when an MGD is
considered invalid, the covariance matrix is often still correct
while the mean vector failed to account for a global shift in
the observed phenomenon. To avoid costly effective readings
from all v-sensors, the mean vector is directly computed
from data currently available on the gateway (1. 3-10). If
no effective readings have been reported in the considered
history, a mean value for this v-sensor is inferred using the
old model (1. 11). This might yield a greater error in inferred
readings, which, however, would be detected by MOCHA.

If the new model is invalid, all v-sensors are queried for
effective readings in the delayed mean update step (Fig. 6).
When QoS.minRdg effective readings have been received
from at least QoS.minSens v-sensors each (I. 6), a new model
is constructed as in the previous step (1. 7).

If the model is still considered invalid after the delayed
mean update step, we update both the mean vector and
covariance matrix in the instant full update step (Fig. 7)
using an existing offline learning algorithm [8]. If the
number of effective readings available for a v-sensor v at
the end of the basic operation phase is insufficient for the
offline learning algorithm, v is excluded from the model.

If the new model remains invalid, we continue with the
delayed full update step (Fig. 8). In this step, we request
fresh effective readings from all v-sensors and execute the
offline learning algorithm when sufficient data has arrived.
We repeat this step until a valid model has been created.

Note that OLA will remain in this step indefinitely if
either a sufficiently large fraction of v-sensors remains
unavailable or the replay of sensor data causes a model
to be falsely considered invalid. Therefore, we introduce a
hard runtime limit QoS.totalWaitTime, after which a new
full model is learned from the available data and consid-
ered to be valid without further checking. Should the new
model be invalid, this is detected by MOCHA after at most
QoS.window sampling periods.

VI. EVALUATION

In this section, we evaluate the performance of the DrOPS
system. As a proof of concept, we implemented DrOPS in



Require: Q = (V,p, QoS)
waitStart <— now()
2: repeat
wait for next sampling period
4: Vet <+ V
request data
6: until |{v € V|| getHistoricData(v, [waitStart, now()])| >
QoS.minRdg}| > QoS.minSens or totalWaitTime > QoS.totalWaitTime
data < getHistoricData(V, [QoS.maxAge, now()])
8: return learnModel(data)

Figure 8. Delayed Full Update Step

Figure 9. Public Sensing Testbed

a small-scale real-world testbed as discussed in the next
section. To get more insight about the behavior of our system
for large-scale tasks, we implemented DrOPS in a simulated
environment as discussed in later sections.

A. Testbed Evaluation

Our testbed, depicted in Fig. 9, consists of a laptop, serving
as the gateway and presenting a user interface for submitting
queries and browsing obtained data. While it is possible
to use our implementation to run a full-scale PS system,
an experiment with hundreds of people participating is not
feasible. Therefore, we select an evaluation scenario that can
be handled by two people. Two smartphones are used for
taking light intensity readings. Furthermore, we use a light
source with predetermined movement to mimic the changing
position of the sun over a day. Two v-sensors are placed
directly under the initial position of the light source, two
are placed at a distance, and another two are placed behind
an obstacle shadowing the v-sensors from the light source.
The smartphones then move among these v-sensors.

Figure 10 shows the output of our testbed evaluation.
DrOPS runs for roughly three minutes in a basic operation
phase to learn a model of the light intensity at the v-sensors.
Note that in the basic operation phase in each sampling
period only readings for available v-sensors are included
in the mean light intensity. Thus, node mobility leads to
shifting availability causing readings to appear fluctuating.
During the optimized operation phase, readings for all v-
sensors are included, yielding a smooth mean. Up to 900,
we do not change system conditions, thus, the model remains
accurate and readings are inferred with low error except
for outliers. At 900s the light source is moved, causing
the existing model to become inaccurate. At this point, the
error briefly goes up before MOCHA recognizes the model

1000 1400
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800 -4 1200 &
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Figure 10. Output of the testbed evaluation. 15s sampling period.

as inaccurate. After an additional 100s, a new model is
available and readings are again inferred with low error.

B. Simulation Setup

While our real-world testbed allows for insight into the
operation of a model-driven PS system, it is far too small
to provide information on the overall performance of the
DrOPS system. Therefore, we extend our evaluation to a
large-scale system using an implementation of DrOPS in
a simulated environment implemented in the OMNeT++
network simulator. We first present a brief overview of the
simulation setup before presenting simulation results.

To make our evaluation comparable to a real deployment,
we use two real-world datasets as input: Ten days from the
Intel Lab data set [3] and three non-consecutive weeks of
data from the Lausanne Urban Canopy Experiment (LUCE)
[9]. Both data sets contain environmental readings, e.g.,
temperature reported by a large set of fixed sensors.

We generate queries by placing a v-sensor for temperature
data at the position of every real sensor in each data set
in order to generate a temperature map of the area. The
sampling period is adapted to match the interval at which
data is provided by the data set. Other quality parameters
used in the evaluation are shown in Table I. Simulations
run for 6h each, with a time offset between simulations
increasing in steps of 3h from the start of the data set.

To generate node mobility for the Intel Lab data, we
place 200 mobile nodes on an abstract representation of the
lab’s floor plan. Nodes move around randomly along the
available paths. For the LUCE data, we use CanuMobiSim
[10] to generate random mobility traces for 400 nodes on a
road graph of the deployment area. For reference, we also
simulate our algorithms in a static sensor network to analyze
how close our approach is to optimum performance.

We use empirical energy models for a 3G radio [11] and
built-in sensors [12] to measure energy consumption. Energy
for positioning is not taken into account, since our algorithm
does not change the number of position fixes taken by each
node with respect to the basic sensing algorithm. Exploiting
the additional potential for saving energy by reducing the
number of position fixes is part of future work.



Parameter Intel Lab | LUCE

Error Threshold o.T 1°C 1°C
Max. Variance Q.02 .. 0.1 0.1
Window Size Q.win 10 10
Violations Q.violations 3 4
Control Readings Q.ctrl 3 1

Max. Learning Time  Q.totalWaitTime 1 hour 1 hour

Maximum Age Q.maxAge 3 days 3 days
Q.minRdg 5 5
OLA Paramters O.minSens 49 08

Table I

QUALITY PARAMETERS USED IN THE SIMULATION
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Figure 11. Quality Results. Average over all simulations (Avg), Median

over all simulations (ME) and average over all reference simulations (Ref).

C. Simulation Results

We analyze the performance of DrOPS with regard to several
metrics. Effectiveness is the fraction of tasks executed in an
optimized operation phase, thus characterizing the time spent
where the model-driven sensing algorithm is used. Good
Tasks is the fraction of tasks where QoS-constraints are
met, thus characterizing the data quality a client can expect.
In addition, we compute the average duration of basic
operation phases. Finally, Relative Energy Consumption is
defined as the total energy consumption of all nodes divided
by the total energy consumption of all nodes under the basic
sensing algorithm for the same simulation parameters.

Figure 11 depicts the results for effectiveness and good
tasks, shown as the average (Avg) and the median of all
simulations (ME), and the average of the reference simu-
lations (Ref). For effectiveness, results for both data sets
are almost identical to the reference values from the sensor
network whereas for good tasks, average values are 10 to 13
percentage points below the reference values. This indicates
that the overall performance of our approach is basically
similar to the reference system, except for a larger number
of individual outliers caused by unavailable v-sensors both
while learning a model and while optimizing execution. Note
that for the LUCE data, in only 5% of cases good tasks
is below 50 %. For the Intel Lab data, in less than 5 % of
cases the error threshold is violated by more than 0.2°C. On
average, basic operation phases last for 7.5 minutes for the
Intel Lab data and 16 minutes for the LUCE data, showing
that DrOPS can learn a model in a matter of minutes.
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Figure 12. Cumulated relative energy for communication and sensing.

Finally, we analyze the energy consumption of our system.
Note that the energy consumption for all nodes in each
simulation is nearly uniformly distributed. This indicates
that the energy consumption is dominated by the reception
of tasks, especially by the size of task messages, which
in turn depends on the number of v-sensors selected for
effective readings. We can see from Fig. 12 that energy
savings up to 80 % compared to the basic sensing algorithm
are achieved in 3% and 6 % of simulations (Intel Lab data
and LUCE data, respectively). On average, 59 % of energy is
saved for the Intel Lab data, and 74 % for the LUCE data.
In a few extreme cases, next to no energy is saved. This
happens when effective readings for most or all v-sensors
are requested even in an optimized operation phase, i.e.,
when no correlation could be identified.

VII. RELATED WORK

Research interest in PS has grown over the last few years
[1]. Several prototype systems and system architectures
have been proposed [5], [6], [13], [14]. However, all of
these approaches focus on applications and general system
challenges, and neither discusses possible optimizations.

Several prototype systems for monitoring environmental
variables have been developed [15], [16]. However, they
require energy-intensive constant sampling by all nodes.

Previous work on optimized PS focused on optimizations
for individual v-sensors. Lu et al. present a first approach
for location-centric sensing task execution [17] at a single
v-sensor. In our previous research, we presented optimiza-
tions for reading fixed sensors via mobile phones [18] and
for executing tasks at multiple v-sensors [2] in parallel.
Furthermore, we extended the idea to continuous sampling
along road segments [19] and updating of road-maps [20].
However, none of these works deals with optimizing data
acquisition across multiple v-sensors.

Reddy et al. present an approach to manually select the
best set of mobile nodes for data acquisition in a PS system
based on long-term profiles for mobility and participation
[21]. In contrast, DrOPS provides automatic operation and
short setup times.

Closest to our work, model-driven approaches for fixed
sensor networks limit data acquisition to sensors with the



best informational value [3], [4]. In actuated sensing, optimal
paths for mobile sensors are computed from the model
[22], which assumes that node mobility is controlled by
the system. None of these systems has to deal with online
learning of models.

VIII. CONCLUSION

In this work, we presented the DrOPS system for monitoring
environmental values using Public Sensing. DrOPS uses a
model-driven sensing approach based on multivariate Gaus-
sian distributions to infer readings, in order to reduce the
set of mobile nodes that are queried for effective readings
to reduce the energy consumption. Moreover, we can com-
pensate for missing readings due to unavailable virtual sen-
sors. Furthermore, we introduced OLA, an online learning
algorithm to learn multivariate Gaussian distributions over
short time periods, and MOCHA, an online model validity
check algorithm to determine whether a given multivariate
Gaussian distribution fits current sensor readings.

Our evaluations show that we obtain optimization models
in a matter of minutes on average. Using the model-driven
approach for optimizing the data acquisition, we can save
up to 80 % of energy for communication and sensing and
provide inferred readings for uncovered positions matching
an error-bound of 1°C' up to 100 % of the time.

In future work, we plan to increase energy savings for
communication further by introducing an efficient hybrid
3G/WiFi ad-hoc routing scheme and to reduce the energy
cost for positioning by an improved query execution model
reducing the number of position fixes. Furthermore, we are
going to extend DrOPS to work in sparse environments by
detecting and adapting to unavailable v-sensors.
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