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Abstract—In this paper, we propose a concept for improving
the energy efficiency and resource utilization of cloud infras-
tructures by combining the benefits of heterogeneous machine
instances. The basic idea is to integrate low-power system on a
chip (SoC) machines and high-power virtual machine instances
into so-called Elastic Tandem Machine Instances (ETMI). The
low-power machine serves low load and is always running
to ensure the availability of the ETMI. When load rises,
the ETMI scales up automatically by starting the high-power
instance and handing over traffic to it. For the non-disruptive
transition from low-power to high-power machines and vice
versa, we present a handover mechanism based on software-
defined networking technologies. Our evaluations show the
applicability of low-power SoC machines to serve low load
efficiently as well as the desired scalability properties of ETMIs.

Keywords-cloud computing, infrastructure as a service, effi-
ciency, energy, elasticity, scaling, system on a chip, software-
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I. INTRODUCTION

Cloud computing enjoys growing popularity because of
its advantages like cost efficiency and virtually unlimited
resources. In particular, the market of Infrastructure as a
Service (IaaS) offers, where customers lease resources in
form of virtual machines (VM), has expanded rapidly.

In this paper, we focus on the question how to improve
the efficiency of IaaS compute infrastructures w.r.t. energy
and utilization of physical resources. Today, efficiency is
improved by two concepts: hardware consolidation through
virtualization, and overbooking of physical resources. With
hardware consolidation, multiple physical machines are re-
placed by a set of VMs hosted on few(er) physical hosts,
assuming that customers demand VMs with lesser resources
than offered by a physical host. This alleviates the prob-
lem of underutilized physical hardware. However, hardware
consolidation alone does not ensure perfect utilization of
physical resources if VMs do not fully use their nomi-
nal (maximum) resources permanently. Therefore, operators
overbook physical resources by placing more VMs on a
physical host than would be allowed by the sum of nominal
VM resources [1], [2], [3].

Although we think that these are effective mechanisms
in general, we argue that they are difficult to apply in
scenarios where VMs often serve low load, but still need to

be constantly available and able to provide their maximum
nominal resources when load rises. A typical example could
be a web or application server serving few requests spread
over a larger time span with higher load only during “peak
hours”. Why is is hard to allocate such VMs efficiently,
i.e., without wasting (idle) resources and energy? According
to the consolidation and overbooking principles described
above, one would host several VMs on one physical host.
According to the considered scenarios, many of these VMs
are only weakly loaded and possibly idle most of the time.
Therefore, there are several options to achieve efficiency:
First, one could increase the factor of overbooking to a
large value to fully utilize the physical resources of hosts.
However, increasing this factor also increases the risk of
overloading hosts when too many VMs request their nominal
resources. To ensure the service level agreement (nominal
VM resources), busy VMs have to be migrated to other
hosts. Although this is a valid approach, it requires complex
models and adaptation mechanisms. The aggregated statisti-
cal resource demand of VMs has to be estimated, including
processing and network resources, and suitable sets of VMs
must be identified for optimal VM placement [1], [2], [3]. To
minimize the downtime of VMs, live migration mechanisms
are required whose overhead must be taken into account [4].
Secondly, idle VMs could be switched off or swapped out
to disk and booted or restored on demand. (Note that cloning
a running VM is not an option here since this requires a
running VM itself.) However, this contradicts the availability
requirements of many services. For instance, consider a
web service. If a packet of an HTTP request arrives at
the border router of the datacenter, it takes at maximum a
few milliseconds until the datacenter network has forwarded
this packet to the host. Delaying the connection request
artificially is no option since requests have to be served
within few hundred milliseconds or even tens of milliseconds
for typical web services. However, existing boot concepts
require several seconds up to minutes to start a VM [5].
Thus, increasing the factor of overbooking is risky and
requires complex adaptation mechanisms, and switching off
VMs is not an option because of availability constraints.
Therefore, we try to avoid these difficulties by proposing a
radically different approach in this paper: We utilize hetero-
geneous physical hardware optimized for different scenarios,
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namely low load, performance, and energy consumption vs.
high load, performance, and energy consumption. Our goal
can be stated as follows: We try to implement the ideal
machine w.r.t. efficiency that consumes no power while being
idle or weakly loaded—so it can be always on and, thus, be
available when requests arrive—, and that scales up to the
requested nominal resources of the VM (elasticity).

Unfortunately, such an ideal machine does not exist.
However, with respect to very low energy consumption,
the current trend of system on a chip (SoC) computers
comes very close with at least low power consumption
while being idle and in fact also being active. For instance,
the Raspberry Pi as a prominent example only consumes
few Watts and fulfills the essential hardware requirements
of low-performance servers—comparable, for instance, to
Amazon’s Micro Instance—, featuring a 700 MHz CPU,
512MB RAM, and 100 Mbps network interface. Therefore,
we advocate to utilize such SoC computers to implement
Low-power Micro Instances (LPMI) in cloud datacenters.

Beyond proposing to use such low-power SoC computers
as LPMIs, we also tackle the major problem of these
machines, namely, their limited performance. To this end,
we propose an approach to adaptively scale up LPMIs
to the nominal requested resources. The basic idea is as
follows: As long as there are only few requests, we use
an LPMI that is never switched off. If the load increases
beyond the performance limits of the LPMI, we boot a
more powerful (traditional) VM with the nominal resources
and forward requests to this High-power Instance (HPI).
We will present a handover protocol based on state of
the art software-defined networking (SDN) technologies to
make this transition from LPMI to HPI and vice versa
non-disruptive and transparent to the client. That is, no
requests are lost during the transition, and to the client the
combination of LPMI and HPI looks like an (almost ideal)
elastic machine (called Elastic Tandem Machine Instance;
ETMI) accessible through one public IP address and scaling
from zero to the nominal resources.

In detail, we make the following contributions: (1) Perfor-
mance evaluations of low-power SoC machines in realistic
three-tier application settings showing the applicability of
LPMIs for middle tier services with low load. (2) An
architecture and concept for combining LPMIs and HPIs
into efficient and elastic ETMIs. (3) A mechanism for the
seamless handover between LPMIs and HPIs using SDN
technologies. (4) A proof-of-concept implementation and
evaluation of the effectiveness and energy-efficiency of the
approach.

The rest of this paper is structured as follows. First,
we present our system model in Sec. II. In Sec. III, we
present the architecture, concept, and handover protocol to
implement ETMIs. In Sec. IV, we evaluate the performance
and efficiency of LPMIs based on SoC hardware and show
the scalability of ETMIs. Finally, we give an overview of

related work in Sec. V, and conclude the paper in Sec. VI.

II. SYSTEM MODEL

In this section, we present the target environment and
assumptions for our approach. We consider a single data-
center of an laaS provider with physical machines (hosts)
made of commodity hardware hosting VMs. We call VMs
running on these hosts High-power Instances (HPI) since
they offer more resources and higher performance than our
low-power instances running on SoC hardware. Moreover,
they consume more energy. The nominal rating of HPIs
varies according to the demands of the customer. Here, we
just assume that HPIs offer significantly more performance
than low-power instances.

In addition, the datacenter also contains hosts based
on low-power SoC hardware hosting Low-power Micro
Instances (LPMI). In contrast to HPIs, LPMIs are not
virtualized, because the type of SoC hosts that we consider
only has resources for hosting one LPMI (therefore, a SoC
host is equivalent to an LPMI in the following). We assume
that these LPMIs consume a very small amount of energy,
typically only few Watts. They have fewer computational,
memory, and network resources than an HPI, however, still
sufficient for running a web or application server at low
load (cf. Sec. IV for a backup of this assumption). As a
“blueprint” for a SoC-based LPMI, we use the Raspberry
Pi, with 700 MHz CPU, 512 MB RAM, and 100 Mbps NIC.

Both, HPIs and LPMIs are connected to the same datacen-
ter network consisting of switches, which provide connec-
tivity between machines and via routers to the Internet (cf.
Fig. 1). We assume that at least the core switches providing
connectivity to clients outside the datacenter, implement the
OpenFlow standard for SDN [6]. In plain words, OpenFlow
enables a controller process running on a server to configure
the forwarding tables of switches. Typically, multi-layer
switches are used, which can make forwarding decisions
based on layer 2—4 header fields (e.g., source and destination
MAC or IP addresses, and port numbers). The OpenFlow
protocol is already supported by several switches of major
vendors. Therefore, assuming OpenFlow core switches to
be available is realistic. Note that it is one feature of our
approach that only core switches need to support OpenFlow.
We assume that all other switches perform layer 2 forward-
ing using MAC addresses and virtual LAN ids.

With respect to the hosted application systems, we target
systems based on a typical three-tier architecture. Our
approach for implementing efficient machine instances is
targeted at services from the middle tier such as web and
application servers. These servers are executed on HPIs or
LPMIs. We assume that all persistent data and state infor-
mation is stored by backend services such as databases or
file servers executed on dedicated machines that are always
on and beyond the scope of our optimization. Moreover,
we assume that middle tier services only use volatile state



information that is only relevant for individual requests;
all other information is stored in the backend or client,
e.g, as HTTP cookies. For instance, a web server using
PHP or a servlet engine might query information from
a database, process it, and write the results back to the
database within one request from a web client. As we will
see later, this assumption is important since we cannot trans-
fer state information easily from an LPMI to an HPI using
VM migration. The reason for this assumption is that SoC
hosts not necessarily use the same hardware platform as the
high-power hosts. For instance, high-power hosts are often
based on x86 architectures, whereas the Raspberry Pi SoC
computer is using an ARM platform. Although emulating an
ARM platform on an x86 machine is possible, it induces a
performance penalty and is therefore not considered further.
Moreover, we want to avoid the overhead and difficulties of
migration. Looking at typical web-based applications, e.g.,
LAMP systems (Linux, Apache, MySQL, PHP) or servlet
engines like Google AppEngine connected to a persistent
data storage (e.g., Google BigTable), this assumption holds
true for a large set of systems.

III. APPROACH FOR IMPLEMENTING SCALABLE AND
EFFICIENT MACHINE INSTANCES

In this section, we present our approach for implementing
efficient and scalable machine instances. We first present the
basic idea and architecture of our system, before presenting
details about the essential algorithm of our approach: a non-
disruptive handover protocol based on SDN technologies to
switch adaptively between LPMIs and HPIs.

A. Overview

As stated, our goal is to offer an Elastic Tandem Machine
Instance (ETMI) that is always available and scaling up
to the requested nominal resources. We achieve this by
combining one LPMI and one HPI into an ETMI. We assume
that the LPMI and HPI are installed with the same middle
tier service software with identical configuration, e.g., web
servers referencing the same document root directory on a
remote file server, or servlet engines using the same remote
database. Therefore, requests to both instances behave iden-
tical, besides the different performance of LPMI and HPI.
To leverage the benefits of SoC hardware, only the LPMI
is running in low load situations to save energy. If the load
rises beyond the limits of the LPMI, an HPI is booted
automatically and further requests are forwarded to the HPI
(scale up). During the transition—i.e., as long as the HPI
is booting—requests are still forwarded to the LPMI, i.e.,
the ETMI is constantly available (therefore, this could also
be termed a fastboot concept for HPIs). If the load of the
HPI drops below a certain threshold, it is switched off and
requests are forwarded to the LPMI again (scale down).
Adaptive forwarding of traffic from clients to the LPMI or
HPI is performed “in hardware” in the communication net-

work by configuring core switches. Therefore, the through-
put and delay (response time) do not suffer. The control logic
is implemented in software by the SDN controller.

To the client outside the datacenter, this process should
be transparent, i.e., the ETMI looks like a single machine
instance accessible through one public IP address without
any disruption during handover. The major difficulty is to
implement a handover mechanism where already established
network connections from clients to the LPMI or HPI do not
break during the transition (for instance, HTTP 1.1 sends
multiple HTTP requests over the same TCP connection). A
TCP connection includes state information such as connec-
tion state, segment counters, or buffers. This information is
kept in the kernel space. Since we cannot easily use VM
migration, we have to make sure that already established
connections are still served by the original instance that
accepted the connection initially until they are closed reg-
ularly. In Sec. III-C, we will present a suitable handover
protocol, after we have introduced the basic architecture of
our approach in the next subsection.

B. Architecture of Elastic Tandem Machine Instances

Figure 1 shows the architecture of our system including its
components running in one datacenter. First of all, an LPMI
and an HPI are required to implement one ETMI. The LPMI
and HPI of an ETMI do not need to be co-located in one
rack. In addition to LPMIs and HPIs hosting middle tier
services, backend servers like database or file servers are
required for persistent data storage.

The core component of our approach is the SDN con-
troller, which is responsible for directing packets from
clients outside the datacenter to either the LPMI or HPI,
depending on the load. To this end, it configures the forward-
ing table of the core switches using the OpenFlow protocol.
All core switches are configured with the same forwarding
table entries. The protocol for configuring these switches is
described in Sec. III-C. Besides the core switches, the dat-
acenter network consists of more switches like aggregation,
top-of-rack, and virtual switches to connect VMs on hosts.
These switches just perform standard layer-2 forwarding.

Both LPMI and HPI have individual (possibly private)
IP addresses assigned to their network interfaces, denoted
as arpmr and agpy, respectively. Additionally, we assign
the public IP address of the service, say apuplic, to the
same network interface using IP aliasing (with IP aliasing,
multiple IP addresses can be assigned to the same NIC).
The basic ideas is to use individual addresses for the internal
communication with the controller. Messages from clients to
the public IP address are directed to either the LPMI or HPI
by the core switch using MAC address rewriting configured
by the controller (see Sec. III-C).

Another component to control the adaptation process is
the load monitor to determine the system load of instances.
Individual load monitors are executed on the LPMI and
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the HPI to notify the controller of LPMI overload or HPI
underload. Since our focus is not on load monitoring or
prediction, we use simple load metrics which can be easily
measured on instances (CPU run queue length and request
(data) rate; cf. Sec. IV). For these metrics, we define thresh-
old values to define the overload of the LPMI (T4veri0aq) and
underload of the HPI (T\nderload) including a hysteresis to
prevent oscillation. Moreover, we inhibit switches from HPI
to LPMI during a pre-configured interval At pipie (1208 in
our experiments) after a switch from LPMI to HPI to avoid
rapid shutdowns and reboots of the HPI.

In case of an overloaded LPMI, the controller starts an
HPI via the Virtual Machine Manager, which notifies the
controller when the HPI is running.

As will become clear from the description of the handover
protocol, we need two more components to support the
adaptation process. First, connection monitors are executed
on the LPMI and HPIL. On a request from the controller,
these monitors determine all established TCP connections
from clients to the instance and send their information
(source port, source IP address, destination port, destination
IP address) to the controller. Secondly, connection request
blockers on the LPMI and HPI block new connection
requests from clients to the instance during handover. Next,
we present the handover protocol in detail.

C. SDN-based Handover Protocol

Whenever the LPMI becomes overloaded or the HPI be-
comes underloaded, the controller executes a handover pro-
tocol to redirect further requests to the other instance. To
direct traffic to either the LPMI or HPI, we use MAC
address rewriting performed by the core switches based on
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System architecture (connections between the backend server and LPMI/HPI are not depicted)

forwarding table entries installed by the controller. To direct
packets to the LPMI, an action is installed for incoming
packets matching the destination IP address apupiic that
rewrites the destination MAC address to the MAC address
of the LPMI, say mypn1. Similarly, packets can be directed
to the HPI by rewriting the destination MAC address to the
MAC address of the HPT my,py1. Note that after rewriting,
the datacenter network performs layer 2 forwarding to the
LPMI and HPI based on the MAC destination address rather
than using the destination IP address, and instances will
deliver the packet since their NIC is configured with apuplic
using IP aliasing. Also note that outgoing packets to the
client do not need any special actions, and clients always
receive packets from the source address apupiic.

Next, we explain the handover protocol using a typical
sequence of operations during the handover process (cf.
Fig. 2). Assume that initially load is low and only the LPMI
is running; all requests are forwarded to the LPMI. Then,
the load is increasing. If the load of the LPMI is above
the overload threshold, the LPMI’s load monitor sends an
overload notification message to the controller triggering the
handover process with the following steps:

Step 1—Booting HPI: The controller requests an HPI to be
started by the VM Manager (line 5). When the HPI has been
started, the controller receives a boot complete message.

Step 2—Pinning established connections: The controller
makes sure that already established TCP connections will
stay connected to the LPMI to prevent broken connections
after redirecting traffic to the HPI. To this end, the con-
troller first queries the connection monitor of the LPMI
for all established connections (TCP state “established”) or
connection requests that have already been acknowledged



1: procedure ONOVERLOADNOTIFICATIONFROMLPMI
2 if thow — tlastswitch < Atinhibit then

3 return; > ignore notification
4: end if

5: VMManger.bootAndWaitForHPI();
6: ConnectionBlockerLPMI.blockSynRequests();

7 C <+ ConnectionMonitorLPMI.getConnections();
8

9

for all c € C' do > pin established connections

: addFwdTableEntry:
10: match{c.agc, C.Qdest, C-POTtgre, C.pOTtAst } —
11: action{dstMac = mypmi};
12: end for
13: modifyFwdTableEntry: > fwd new conn. to HPI

14 match{apubiic } — action{dstMac = mupr};
15: ConnectionBlockerLPMI.unblockSynRequests();

16: tlastswitch € Tnows
17: end procedure

Figure 2. Handover control logic: switch from LPMI to HPI

by the LPMI (TCP state “syn recvd”) (Step 2.1; line 7).
For each connection, the controller receives the four tuple
(source and destination IP addresses and port numbers)
uniquely identifying a TCP connection. For each tuple,
the controller installs a forwarding table entry in the core
switches (Step 2.2; line 8—12) matching the complete four
tuple and rewriting the MAC address to mypmi. These
forwarding table entries are assigned a higher priority than
the entry of Step 3, so it is guaranteed that packets of
established connections are treated according to these rules.

Step 3—Redirecting new connections: All packets to
@public that are not part of an established connection are
redirected to the HPI. To this end, the controller installs
another forwarding table entry matching apuplic to rewrite
the destination MAC address to mppr (line 13-14). This
forwarding table entry is assigned a lower priority than
the more specific entries for individual connections from
Step 2.2, so it will only affect packets of new connections.

So far, this protocol suffers from a race condition (cf.
Fig. 3). Packets of connections established to the LPMI after
querying open connections (Step 2.1) but before installing
forwarding table entries for redirecting packets to the HPI
(Step 3) will also be redirected to the HPI since they will
not be pinned. This would lead to broken connections since
these packets should go to the LPMI, which accepted the
connection initially. Although the time between these steps
might be very small (milliseconds), we need to deal with
this case using the following mechanism.

We prevent establishing new connections to the LPMI
between the beginning of Step 2.1 and end of Step 3.
To this end, the LPMI drops all packets with a SYN bit
set in the period before querying established connections
until the redirection has been installed. We achieved this by
configuring the firewall of the LPMI through the connection
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Figure 3. Race condition: the connection accepted at time t2 is not
included in connections queried at t1 and, thus, will not be pinned.

blocker component (line 6, 15). Since IP packets can get lost
on their route from clients to the server anyway (incl. TCP
SYN requests), a client would simply repeat its connection
request after a small timeout, and then connect to the HPI.

The handover process from the HPI to the LPMI is
symmetric with two exceptions: (1) The LPMI does not
need to be booted since it is always running. (2) The HPI
is shut down down, after the last established connection
to the HPI has been closed by the client. Since long-lived
connections to the HPI could prevent the HPI from shutting
down, the connection idle timeout value of servers should
be set to smaller values, e.g., 60 s. Additionally, underloaded
HTTP servers can close connections after the next request
gracefully using the HTTP “connection close” directive (this
requires a modification of the server software).

A last thing to mention is that the forwarding table
entries from Step 2 can be removed by the controller as
soon as the established connections are closed to avoid an
ever growing forwarding table whose space is limited by
the switch memory. To this end, the controller periodically
queries the LPMI and HPI for established connections and
removes vanished connections from the forwarding table of
the core switches.

IV. EVALUATION

In this section, we first backup our claim that LPMIs using
low-power SoC hardware have sufficient performance to
serve low load. To this end, we evaluate LPMI perfor-
mance using two realistic settings: a web server serving
static web pages and a web server creating dynamic web
pages. Secondly, we validate our concept of ETMIs using
a proof-of-concept implementation to evaluate the scaling
properties and non-disruptive handover mechanism. Thirdly,
we evaluate the energy efficiency of LPMIs compared to
traditional VMs on shared hosts.

A. LPMI Performance: Static Content

The first scenario for evaluating the performance of LPMIs
is a web server delivering static web pages to clients. In this
and all other evaluations, the LPMI is running on a Rasp-
berry Pi SoC machine with 700 MHz CPU, 512 MB RAM,



and 100 Mbps Ethernet NIC. The LPMI is installed with
a Linux operating system and executes an Apache web
server (middle tier service). Web pages are stored on an
NFS file server (backend service) executed on a dedicated
machine (Intel i5 quad-core with 2.67 GHz, 12GB RAM,
1 Gbps Ethernet). These web pages were taken from a real
website (http://www.netsys2013.de/) consisting of 43 web
pages containing smaller images of average size 11kB.

In all of our experiments, load (requests) is generated by
clients according to a Poisson distribution Py(k) = %e*A
with \ requests per second on average. One request down-
loads a complete web page including stylesheets, images,
etc.—thus, one request corresponds to a number of HTTP
requests—selected randomly from the set of web pages.
We start with a request rate of Ay, = 1request/s at
t = Os and increase the rate every 50s by 1request/s up
to Amax = 30 request/s.

As performance metric, we measure the response time per
request (time to deliver a complete web page) and through-
put (answered requests per second delivering a complete
web page). Figure 4(a) shows the throughput and response
time of the LPMI over time averaged over 10 runs. For the
throughput, we see that the LPMI can serve requests up
to 26 request/s. At this rate, the network connection of the
LPMI becomes the bottleneck. The response time increases
significantly at about 1000s (20request/s), which is an
indication that the LPMI becomes overloaded. At this time,
the response time exceeds 150 ms, which we also consider
to be an upper limit for delivering web pages. Therefore, the
processor of the LPMI is the most significant bottleneck in
this scenario limiting the throughput to 20 request/s for the
given maximum response time limit of 150 ms.

B. LPMI Performance: Dynamic Content

Besides static web pages, we also evaluated the creation of
dynamic web content using a typical LAMP system setup:
Apache web server executing a PHP script on the LPMI;
MySQL database on backend server. The script queries a
database with 10,000 bank accounts to execute a transaction
increasing the value of a randomly selected account. A web
page is created showing the new value of the account.

Figure 4(b) shows the resulting throughput and response
time over time for lrequest/s < A < 80request/s. We
see that the LPMI achieves a higher throughput in this
experiment up to 78request/s since the network is less
loaded for small SQL queries and the delivered smaller web
pages. The response time starts to increase significantly and
exceeds the limit of 150 ms at about 3600s (70 request/s),
again due to a processor bottleneck.

As most demanding scenario w.r.t. processing, we eval-
vated a Java servlet engine (Tomcat) executed on an
LPMI. We implemented a servlet extracting and return-
ing all speeches of Hamlet from an XML document with
all speeches of Shakespeare’s tragedy Hamlet (288kB).

In this scenario, the LPMI becomes overloaded already
at 0.5request/s when the response time starts to increase
significantly. The minimum response time is about 1.1s.
Therefore, we consider such processing-intensive services
to be too demanding for low-power SoC machines as long
as the request rate is not very low and high response times
can be tolerated by the application.

C. ETMI Performance

The evaluations presented so far have shown that LPMIs
alone could be used as replacement for virtual micro
instances in realistic scenarios with moderate processing
demands and load. However, they also have shown their
performance limitations for higher load. Next, we show that
ETMIs can overcome these limitations of LPMIs. To show
the effectiveness of ETMIs, we implemented a prototype
performing the handover protocol from Sec. III.

In these experiments, we use the same LPMI as in the
previous experiments. The HPI has two CPU cores rated at
4.2GHz, 2GB RAM, and a 1 Gbps NIC. The core switch
is an OpenFlow software switch (Open vSwitch) using two
1 Gbps ports (one upstream and one downstream port). This
switch has sufficient performance to forward traffic at line
rate (1 Gbps in each direction) and, therefore, does not
become a bottleneck in our experiments using only one
ETMI. The rest of the network (aggregation switches, ToR
switches, etc.) is emulated by one 1 Gbps layer-2 hardware
switch connected to the core switch, LPMI, HPI, controller,
and backend server. The controller is implemented as ex-
tension to the Floodlight OpenFlow controller using its
REST (northbound) interface to setup flow table entries.
The connection monitors of LPMI and HPI use the socket
statistics command (ss) to determine established network
connections. The connection blocker is implemented using
firewalls on the LPMI and HPI.

During our experiments, we found out that load monitor-
ing to detect over- and underload is far from trivial. First,
we used the exponentially smoothed CPU run queue length
(RQL) as reported by the proc file system on LPMI and
HPI. However, if the HPI has much higher performance
than the LPMI (as in our experiments), the RQL metric
is problematic since load close to the overload threshold
of the LPMI leads to very low load (close to zero) of the
HPI. Therefore, after the inhibit time, the HPI will report
an underloaded system, and the controller switches back
to the LPMI, which becomes overloaded immediately again
provoking a switch to the HPI, and so forth.

Ideally, load should be described by a metric that is easy
to measure by the LPMI and HPI, and whose values can be
used as indicator for the performance of the other instance
of the ETMI under the current load. Then the switch from
HPI to LPMI only takes place if the metric indicates that
the LPMI will not become overloaded by the current load.
We decided to use the data rate of requests as metric since
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Figure 4. Throughput and response time

for many services it correlates well with the LPMI system
load (a higher volume of incoming data usually means more
requests or data to process). Alternatively, we could also
instrument the web or application servers to directly measure
the number of request on the application level. Based
on offline benchmarks, we set T,,criocad = S0kB/s and
Tunderload = D3 kB/s as LPMI overload and HPI underload
threshold, respectively. The overload threshold includes a
“safety margin” to switch before the limit of the LPMI is
reached. We measured the data rate of incoming requests to
the public IP address using firewall rules on LPMI and HPI.

As scenario, we use the web server from Sec. IV-A serv-
ing static web pages. Web servers with the same configura-
tion are executed on LPMI and HPI, both fetching web pages
from the same NFS file server. Again, we use a Poisson
process with Ay, = lrequest/s and Apax = 50request/s,
i.e., far beyond the identified limits of an LPMI. When the
rate reaches Ap.x, we decrease it again down to Ay, by
1request/s every 50s.

Figure 4(c) shows the throughput and response time of the
ETMI over time. At ¢ = 900s (18 request/s), the controller
switched from the LPMI to the HPI; at ¢ = 4200s, it
switched back to the LPMI. We verified that during the
transitions, no established HTTP connections broke in all
runs. The throughput now shows an ideal behavior rising
up to the maximum request rate of 50request/s and then
decreasing again according to the decreasing request rate.
This shows the desired ability to scale ETMIs up and down
adaptively with a seamless transition.

The response time now always stays below the limit of
150ms. As we can see, the response time is higher when
the LPMI serves the load at the beginning and end of
the experiment. However, before it rises above the critical
limit of 150 ms, the load monitor detects an overloaded
system and switches to the HPI. Moreover, the hysteresis
successfully prevents the LPMI from becoming overloaded
after the switch from HPI to LPMI. Overall, this experiments
shows the desired scaling behavior of the ETMI.

D. Energy Efficiency

One goal of ETMIs is to improve the energy efficiency
in low load situations when the ETMI is running on SoC
hardware only, i.e., as long as the LPMI is serving load.
Therefore, we compare the energy efficiency of LPMIs
(Raspberry Pi) to VMs running on shared physical hosts
(AMD Athlon 64 X2 Dual Core 4.2 GHz).

While being idle, we measured a power consumption
of ]Didle,LPMI = 1.85W for the LPMI and Hdle,host =
141.22 W for the VM host. Thus, Piie host/ Pidie,Lpm1 = 76
VMs have to be placed on the host to achieve the same idle
energy efficiency as running 76 LPMIs.

For a load of 4request/s per LPMI (static web page
scenario of Sec. IV-A), we measured a power consumption
of 76 x 1.89W = 143.64 W for 76 LPMIs and 184.46 W
for a host serving an equivalent rate of 76 x 4request/s =
304 request/s. Thus, 76 VMs consume about 1.28 times more
energy than 76 LPMIs.

The gain in energy efficiency increases drastically, when
a single shared physical host cannot server the same load
anymore as an equivalent number of LPMIs, and VMs
have to be distributed to multiple physical hosts. In our
experiments, one physical host can serve a maximum of
about 300request/s. Therefore, at 8request/s per LPMI,
two physical hosts are necessary to serve the same load
(608, request/s) as 76 LPMIs. At 8 request/s per LPMI, we
measured a power consumption of 76 x 1.92W = 145.92'W
for 76 LPMIs. Two physical hosts serving the same load
consume 2 x 184.46 W = 368.92 W. Thus, 76 VMs running
on two shared physical hosts consumed 2.53 times more
power than a performance-equivalent number of LPMIs.

V. RELATED WORK

In this section, we give an overview of related approaches.
As already described in Sec. I, approaches based on resource
overbooking such as [1], [2], [3] target the same goals as
our approach, namely, to increase energy efficiency and
utilization of physical resources. Due to the problems of
heavy overbooking (risk of overloading) and on-demand



booting or restoring of VMs (reduced availability due to
latencies), we investigated a different approach in this paper
utilizing heterogeneous hardware to efficiently support idle
and weakly loaded VMs without sacrificing availability.

In [7], the authors show that integrating heterogeneous
hardware (here Intel Atom SoC and Xeon systems) can
be used to achieve energy-proportional systems. As one
design option, they identify the integration of discrete server
systems. Our hand-over approach proposed in this paper is
a network-centric mechanism to enable this integration.

From a technical point of view, our approach shares
similarities with load balancing mechanisms. A common
principle is to first forwarded requests to a load balancer,
which then directs the requests to machines from a pool of
servers. Similar to our approach, this redirection can be per-
formed by rewriting addresses, either IP addresses (network
address translation (NAT), e.g., [8]) or MAC addresses (e.g.,
[9]). In contrast to most of these approaches, we avoid a
dedicated load balancer and rather utilize available (core)
switches together with an SDN controller to implement
request redirection.

A load balancing approach also utilizing SDN was pro-
posed in [8]. Although this approach is based on NAT
instead of MAC address rewriting, the problem of keeping
established TCP connections alive is the same as in our
approach. The solution proposed in [8] has two drawbacks:
Either it redirects packets to the controller to distinguish
between old and new connections, which might lead to a
bottleneck at the (software) controller. Or it uses a heuristic
(60 s timeout) to detect closed connections on the switch.
This heuristic might either lead to broken connections if
packets are sent after 60s of inactivity. Or it might even
prevent the handover since also new requests are forwarded
to the old instance during the timeout period, which restarts
the timer. We avoid these problems using readily available
connection state from the end systems (HPI, LPMI), a
feature enabled by the application-level SDN controller.

VI. SUMMARY

In this paper, we presented a concept to implement Elastic
Tandem Machine Instances, which combine the benefits
of low-power SoC hardware (low energy consumption)
and high-power virtual machine instances (large resources).
While the low-power instance serves low load and en-
sures constant availability, the high-power instance serves
high load. We presented a concept to scale up ETMIs by
switching adaptively from the low-power instance to the
high-power instance. Using a handover protocol based on
software-defined networking technologies, the transition is
made seamlessly without disrupting existing connections.
Moreover, we demonstrated the applicability of low-power
SoC hardware to serve low load in realistic three-tier system
settings, as well as a proof of concept of ETMIs.

As part of future work, we plan to improve our con-
cept. First, we want to include concepts for self-tuning the
threshold values based on user-defined quality of service
parameters like minimum response time instead of using
manually configured values based on offline benchmarking.
Secondly, models to predict the load and performance can
help us to better plan the startup and shutdown of high-
power instances to reduce the time until the HPI is available.
Thirdly, we are going to integrate more than two machines
with different performance specifications through our hand-
over protocol. This allows for scaling up seamlessly from
a low-power SoC machine, to small, medium, and large
instance virtual machines.
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