
Rollback-Recovery without Checkpoints in Distributed
Event Processing Systems

Boris Koldehofe
Institute of Parallel and

Distributed Systems
University of Stuttgart,

Germany
boris.koldehofe@ipvs.uni-

stuttgart.de

Ruben Mayer
Institute of Parallel and

Distributed Systems
University of Stuttgart,

Germany
ruben.mayer@ipvs.uni-

stuttgart.de
Umakishore

Ramachandran
College of Computing
Georgia Tech, USA

rama@cc.gatech.edu

Kurt Rothermel
Institute of Parallel and

Distributed Systems
University of Stuttgart,

Germany
kurt.rothermel@ipvs.uni-

stuttgart.de

Marco Völz
Institute of Parallel and

Distributed Systems
University of Stuttgart,

Germany
voelzmo@gmail.com

ABSTRACT
Reliability is of critical importance to many applications in-
volving distributed event processing systems. Especially the
use of stateful operators makes it challenging to provide ef-
ficient recovery from failures and to ensure consistent event
streams. Even during failure-free execution, state-of-the-art
methods for achieving reliability incur significant overhead
at run-time concerning computational resources, event traf-
fic, and event detection time. This paper proposes a novel
method for rollback-recovery that allows for recovery from
multiple simultaneous operator failures, but eliminates the
need for persistent checkpoints. Thereby, the operator state
is preserved in savepoints at points in time when its execu-
tion solely depends on the state of incoming event streams
which are reproducible by predecessor operators. We pro-
pose an expressive event processing model to determine save-
points and algorithms for their coordination in a distributed
operator network. Evaluations show that very low overhead
at failure-free execution in comparison to other approaches
is achieved.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; C.4 [Performance of
Systems]: Fault tolerance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

Keywords
Reliability, Recovery, Complex Event Processing

1. INTRODUCTION
Event processing systems, also commonly referred to as

stream processing or complex event processing (CEP) sys-
tems, are nowadays deployed in many business applications
including logistic chains, manufacturing, or stock exchange.
They allow to integrate and analyze streams of events that
stem from many distributed data sources such as sensors.
Consumers are provided with event streams that capture
correlations of the incoming event streams and this way pro-
vide feedback and even trigger interactions with physical
processes.

With the increasing scale and inherent distributed deploy-
ment of data sources, the paradigm of distributed event pro-
cessing systems has gained increasing importance. In a dis-
tributed event processing system, operators hosted at po-
tentially many different nodes of the network are taking a
share in analyzing input streams and producing streams of
outgoing events. Since many physical processes, e.g., the
control of a manufacturing process, depend on the output of
event processing systems, their correctness and performance
characteristics are of critical importance. For event process-
ing systems, this imposes strong requirements with respect
to availability and consistency of their outgoing streams. In
particular, the event streams provided to consumers of event
processing systems should be indistinguishable from an ex-
ecution in which the hosts of some operators fail or event
streams are not available during a temporary partitioning
of the network.

The efficiency of reliable event processing can be mea-
sured with respect to its runtime overhead in a failure-free
execution as well as its recovery overhead in the presence of
failures. Currently, dealing with reliability leaves two basic
options for event processing systems, known as replication
and rollback-recovery. While active replication [18] mini-
mizes the time to deal with host and communication fail-

© ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version will be published in Proceedings of
the 7th ACM International Conference on Distributed Event-Based Systems, Arlington, Texas, USA, 2013

ures, it imposes high processor utilization on the hosts at
run-time since the execution of every operator needs to be
replicated. Replication also raises significantly the message
overhead since event streams targeted to an operator must
also be streamed to all of its replicas. Passive replication [5]
has slightly different properties, sacrificing recovery-time in
order to avoid run-time overhead, but the general problems
remain the same. Rollback-recovery [8], on the other hand,
requires in its classical form to store checkpoints at regular
times to persistent storage. This adds additional run-time
overhead regarding bandwidth that is needed to transfer (in-
cremental) state information, which is a burden especially
for high bandwidth streams. Furthermore, to ensure the
atomic capturing of (incremental) checkpoints, the process-
ing of operators needs to be interrupted inducing event de-
tection latency. Given that an operator state even for simple
processing such as aggregation may comprise several Giga-
bytes [19], minimizing the state for performing a recovery is
one of the important research questions in providing large-
scale event processing systems. A promising way towards
avoiding the need for persistent checkpoints is to recover
the state of an operator by replaying logs of incoming event
streams [10, 11] (known as “upstream backup”). Yet, the
approach is very restrictive regarding operators for which a
consistent state can be guaranteed after a recovery.

In this paper, we propose a method for recovery which
avoids any interruption of the event processing system and
minimizes the amount of state to be transferred in a failure-
free execution. The proposed approach relies on the ob-
servation that at certain points in time, the execution of
an event processing operator solely depends on a distinct
selection of events from the incoming streams. So, the op-
erator state only comprises necessary parts of the incoming
streams and information about the current event selection
on them. Events from incoming streams can be reproduced
from predecessor operators, so that only event sources need
to provide outgoing streams in a reliable way. However,
information about the current event selection is not repro-
ducible and therefore is stored in a savepoint and replicated
at other operators for failure tolerance.

In this context, our contributions are to propose an ex-
pressive, general execution model that enables for any oper-
ator to signal on its incoming streams the selection of events
that it is currently processing. Such a model can be applied
to stream processing as well as complex event processing
systems. To illustrate its expressiveness, a comparison to
the event specification language snoop is drawn. Based on
this operator execution model, we propose a savepoint re-
covery system that i) provides the basis in identifying an
empty operator processing state, ii) manages the capturing
and replication of savepoints and ensures the reproducibility
of corresponding events, iii) implements a recovery in which
also simultaneous failures of multiple sequential operators
can be tolerated.

The paper is structured as follows: Section 2 introduces
a general event processing and system model suitable to de-
scribe event processing systems. In Section 3, we define the
requirements with regard to the reliability of the system.
Section 4 sketches our novel approach for rollback-recovery.
In Section 5, an expressive operator execution model is in-
troduced that works with selections of events. Based on that
model, Section 6 shows how operator state is minimized to
replicated savepoints. The recovery algorithms are described

and their correctness is proved in Section 7. Afterwards,
evaluations are provided in Section 8. In Section 9, possible
extensions on the proposed recovery method are discussed.
Related work is discussed in Section 10. Finally, Section 11
concludes this paper and briefly discusses future work.

2. EVENT PROCESSING & SYSTEM
MODEL

2.1 Event Processing Model
The operation of a distributed event processing system

can be modeled by an operator graph G(Ω ∪ S ∪ C,L) in-
terconnecting sources in S, operators in Ω, and consumers
in C in form of event streams in L ⊂ (S ∪ Ω)× (Ω ∪ C). In
this model, the sources act as producers of basic events like
sensor streams, operators perform correlations on their in-
coming event streams to produce new outgoing events, and
consumers define event streams that require reliable deliv-
ery. We will later formalize what reliable delivery means.

An event e is a tuple of attribute-value pairs, i.e we use
e = (a1 : v1, ..., am : vm) to refer to the content of an event
that comprises m attribute-value pairs. An event stream
(p, d) ∈ L of the operator graph is directed from a producer
to a destination and ensures that events are delivered to
the destination in the order they are produced. Events in a
stream are of a distinct event type. We call p the predecessor
of d and d the successor of p. Accordingly, (p, d) is called an
outgoing stream of p and an incoming stream of d. For an
event e ∈ (p, d) we refer to SN(e) the sequence number of e,
which is deterministically assigned and independent of the
physical event production time. Events from different in-
coming streams have a well-defined, global ordering that is
independent of the physical time of their arrival at the oper-
ator. Any ordering is possible, as long as the local ordering
by sequence numbers on single streams is not violated.

Each operator ω performs processing w.r.t. the set of all
incoming streams (in, ω) ∈ L, denoted by Iω. During its exe-
cution, an operator ω ∈ Ω performs a sequence of correlation
steps on Iω. In each correlation step, the operator deter-
mines a selection σ which is a finite subset of events in each
stream of Iω. A correlation function fω : σ → (e1, . . . , em)
specifies a mapping from a selection to a finite, possibly
empty set of events produced by the operator. The pro-
duced events are written in order of occurrence to its outgo-
ing event streams. For each outgoing stream a different set
of events may be written.

2.2 System Model
The operators of the operator graph G are hosted by a set

of n nodes, each node hosting possibly multiple operators.
At any time, each node can fail according to the crash re-
covery model, where at most k < n nodes are assumed to
permanently fail or crash and recover an unbounded num-
ber of times. The nodes communicate via communication
channels that are established for each event stream in G
and guarantee eventual in-order delivery of streamed events.
In addition, we will consider event sources and event con-
sumers to be reliable. This means that each event produced
by a source will be accessible until all dependent operators
have signaled that it can be discarded. Furthermore, event
sources must be able to reliably store savepoints from their
successors. Similarly, for events streamed to consumers we

will use a fault tolerant delivery mechanism so that even-
tually a consumer receives all events sent to it in the right
order.

Note that we do not make any assumptions on timeli-
ness for links connecting sources, operators and consumers,
nor do we demand any synchronization of their clocks. The
system can be realized as a highly distributed correlation
network that involves communication over an Internet-like
topology. We will use a monitoring component to suspect
faulty processes and trigger reconfigurations on the place-
ment of operators on nodes. The accurateness of this com-
ponent, however, will only affect the performance, but not
the correctness of the proposed method.

3. RELIABLE EVENT PROCESSING
For event processing systems, it is important that detected

events capture the status of the monitored real world in
a reliable way, i. e., no events of interest are disregarded
(false-negative event detection) as well as no “wrong” events
that did not really occur are delivered to consumers (false-
positive). Even if the operators of a system are well-defined
and sources of an event processing system reliably capture
all basic events of the system, the loss of intermediate events
in the event processing system can lead to the occurrence of
false-negatives or false-positives. For example, consider a
business monitoring system for which an operator ω moni-
tors whether customer requests were successfully answered.
In this case, ω is required to produce an alarm or confirma-
tion dependent on whether or not a customer request was
answered within 10 minutes. The correct detection depends
on the successful detection of a customer request, say er as
well as detecting successful answers, say ea. In particular,
not detecting a successful answer could trigger both a false
positive and a false negative, namely an alarm instead of a
confirmation.

The major cause for the loss of intermediate events is the
failure of nodes. We require a CEP system for a set of given
primary event streams and a set of consumers to guarantee
the following properties despite of the simultaneous failure
of an arbitrary number of nodes:

1. Completeness. Each event that can be detected by the
event processing system from a given set of available
primary streams will eventually be delivered to every
correct consumer interested in the event. Depending
on the application, a false-negative event detection can
cause that, e.g., decisions are made that base on wrong
data in business monitoring systems, or even severe
dangers in cyber-physical systems occur.

2. Consistency. The streams the event processing sys-
tem provides to consumers in an execution with op-
erator failures are indistinguishable from an execution
without failures (in particular regarding order and at-
tributes of the comprised events). False-positive events
can have similar negative effects as false-negative
events, leading to wrong decisions based on faulty in-
formation. Also the order of produced events can play
a role for event consumers, e.g., if decision-relevant
out-of-order events arrive when an irrevocable decision
has already been made.

Besides these correctness requirements, we aim with our
approach for a low run-time overhead as the main efficiency
goal in order to provide high scalability of the system.

selector f

consumption

QI

…

I

QO

…

O
e…

sequencer

Figure 1: Model of an operator.

4. OVERVIEW OF THE APPROACH
Figure 1 shows a model of the components of an operator.

Incoming events from Iω are cached in queues QI from which
the selector determines selections of events to be mapped to
outgoing events by the correlation function fω. Further, the
selector can exclude events from any further correlations,
i. e., events are consumed and removed from QI . The pro-
duced events are augmented with a sequence number by the
sequencer and put into queues QO from which they will be
transferred to ω’s successors. Events are discarded from QO

only if all successors have acknowledged them.
Note that any approach that allows for the recovery of

the state of failed operators requires the replication of state.
The difference between distinct recovery methods is how and
where state information is replicated, e.g., at standby opera-
tors or at a persistent storage for classical rollback-recovery.
One important observation from the rollback-recovery ap-
proach is that state Λ(T) at a point in time T can be seen
as state at a previous point in time Tsp plus a deviation
Δ(Λ(Tsp),Λ(T)) that happened on the state between Tsp

and T . We are looking for the optimal Tsp, when the state
of an operator is minimal, so that its replication requires
only a minimum of resources.

The state Λ(T) of ω comprises the states of QI , the selec-
tor, fω, the sequencer and QO. Observe that fω implements
a mapping in its mathematical sense from selections σ to
sets of produced events, or, more precisely, attribute-value-
pairs of events from σ are mapped to attribute-value-pairs
of produced events, each mapping denoted as a correlation
step. Although fω builds up internal state, in this model
there are no dependencies in between two subsequent corre-
lation steps. So, at a point in time between two correlation
steps denoted Tsp, fω is stateless. The state of the sequencer
just comprises one parameter which is the next SN to be as-
signed to the next processed event. The state of the selector
is harder to determine: In an arbitrary operator implementa-
tion, the state may cover manifold relations; e.g., selections
could depend on other selections, on intermediate consump-
tions, even on the results of previous correlation steps. In
the general case, taking a snapshot of the processing stack of
the selector or implementing a sophisticated state extraction
method would be inevitable. However, the selector state can
be drastically reduced when a specific operator execution
model constrains the scope of possible selections. Finally,
the state of QI and QO comprises all events contained in
the queues.

In our savepoint recovery system, in order to be able to
recover ω once it has failed at a point in time T , the recovery
procedure determines an earlier point in time Tsp < T with
the following properties: (i) fω is stateless, (ii) all events

1,2,3

time
Tsp T

QO QO

ACK(3)

4,5,6

4 5 6

Figure 2: Between Tsp and T , all events up to event 3
in QO have been acknowledged, so they are not part
of Λ(Tsp) w.r.t. the proposed recovery approach.

that QO contained at Tsp have been acknowledged in the
meantime, and (iii) events in QI at Tsp are eventually avail-
able in ω’s predecessors. In this process, stateless times of
fω are indicated to an execution environment by a hook that
is installed in the correlation logic. The second property is
achieved by a distributed acknowledgment algorithm, which
is described in Section 6.2. It synchronizes the points in
time Tsp for recovery between adjacent operators. Thereby,
an acknowledgment indicates that an event is not needed
anymore in order to achieve consistent event streams at the
consumers and therefore can be discarded from QO. The
algorithm ensures that the latest recovery point Tsp at an
arbitrary point in time T is always chosen with regard to this
property. See Fig. 2 for an example. It shows that despite
QO is not empty at Tsp, it is not necessary to restore it in
order to recover Λ(T), because all events have been acknowl-
edged in the meantime. Thus, in the following we will not
count QO as part of Λ(Tsp) with regard to the proposed re-
covery approach. The third property is also achieved by the
acknowledgment algorithm, which only acknowledges events
at a predecessor if they are not part of QI at Tsp anymore.

Now, the relevant, non-reproducible state of ω at Tsp com-
prises only the state of the selector and the sequencer, which
is captured in a savepoint and replicated at ω’s predecessors.
If ω fails at time T , Λ(Tsp) is restored from the replicated
savepoint and replayed events of QI from the predecessors.
From this point on, the re-execution of ω, i. e., performing a
sequence of correlation steps, will allow the operator to fully
restore Λ(T).

5. EXECUTION MODEL
The following execution model refines the operator model

introduced in Section 4 (cf. Fig. 1). It describes the im-
plementation of the selector and the sequencer, and defines
the interface of an arbitrary operator’s correlation logic to
these components. Thereby, we aim to keep the interface
simple, so that existing implementations of fω can easily be
embedded into the proposed system.

Let a window w〈〈SNstart
i , SNend

i 〉, · · · 〉 on Iω comprise for
each incoming stream i ∈ (in, ω) all events between a start
event with SNstart

i and an end event with SNend
i . Then

a selection σ can be defined as the set of all events within
w and contains all incoming events on which fω executes
one correlation step. To implement the mapping fω, each
the selector and the sequencer, which we together name the
execution environment (EE), provide an interface. The in-
terface of the selector is defined as C(consumption), with
consumption being a map of event types and the corre-
sponding number of consumed events. The consumption
of x events from a stream i ∈ (in, ω) results for the next

er

ea

1

1

2

2
Emit(etimely)
C(R: 1, A: 1)

…

R

A

Figure 3: Interface calls to the EE.

selection σ’ in: SNstart′
i = SNstart

i +x, i. e., the start event
moves further w.r.t. the consumption. Each correlation step
has to result in at least one consumption in at least one of
the incoming streams to ensure progress. That way, the se-
lector keeps track of the start events of the selections, and
just streams events from QI in their deterministic order to
fω until its interface is called and the next selection starts.
Events that are marked as consumed by fω get deleted from
QI . The interface of the sequencer Emit(event) takes a pro-
duced event from fω, assigns it a SN and puts it into QO.

Example (Figure 3): Consider the example given in Sec-
tion 3. In a correlation step, fω takes one event of type R
(requests), say er, and then checks events of type A (an-
swers) e.g. for a matching request ID attribute. The step
ends when an event ea of type A is reached that is either
corresponding to er or has a timestamp that is more than 10
minutes older than the one of er, so that fω is sure that the
10 minutes timespan has been violated (given events are or-
dered by timestamps in streams). In the first case, fω would
emit an event etimely and would consume er and events of
type A that have a smaller timestamp than er as answers
are not expected to appear before the next request. In the
second case, an event ealarm is emitted and e.g. delivered to
a special agent who will work on the request with a high pri-
ority. er and events of type A that have a smaller timestamp
than er are consumed in this case, too.

5.1 Properties

Property 5.1. (State of an Operator at Tsp.) Let
Tsp be a point in time when an operator ω starts processing
a new selection σsp. Then, Λ(Tsp) of ω comprises:

• Events in QI .

• The state of the selector: For each incoming stream
i ∈ (in, ω): SNstart

i of σsp.

• The state of the sequencer: The SN of the first event
to be produced in σsp.

Events in QI are replayed from predecessors. In order
to restore the selector, the SNs of the start events of σsp

have to be restored. Then, the selector can provide to fω
exactly the same selection that had been provided in the
primary execution of the correlation step, which leads to
the production of exactly the same events. The subsequent
selection σsp+1 depends only on σsp, and so on, so that all
subsequent selections are indistinguishable from a failure-
free execution. To restore the sequencer, it is initialized
with the SN of the next emitted event.

Property 5.2. (Start Events of Consecutive Se-

lections.) For a selection σs, each start event has a higher
or equal sequence number compared to the selection σp of a
preceding correlation step.

Selection windows are moved when events are consumed.
A consumption always leads to a higher sequence number
of the next start event. This property limits the dependen-
cies between event streams. For two consecutive correla-
tion steps (and thereby for the production of events in such
steps), the selection start events from a stream in Iω are
never descending.

5.2 Expressiveness
After we have defined how the execution model of our

event processing system works, one might ask whether this
really reflects the requirements of real-world CEP systems
with regard to the detection of event patterns. Does it pro-
vide enough expressiveness so that any realistic situation
detection can be implemented?

As a reference, we will take the event specification lan-
guage snoop [6] and check whether all event patterns that
are formalized in snoop can be implemented in our execu-
tion model. This has several reasons: First, snoop has been
motivated by real-world event processing scenarios and not
just on some academic theoretical models. Such scenarios
comprise, amongst others, sensor applications (e.g., hospi-
tal monitoring and global position tracking), applications
that exhibit causal dependency (e.g., between aborts and
rollbacks, bug reports and releases) and trend analysis and
forecasting applications (e.g., security trading, stock mar-
ket analysis). Furthermore, snoop is well-established in the
scientific event processing community. But above all, it
provides a high expressiveness in comparison to other lan-
guages, as Margara and Cugola show in their article [7].

In snoop, complex events can be correlated by event oper-
ators, which are the following ones: Disjunction, sequence,
conjunction, aperiodic and periodic operators. Further, pa-
rameter contexts in snoop describe which incoming events
are considered in the computation of the parameters of a
produced event in a correlation step, when there are several
possible events to choose from. The following parameter
contexts are defined: (i) Recent, where only the most recent
occurrences are used for correlation. (ii) Chronicle, where
incoming events are correlated in the chronological order in
which they occur. (iii) Continuous, where continuously each
possible event starts a correlation execution. (iv) Cumula-
tive, where all events between a possible start and end event
are correlated. For more detailed explanations and exam-
ples, please refer to the original snoop paper [6].

Proposition 5.3. (Expressiveness of the Execution

Model.) All event operators and parameter contexts of
snoop can be implemented using the execution model that
is proposed in this work.

Proof. In snoop, event expressions define a finite time
interval in which one or more atomic happenings, or events,
can occur. Thus, they correspond to finite sets of sequential
events. So they are equivalent to event selections as they are
defined in the execution model. All snoop event operators
work solely with event expressions as operands. Thus, the
sequence of execution iterations of snoop event operators can
be seen as an execution with a sequence of event selections
(σ1, σ2, σ3, ...) as operands.

Consumer Source …

ACK: 2

1,2,3,4 11,12,13,14,15,16

130,131,…,152,153,
154,155,156,157, 158

ACK: 14 ACK: 23 ACK: 153

Figure 4: ACK flow and pruning of QO.

Lemma 5.4. For the operands (σ1, σ2, σ3, ...) of a snoop
event operator, the following properties are satisfied:

(i) SNstart
j ∈ σk+1 ≥ SNstart

j ∈ σk ∀j ∈ (in, ω),
(ii) For all event operators and parameter contexts exists

an implementation of fω so that when it is executed on σ1,
σ2, σ3..., the events produced by fω satisfy the semantics of
snoop.

Proof. (i) Proof by contradiction. If
∃e with e ∈ σk+1 ∧ e ∈ j : SN(e) < SNstart

j ∈ σk; j ∈
(in, ω), then e would be in a later time interval but have a
lower SN than the start event of σk. This contradicts to the
policy that sequence numbers are assigned sequentially.

(ii) is satisfied because given the event selections, fω can
implement any operations on a selection, especially any func-
tionality of a snoop event operator can be implemented.

Lemma 5.5. None of the parameter contexts demands for
the consumption of an intermediate event that is located
within the window bounds of the selection of the next event
operator execution.

Proof. In Recent, when an event is detected, all events
which cannot become the initiator of an event detection and
are ordered between the detection initiator and the event
that triggered the detection are consumed. This cannot af-
fect intermediate events, because if an earlier event of a type
can potentially start an event detection and is not consumed,
then a later event of the same type can potentially start an
event detection, too.

In Chronicle, events are used for parameter computation
in the order they occur and then they are consumed, so no
intermediate consumption can occur.

In Continuous, no explicit consumptions happen at all.
In Cumulative, all events of a selection are consumed.

As a conclusion of Lemma 1 and Lemma 2, fω works on
sequential selections that do not demand intermediate con-
sumptions and so it can implement the interface to the EE
defined by the execution model. So, our execution model is
at least as expressive as the snoop event specification lan-
guage.

6. CAPTURING AND REPLICATING
SAVEPOINTS

6.1 Log and Savepoint Management

6.1.1 Logs of Outgoing Events
Events in QI of ω are preserved in the QO of its upstream

neighbors (a.k.a. predecessors), so that no additional events

need to be transferred over the network at failure-free run-
time. If ω fails, QI can be restored when its predecessors
re-send their QO. QO must always contain enough events to
restore the successor to its latest acknowledged state Λ(Tsp)
which depends on the coordination of savepoints described
in Section 6.2. Note, however, that outgoing events are re-
produced when an operator recovers, so that events in QO

are reproducible and do not need to be replicated.

6.1.2 Savepoints and Savepoint Trees
Savepoints contain the non-reproducible part of Λ(Tsp),

which comprises the state of the selector and the sequencer.
They are stored together with QO in the volatile memory of
the predecessors of ω. If ω’s predecessor is an event source,
savepoints and events can be stored there in a reliable way,
as event sources are implemented fault-tolerant.

So, when ω crashes at a point in time T , its predecessors
hold all state information that is necessary to restore Λ(T):
Λ(Tsp) is restored from the savepoints and events from QO

at predecessors, and Δ(Tsp, T) is restored by re-running ω
from Tsp until T . We will determine later the points in time
when an operator has to update and distribute its savepoint.
To deal with asynchrony, it is necessary that all predecessors
store a complete savepoint, so that at the recovery of ω a self-
consistent savepoint is available, i.e., the information about
the start events of σ belong to the same σ, and the next
SN fits with that σ. In contrast to that, the re-sent events
from incoming streams in Iω do not have to be consistent
w.r.t. the same savepoint, because it is easily possible for an
operator that is getting restored to ignore events that stem
from older selections and therefore are not part of QI .

By now, only one failed operator can be restored at a time,
but not several adjacent operators that fail at the same time.
To make that possible, the non-reproducible part of Λ(Tsp),
namely the savepoint, is replicated at all operators of the
transitive closure of the predecessor relation in the operator
graph, so that each operator preserves a tree of savepoints
in its volatile memory.

6.2 Coordination of Savepoints
In order to restore Λ(T) of ω, one has to determine the

point in time Tsp to which it has to be restored in order to
allow for the restoring of QO at T . This depends on the
events that are part of QO, more precisely, the earlier the
events of QO at T had been produced, the earlier is Tsp.
A trivial implementation would never prune QO so that it
contains all events an operator has ever produced. In case
of a recovery, Tsp would be “zero”, i. e., the operator would
be restored to the point in time when it initially started its
work. To avoid that, it is necessary that an operator prunes
QO from time to time, i. e., excludes events from Λ(T) and
thereby increases Tsp. Events can be pruned when they are
not necessary for the consistency of the event streams deliv-
ered to the consumers anymore. The necessity is defined as
follows:

Definition 6.1 (Necessity of Events). An event e
is a necessary event if a consumer is interested in it and has
not yet acknowledged its receiving.

If all consumers interested in e have acknowledged its receiv-
ing at a point in time TACK , a predecessor operator ω can
be sure that e is not necessary anymore and delete it (and all
earlier events) from its QO (see Figure 4). That way, e and

0

c1

(ej, SNj)
…

cn

(ec1, SN1) (ec2, SN2)

0

c1 cn

ACK(SN1) ACK(SN2)

(ei, SNi)
…

k k

(e 1, SN 1)
…

SN = (min(SN1,SN2))

…
(e k, SN k)…

… …

…

sn sn s1 sn… …

SP(0) =f-1(SN)
Build SPT(0)
ACK(SPT(0))

…
Build SPT(k)

ACK SPT(k)‘ACK SPT(k)

Figure 5: Event and ACK flow in a CEP system.

all earlier events are not part of Λ(T) for any T ≥ TACK ,
so that Tsp and thereby the savepoint can be adjusted to
the correlation step in which the first event following e had
initially been produced. This is done by means of the in-
verse correlation function f−1 : e → σe, which maps SN(e)
to the start events of the selection σe in which e had been
produced. The most efficient implementation of f−1 is for
each selection to store SNstart

i for each stream i ∈ (in, ω)
together with the produced events in QO. For each incom-
ing stream, events that are placed before the corresponding
start event of σe are discarded from QI at Tsp and their SNs
are acknowledged at ω’s predecessors. They proceed in the
same way that ω did, prune their QO and adapt their Tsp to
the production of events in QO, update their savepoint ac-
cordingly in the savepoint tree, and acknowledge SNs from
f−1 at their predecessors as well as send them the updated
savepoint tree for further replication.

To coordinate savepoints, we make use of acknowledgment
messages, say ACKs, which contain both the SN of the ac-
knowledged event and the updated savepoint tree. When
receiving an ACK, an operator replaces the obsolete part in
its savepoint tree, prunes QO and checks whether Tsp can
be updated. If this is the case, the operator sends an ACK
to each of its predecessors. That way the ACKs flow up-
stream, i.e., against the flow direction of events, until they
will finally reach the event sources signaling that replicated
events have become unnecessary and therefore can be dis-
carded. The algorithms for log and savepoint maintenance
of an operator are given in Figure 6.

Example: Figure 5 shows the event and ACK flow in the
system. On the left graph, events are flowing downstream,
starting at the event sources and getting correlated with
each other until some events are delivered to consumers. On
the right graph, the consumers acknowledge different SNs
of received events. The minimal SN acknowledged by all
connected consumers at ω0 signals the latest unnecessary
event, QO is pruned, the savepoint tree is updated accord-
ingly and sent with an ACK to all predecessors. They store
the new savepoint tree, update their own savepoint if ap-
plicable, send ACKs to their predecessors, and so on, until
finally the ACKs reach the event sources, where the save-

1: Map<successor, ACK> latestRecACKs � Contains latest
received ACK from each successor

2: Savepoint ownSP � Contains current own savepoint
3: List<Event> QI � Queues of incoming events
4: List<Event> QO � Queues of outgoing events

5: upon 〈receiveACK〉(inACK)
6: latestRecACKs.insert(inACK.producer, inACK)
7: if latestRecACKs.getOldestACKedSeq() has changed

then � update own savepoint
8: sn = inACK.getAckedSeqNo()

9: e acked = QO.getEvent(sn)
10: map < instream, SeqNo > = f−1(e acked)
11: QI .prune � prune QI

12: newSavepoint =
13: new Savepoint(map < instream, SeqNo >, sn)
14: QO.prune(sn) � prune QO

15: SavepointTree = new SavepointTree()

16: SavepointTree.setRoot(newSavepoint)
17: for all ACK in latestRecAcks do
18: SavepointTree.addChild(ACK.savepointTree)
19: end for
20: newACK = new ACK(SavepointTree)
21: for all predecessors do
22: send(newACK)
23: end for
24: end if
25: end

Figure 6: Algorithms for log and savepoint mainte-
nance at an operator ω.

point trees are replicated and all acknowledged events are
discarded.

7. ALGORITHMS FOR OPERATOR
RECOVERY

7.1 Recovery of the State of Failed Operators
For the description of the recovery algorithm, we will at

first assume that operator failures are detected immediately
and that failed operators are restarted automatically. Also,
we assume that an operator knows his direct predecessors,
even after it has crashed and recovered. From this point,
we describe how an operator will be able to restore its state
w.r.t. the latest available savepoint, so that event streams
that were lost through the failure get reproduced. Later, we
will describe how the failure detection and operator topology
management can be solved in an asynchronous system.

7.1.1 Recovery Procedure
After its restart, a failed operator ω sends to its predeces-

sors a message called RecoveryRequest. When an opera-
tor receives such a RecoveryRequest, it answers by send-
ing the recovery information necessary for restoring the state
of ω, which comprises QO (replay of the outgoing stream)
and the savepoint tree of ω. ω waits until it has received
all recovery information. Then it identifies the answer con-
taining its latest savepoint SP, which is the answer with the
highest value for the SN of the next event to be produced.
ω restores Λ(Tsp) by initializing the selector with the selec-
tion defined in the SP, restores QI with the replayed events
from the predecessors, and initializes the sequencer with the
next SN to be assigned to a produced event.

To cope with multiple simultaneous failures of adjacent
operators, ω sends a RecoveryNotification to its suc-

1: upon 〈receiveInit〉(predecessors, successors)
2: for all op in predecessors do
3: send(op, RecoveryRequest)
4: end for
5: while not received all RecoveryInformation do
6: upon 〈receiveRecoveryNotification〉(predecessor)
7: send(predecessor, RecoveryRequest)
8: end
9: upon 〈receiveRecoveryInformation〉()
10: list<RecoveryInformation>.add(RecoveryInformation)
11: end
12: end while
13: restoreState(latestRecoveryInformation)
14: end

15: upon 〈receiveRecoveryRequest〉(successor)
16: SavepointTree = latestRecACKs.get(successor).get-

SavepointTree()

17: RecoveryInformation = new RecoveryInforma-

tion(QO, latestRecACKs)
18: send(successor, RecoveryInformation)
19: end

Figure 7: Algorithms for recovery of an operator ω.

cessors after its recovery. So, if one of those operators is
awaiting recovery information from ω, it can detect that the
RecoveryRequest might have been lost because of the
failing of ω and resend it. This way, a failed predecessor
does not lead to an infinite waiting time for receiving all re-
covery information. From bottom up, failed operators can
recover, each sending the necessary recovery information to
its successor, until all operators are restored to their latest
ACKed state again. The algorithms for the recovery of an
operator are listed in Figure 7.

7.2 Control and Adjustment of the Operator
Topology

By now, we have assumed an error-free, immediate detec-
tion and restart of failed operators. However, in an asyn-
chronous system, a perfect failure detector cannot be imple-
mented to solve that problem. Instead, we have to work with
a weaker failure detector abstraction that suspects operators
to have failed, but the suspicions might be wrong.

7.2.1 Coordination of Operator Recovery
To cope with that problem, we use a central component

called coordinator, which has global knowledge about the
operator topology and is eventually always up and running,
i.e., there might be times when the coordinator is not avail-
able, but it will always come back online. The coordinator
uses a failure detector with strong completeness (each failed
operator will eventually be detected) and eventual weak ac-
curacy (there is a time after which some correct process is
never suspected), i.e., an eventually strong failure detector.
Such a failure detector checks for heartbeat messages that
correct operators send in a certain frequency. If a heartbeat
message from ω did not arrive at the coordinator within a
time bound τ , it will be suspected to have failed. As we
work with an asynchronous system model, the coordinator
can never be sure whether the operator has really failed, but
it is sure that a failed and not yet fully recovered operator
will not send heartbeat messages anymore, so eventually ev-
ery failure will be detected. The possibility to implement

1: list<operator> operators � list of all operators
2: list<operator> suspected � suspected operators
3: list<operator> progressed � operators that have

participated in the overall computational progress
4: map<string, list<operator> > replacements �

replacements of an operator type

5: procedure MonitoringProcedure()

6: while true do � infinite loop
7: nextCheck ← currentTime() + checkFrequency
8: for all operators do
9: CheckLiveness(operator)
10: end for
11: wait until nextCheck
12: end while
13: end procedure

14: procedure checkLiveness(operator)
15: if (currentTime - lastReceivedHeartbeat.time) >

τoperator then
16: if operator /∈ suspected then
17: suspected.add(operator)
18: startReplacement(operator)
19: end if
20: else � op is alive
21: if operator ∈ suspected
22: and operator ∈ progressed then
23: recallReplacements(operator)
24: adaptTau(operator, higher) � increase τoperator
25: end if
26: end if
27: end procedure

Figure 8: Algorithms for monitoring and manage-
ment of operator topology at the coordinator.

the coordinator in a distributed manner is discussed in Sec-
tion 9.

If ω is suspected to have failed, a replacement operator
ω′, i. e., an operator that implements the same correlation
function as ω, is installed on a free system resource. When
ω′ initializes, it starts the recovery procedure described in
Section 7.1. Now, it might be the case that the coordina-
tor suspects ω′ to have failed, too, so that ω′′ is initialized,
and so on. That is why suspected operators are not ter-
minated immediately, but rather have the ability to run in
parallel with their replacements. When the first of these
parallel operators makes some real progress in event pro-
cessing, the coordinator decides on that operator to remain
in the topology and terminates all other replacement opera-
tors, i.e., they are shut down and their direct successors and
predecessors are notified not to send messages to them any
longer. The notion of progress is defined as follows:

Definition 7.1. (Processing Progress of an Oper-

ator.) An operator ω has made progress after the restora-
tion of its state when it updates its own savepoint for the
first time.

A savepoint update moves forward the point in time to
which an operator gets recovered after its failure. That way,
liveness of the system is guaranteed and the topology will fi-
nally stabilize. Note, that it is no problem for successors and
predecessors of ω to cope with multiple replacements run-
ning in parallel: As they produce exactly the same events,
the duplicates can easily be filtered, and ACKs are sent only
to operators from which the ACKed events have been re-
ceived.

Progress!

l

k

m

Coord.

i j...

... l

k

m

i j...

...

k'

RR

RR

l

k

m

i j...

...

k'

RIRI

e...e...

RN RN

l

k

m

i j...

...

k'

Suspect k

Init k'

Recall k

ACK

ACK

ACK ACK

Coord.

Coord. Coord.

Figure 9: Recovery from an operator failure.

When it turns out that ω had been suspected by mistake,
i.e., when the coordinator had suspected ω and received a
heartbeat after that, the time bound τ can be adjusted to
avoid such false suspicions in the future. We will not go
further into detail with the time bound adjustment here as
there exist already established algorithms for such problems
in the field of eventually strong failure detectors. The algo-
rithms at the coordinator for monitoring and control of the
operators are listed in Figure 8.

Example: Figure 9 shows how an operator ωk fails and is
replaced by ω′

k. The coordinator suspects ωk and starts ω′
k.

ω′
k initializes by sending RecoveryRequests to its prede-

cessors, receives recovery information as responses, restores
its state and sends RecoveryNotifications to its succes-
sors. Now, ω′

k is fully incorporated into event production,
and when enough events have been produced so that ACKs
are received that make ω′

k update its savepoint, a progress
notification is sent to the coordinator. Then, ωk is deleted
from the system, i.e., its successors and predecessors are no-
tified to stop trying to communicate with ωk.

7.3 Correctness Analysis
For proving correctness and liveness, i. e., completeness

and consistency of event streams at consumers (see Sec-
tion 3), we prove that there are no false-negatives or false-
positives and that the overall system makes processing pro-
gress despite an arbitrary number of simultaneous operator
failures.

Proposition 7.2. (No Event Loss.) In spite of the
failure and recovery of an arbitrary number of operators at
the same time, no necessary event in the sense of Defini-
tion 6.1 gets lost in an unrecoverable way.

Proof. Let C be a consumer who has not yet received
and acknowledged an event ec. Let ωp1 denote a direct pre-

decessor of C, ωp2 a direct predecessor of ωp1, and so on.
Then the latest savepoint of ωp1 is captured with respect to
a point in time Tsp1 before ec has been produced. So, ec is
reproducible by a recovered operator ωp1. Further, the latest
savepoint of ωp2 is captured with respect to a point in time
when events that are part of Λ(Tsp1) of ωp1 are reproducible,
and so on, so that all necessary events are reproducible.

Proposition 7.3. (No False-Positive Events.)

In spite of the failure and recovery of an arbitrary number
of operators at the same time, there are not delivered any
events to the consumers that would not have been delivered
in the failure-free execution of all operators.

Proof. Property 5.1 shows that the state of ω at Tsp

comprises exactly the information that is kept in a savepoint
plus events from QI . As the savepoint is captured and repli-
cated, it cannot deviate from the original savepoint after the
recovery of ω. Further, necessary events from QI are either
replayed from a preceding QO or recursively reproduced,
whereas the recursion stops at a point where events from
a QO are replayed (at the latest from the event sources).
Events in QO are exactly the same events as sent in outgo-
ing streams. As the recovered ω starts to process the same σ
on indistinguishable copies of the events on which it would
have been processing in a failure-free operator execution, the
produced events are indistinguishable, too.

Proposition 7.4. (Liveness of the System.) Events
are delivered to the consumers after a finite time interval
from their physical occurrence, i.e., the event processing sys-
tem makes progress in spite of the failure and recovery of an
arbitrary number of operators.

Proof. As only correct operators send heartbeat mes-
sages to the coordinator, failed operators will eventually
be suspected and replacements are started. The topology
becomes stabilized when an operator signaled processing
progress w.r.t. Definition 7.1. So, the liveness of the system
is ensured, given that only a finite number of hosts is failing
and there are enough correct hosts to run all operators.

8. EVALUATION
In the evaluation, first of all we want to analyze the over-

head of our approach induced at failure-free run-time: We
measure the communication overhead and compare it with
the overhead that would be induced by an active replication
approach. Further, we analyze how the frequency of ac-
knowledgments, the induced communication overhead and
the size of QO are connected. In doing so, we have imple-
mented the algorithms in an event-based simulation with-
out considering incidental influences like underlying hard-
ware topologies and communication protocols in order to
emphasize the inherent overhead that would be caused in
any implementation on any underlying infrastructure.

As a second aspect, we address the delay that the recov-
ery of operators induces. Thereby, we identify significant
parameters and develop a mathematical model of the recov-
ery time of a failed operator.

8.1 Run-time Overhead
Our approach mainly induces run-time overhead with re-

spect to two different aspects: The transmission of ACKs
induces communication overhead, and the volatile storage
of QO and savepoint trees impacts the memory footprint.

Figure 10: Run-time overhead comparison between
rollback-recovery and replication.

8.1.1 Communication Overhead
The only data sent over the communication links at failure-

free run-time are ACKs. We compute the size of an ACK
as: S(SimpleACK) + (#Savepoints× S(Savepoint)).
S(SimpleACK) is 4 bytes (for the ACKed SN),
S(Savepoint) is 4 bytes for the SN of the next produced
event, and n × 4bytes in a n-ary tree for the SNs of the
start events in Iω. An event is considered to be of a size of
16 bytes, 4 bytes for its SN , 4 bytes timestamp and 8 bytes
payload. As the simulated operator topology, we chose n-ary
trees with a depth of 3 for n = 1 to 5, with the root operator
connected to 1 consumer and each leave operator connected
to 1 source. Event sources produce events with a frequency
of 1 event / ms. We compare the overhead with the mes-
saging overhead that would have been caused by duplicate
events in the CEP-optimized active replication approach [20]
developed by Völz et al. We assume a low replication factor
of 2 and the best case scenario for the leader election (only
one leader at a time), leading to an overhead that approx-
imately equates to the number of events sent through the
network regularly, and neglect the overhead that the leader
election would cause. Figure 10 shows how much additional
data is sent over the network within 5 minutes. As one
can see, our rollback-recovery approach induces less com-
munication overhead than the compared active replication
approach. Conclusions on this are drawn in Section 8.3.

8.1.2 Memory Consumption
The consumption of main memory at a host that an op-

erator induces can be divided into two different parts: One
part is the memory that is used for intermediate results in
event processing, containing QI and the memory stack of
fω. This part contains no specific overhead of the rollback-
recovery approach, but rather the normal memory footprint
of any event processing operator, so that we do not consider
this in our evaluations. The other part is the memory used
by all data stored solely for the purpose of enabling efficient
rollback-recovery. This part is determined by two aspects:
The size of the stored savepoint trees of the successors and
the size of QO. The size of the savepoint trees depends solely
on the operator topology and basically consists of one save-
point for each member of the transitive closure of the suc-
cessor relation and is static (for a static operator topology).

Figure 11: Lifetime of events in the sources against
the number of sequential operators between sources
and consumers.

The size of QO, however, is dynamic and depends on the
amount of produced events of an operator that are (possible
through intermediate steps) correlated into an event that
is delivered to event consumers and on the point in time
between two consecutive ACKs that lead to its pruning.

To determine the maximal memory footprint, we analyze
the event sources, as they have to store the maximal save-
point trees and events produced by sources have the maximal
lifetime, i. e., the time between their production and storage
in QO and the receiving of their ACK which triggers their
deletion from QO. We have measured the influence of the
complexity of the events delivered to the consumers, i. e.,
the number of simple source events that are aggregated to a
complex event, on the size of QO in the event sources. To do
so, we built a simple topology containing one event source
producing events in a frequency of 1 event / ms, a vari-
able number of sequential operators and one consumer. In
each correlation step, an operator takes 10 new events from
its incoming stream and produces 1 outgoing event. Figure
11 shows the results: With an increasing complexity of the
events delivered to the consumers, the lifetime of events in
the outlog of the event sources increases. Conclusions on
this are drawn in Section 8.3.

8.1.3 Influence of ACK Frequency
We have further evaluated how the frequency of ACKs

influences the maximal size of QO at sources and the run-
time communication overhead. In doing so, we programmed
the Consumer to only acknowledge each freq-th event that
it receives. The underlaying topology is a binary tree with
a depth of 3, the rest of the parameters is as in the pre-
ceding scenarios. Figure 12 shows the results: When the
ACK frequency decreases, the outlog size increases, but the
communication overhead decreases. Conclusions on this are
drawn in Section 8.3.

8.2 Recovery Overhead
As the rollback procedures take some time until an opera-

tor state is restored, it takes longer for the system to recover
from failures in comparison to active replication (where a

Figure 12: Influence of the ACK frequency at the
Consumer on the overall communication overhead
and the maximal size of QO at the source.

replicated operator can take over processing with almost no
latency). The recovery time of an operator ω is
recoverytime(ω) = Tfd + Tdeploy + Trec + Tpred

with the parameters: (i) Tfd = Tchannel delay+Thb freq: Fail-
ure detection latency, depends on the communication delay
between operators and the coordinator and on the frequency
of heartbeat checks. (ii) Tdeploy: Allocation of resources and
deployment of the replacement operator, mainly depends on
the underlying technology such as communication channels
and the availability of resources. For example, when using an
elastic compute cloud such as Amazon EC2, it can take some
minutes until a new node is allocated (this highly depends
on the deployed system, users report from about 1 minute up
to 15 minutes). The time can be reduced when pre-deployed
operators are provided. (iii) Trec = max(Tchannel delay) +
max(size(rec inf) × channel rate): Recovery of the de-
ployed replacement, depends on the slowest connection to
a predecessor and on the size of the recovery information.
(iv) Ti: Recovery of predecessor operators in the case of i

adjacent failures: Tpred =
∑i−1

j=1 recoverytime(ωj). This is
the summation of the recovery time of failed predecessors,
which need to be recovered successively first in order to re-
cover ω.

8.3 Conclusions on the Evaluation

8.3.1 Run-time Overhead
We see that in comparison to active replication the net-

work load can be reduced drastically by applying the pro-
posed approach. An increasing node degree n causes that
more sources participate in the production of simple events
that get eventually aggregated to a complex event delivered
to consumers. That way, the number of simple events per
source aggregated in such a complex event decreases and the
frequency of ACKs increases. Therefore, the communication
overhead increases faster with rollback-recovery than with
active replication. However, this behavior can be controlled
by the consumers: If they decrease their frequency of ACKs,
the overall network load decreases exponentially, but the size
of QO at sources increases linearly. Besides the low network

load, we do not need to preserve redundant resources as we
would in active replication. An additional advantage is that
we are able to recover from multiple arbitrary operator fail-
ures with rollback-recovery (in fact, all operators can fail
at the same time and be restored), a property which would
cause immense costs in active replication.

8.3.2 Recovery Overhead
Recovery generally takes longer than in active replication.

The main parameters highly depend on the communication
channels and the provision of nodes to deploy replacement
operators. As the size of recovery information is limited to
the size of the savepoint tree plus the size of re-streamed
QO, it can be inferred from the evaluations in Figures 11
and 12 and the calculations given in Section 8.1.1.

9. DISCUSSION
This section briefly discusses possible extensions of the

proposed recovery method.
How can intermediate consumptions be handled? Interme-

diate consumptions, i.e., consumptions of events in an arbi-
trary order instead of a sequential consumption, build up
dependencies between different correlation steps and there-
fore are involved into the operator state. Such consumptions
need to be replayed when restoring an operator state. To
make that possible, they can be stored in the operator save-
point, e.g., in a table that connects correlation steps with the
intermediate consumptions. Thus, the size of the savepoints
and thereby the run-time overhead would increase.

How can the execution model by simplified for stream pro-
cessing? In stream processing, in contrast to complex event
processing, the window sizes of the execution model can be
determined without considering the content of the contained
events and the correlation function semantics. Therefore,
the execution environment can track the selection window
movement without needing information from the correlation
function fω about the number of consumed events. This sim-
plifies the interface between the EE and fω: fω just has to
signal the end of each correlation step.

How can the coordinator be implemented in a distributed
manner? When distributing the coordinator functionality
over different nodes, it is intuitive to make a predecessor
the coordinator of a successor, as they communicate with
each other anyway and so heartbeat messages could be pig-
gybacked. In doing so, it is important that each operator
has exactly one coordinator responsible for its failure detec-
tion and recovery, so that the operator topology stabilizes.
To solve this problem for asynchronous systems, concepts of
leader election or group membership are necessary, e.g., as
used in [9].

10. RELATED WORK
The existing approaches for distributed stream process-

ing systems can be divided in three categories: The first
category targets applications characterized as “partial fault-
tolerant” [2,14]. In the case of a failure, systems try to pro-
duce information which is not perfectly accurate but might
still be useful to the receiver. In the second category, infor-
mation is published tentatively and corrections can be issued
at a later point in time that revoke the messages sent be-
fore [1, 3, 4, 13]. These solutions are based on two premises:
(i) Dependencies of operators on each other’s output have to

be within a reasonable limit to keep correction cost accept-
able and, more important, (ii) the correction of incorrect
messages has to be possible at all. In the scenarios we are
examining, decisions might have already been made based
on incorrect information that are either very costly or even
impossible to correct. Therefore, accurate information is
needed at all times.

Solutions that provide accurate information at all times
involve the replication of functionality in active or passive
replication [18] [5], or rollback-recovery [8] using checkpoints
in combination with logs. Among others, these three prin-
ciples have been applied to distributed stream processing
systems; however, none of the current approaches provides
all of the necessary properties for large-scale monitoring sys-
tems. In the following, we will discuss the proposed solutions
individually.

Approaches using active replication [12] incur quadratic
overhead in terms of messages during failure-free execution.
Checkpointing [15] requires the frequent execution of sophis-
ticated state-extraction algorithms that need either to be
specified individually for each operator or require taking a
full memory snapshot. Therefore, these approaches either
restrict the user to using predefined operators only or re-
quire additional expertise to implement the extraction func-
tion. On the other hand, a memory snapshot can only be
taken if the respective pages are write-locked, which incurs
significant additional detection delay during failure-free ex-
ecution. The approach of “upstream backup” [10, 11] uses a
similar construct of a simple ACK to recover from only one
single failure at a time without any state replication. How-
ever, the approach is very restrictive regarding operators for
which a consistent state can really be guaranteed after a re-
covery. More sophisticated, asynchronous event processing
operators need a different execution model that at least al-
lows for independent windows on different incoming streams
and therefore inherently possess non-reproducible state that
needs to be replicated.

Reliability for distributed complex event processing sys-
tems has not been researched as actively as for stream pro-
cessing systems. Active replication has been applied to CEP
as well, providing a leader election algorithm to reduce the
message overhead during failure-free runtime [20]. Still, for
tolerating n simultaneous failures, n+1 replicas are deployed
for each operator, creating at least a linear message over-
head. An approach for dealing with unreliable communica-
tion channels when delivering events to a CEP system has
been proposed [16]. However, operator failures are not con-
sidered in this approach.

11. CONCLUSION
Although reliability is critical for many applications in-

volving event processing systems, state-of-the-art approaches
have clear shortcomings in providing accurate processing
and low run-time overhead in a large-scale deployment.

This paper proposed a novel rollback-recovery mechanism
for multiple simultaneous operator failures in distributed
stream and event processing systems that eliminates the
need for checkpoints and does not use persistent memory at
operators. It therefore avoids the main drawbacks of previ-
ous approaches, which increase processing and network load
for creating and maintaining large checkpoints, or burden
application developers with defining operator specific mech-
anisms for checkpointing and recovery.

We defined an event processing model based on the con-
cept of event selections to find points in time when an event
processing system has minimal non-reproducible state which
is then stored in replicated savepoints. The rest of the op-
erator state can be reproduced from primary event streams,
so that only event sources have to maintain events in a re-
liable way. An algorithm to coordinate savepoint mainte-
nance over multiple levels of operators is provided, allowing
to recover from simultaneous operator failures. We proved
the algorithm correctness and provided evaluation results
demonstrating its behavior in different parameter settings
in comparison to active replication. The evaluations have
shown that the network load can be reduced drastically, and
that the frequency of acknowledgments at event consumers
is a design parameter that can be used to balance between
memory requirements and network load.

Future work will focus on the further exploration of the
proposed recovery scheme. We want to improve the run-
time behavior by dynamically adapting the acknowledgment
frequency to system properties and by the segmentation of
the operator topology by means of reliable persistence lay-
ers. Besides, the concept of savepoints can be used for the
efficient implementation of operator migration [17]. Further-
more, in order to allow for a better scalability and speedup
of the event correlations, we want to explore how the op-
erator execution model can support the parallelization of
processing.

Acknowledgment
This work has been supported by contract research “Inter-
nationale Spitzenforschung II” of the Baden-Württemberg
Stiftung.

12. REFERENCES
[1] M. Balazinska, H. Balakrishnan, S. Madden, and

M. Stonebraker. Fault-Tolerance in the Borealis
Distributed Stream Processing System. In Proc. of
SIGMOD ’05, pages 13–24.

[2] N. Bansal, R. Bhagwan, N. Jain, Y. Park, D. Turaga,
and C. Venkatramani. Towards Optimal Resource
Allocation in Partial-Fault Tolerant Applications. In
Proc. of the 27th IEEE Conference on Computer
Communications, INFOCOM ’08, pages 1319 –1327.

[3] A. Brito, C. Fetzer, and P. Felber. Minimizing Latency
in Fault-Tolerant Distributed Stream Processing
Systems. In Proc. of the 29th IEEE Int’l Conference
on Distributed Computing Systems, ICDCS ’09, pages
173 –182.

[4] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber.
Speculative Out-Of-Order Event Processing with
Software Transaction Memory. In Proc. of the 2nd
ACM Int’l Conference on Distributed Event-Based
Systems, DEBS ’08, pages 265–275.

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg. Distributed systems (2nd ed.). chapter “The
primary-backup approach”, pages 199–216. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1993.

[6] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
Knowl. Eng., 14(1):1–26, 1994.

[7] G. Cugola and A. Margara. Processing Flows of
Information: From Data Stream to Complex Event
Processing. ACM Comput. Surv., 44(3):15:1–15:62,
June 2012.

[8] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Comput. Surv.,
34:375–408, September 2002.

[9] M. Franceschetti and J. Bruck. A Leader Election
Protocol for Fault Recovery in Asynchronous
Fully-Connected Networks. Technical report,
California Institute of Technology, 1998.

[10] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-Availability
Algorithms for Distributed Stream Processing. In
Proc. of the 21st IEEE Int’l Conference on Data
Engineering, ICDE ’05, pages 779 – 790.

[11] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. A Comparison of
Stream-Oriented High-Availability Algorithms.
Technical Report CS-03-17, Brown University,
September 2003.

[12] J.-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and
Highly-Available Stream Processing over Wide Area
Networks. In Proc. of the IEEE 24th Int’l Conference
on Data Engineering, ICDE ’08, pages 804 –813.

[13] J.-H. Hwang, S. Cha, U. Cetintemel, and S. Zdonik.
Borealis-R: A Replication-transparent Stream
Processing System for Wide-area Monitoring
Applications. In Proc. of SIGMOD ’08, pages
1303–1306, 2008.

[14] G. Jacques-Silva, B. Gedik, H. Andrade, and K.-L.
Wu. Language Level Checkpointing Support for
Stream Processing Applications. In Proc. of the 39th
IEEE/IFIP Int’l Conference on Dependable Systems
and Networks, DSN ’09, pages 145 –154.

[15] Y. Kwon, M. Balazinska, and A. Greenberg.
Fault-tolerant Stream Processing using a Distributed,
Replicated File System. Proc. of VLDB Endow., pages
574–585, 2008.

[16] D. O’Keeffe and J. Bacon. Reliable Complex Event
Detection for Pervasive Computing. In Proc. of the 4th
ACM Int’l Conference on Distributed Event-Based
Systems, DEBS ’10, pages 73–84.

[17] B. Ottenwälder, B. Koldehofe, U. Ramachandran, and
K. Rothermel. MigCEP: Operator Migration for
Mobility Driven Distributed Complex Event
Processing. In Proc. of the 7th ACM Int’l Conference
on Distributed Event-Based Systems, DEBS ’13.

[18] F. B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Comput. Surv., 22(4):299–319, 1990.

[19] Z. Sebepou and K. Magoutis. CEC: Continuous
Eventual Checkpointing for Data Stream Processing
Operators. In Proc. of the 41st IEEE/IFIP Int’l
Conference on Dependable Systems and Networks,
DSN ’11, pages 145 –156.

[20] M. Völz, B. Koldehofe, and K. Rothermel. Supporting
Strong Reliability for Distributed Complex Event
Processing Systems. In Proc. of the IEEE 13th Int’l
Conference on High Performance Computing and
Communications, HPPC ’11, pages 477 –486.

