
MigCEP: Operator Migration for Mobility Driven Distributed
Complex Event Processing

Beate Ottenwälder, Boris Koldehofe,
Kurt Rothermel

Institute of Parallel and Distributed Systems
University of Stuttgart, Stuttgart, Germany

{beate.ottenwaelder,boris.koldehofe,
kurt.rothermel}@ipvs.uni-stuttgart.de

Umakishore Ramachandran
College of Computing

Georgia Institute of Technology,
Atlanta, GA, USA

rama@cc.gatech.edu

ABSTRACT

A recent trend in communication networks — sometimes
referred to as fog computing — offers to execute computa-
tional tasks close to the access points of the networks. This
enables real-time applications, like mobile Complex Event
Processing (CEP), to significantly reduce end-to-end laten-
cies and bandwidth usage. Most work studying the place-
ment of operators in such an environment completely disre-
gards the migration costs. However, the mobility of users
requires frequent migration of operators, together with pos-
sibly large state information, to meet latency restrictions
and save bandwidth in the infrastructure.

This paper presents a placement and migration method for
providers of infrastructures that incorporate cloud and fog
resources. It ensures application-defined end-to-end latency
restrictions and reduces the network utilization by planning
the migration ahead of time. Furthermore, we present how
the application knowledge of the CEP system can be used
to improve current live migration techniques for Virtual Ma-
chines (VMs) to reduce the required bandwidth during the
migration. Our evaluations show that we safe up to 49% of
the network utilization with perfect knowledge about a users
mobility pattern and up to 27% of the network utilization
when considering the uncertainty of those patterns.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems]: Distributed ap-
plications; E.1 [Data Structures]: Graphs and networks

Keywords

mobility; complex event processing; migration

1. INTRODUCTION
Over the last decade, the deployment of powerful mo-

bile sensors and large scale sensor networks, monitoring mo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

bile objects or locations, increased tremendously. Examples
are off-the-shelf smartphones [5] and CCTV camera net-
works [25]. They enable novel real-time applications, such as
continuous video monitoring of suspects [13], or traffic infor-
mation systems [18], which provide information of interest
to consumers.

Complex Event Processing (CEP) is a key paradigm to
realize such applications. Changes in sensor measurements
are modeled as events, while the application is modeled as
set of event-driven operators. Such operators take streams
of events as input, process them and produce new event
streams.

Virtualized computing environments, i.e., clouds or fogs
[3], provide elastic resources, which is highly appealing to
support large-scale CEP systems. Cloud data-centers of-
fer virtually endless resources to execute a vast amount of
operators, however, impose a high communication latency
since it requires transfering events from a user through the
core network to the data center. Fog-computing, a resource
paradigm proposed by Cisco [3], allows for processing on
resource-constrained devices near users, like routers, for low
end-to-end latencies. A federation of both clouds and fogs
can support highly heterogeneous systems, where network-
intensive operators are placed on distributed fog nodes and
computational-intensive operators in the cloud.

In Distributed CEP (DCEP) [21], research [20, 22] has
shown that the placement of operators has a significant im-
pact on important performance metrics, such as network
utilization and end-to-end latency. Furthermore, in Mobile
CEP (MCEP) systems, where consumers and sensors are
mobile, bandwidth and latency of streams are expected to
change frequently with continuous location updates. For
example, the number of available camera streams or the la-
tency between the access point of a mobile sensor and the
fog node where an operator is placed varies. To ensure the
system’s performance it has to constantly adapt the place-
ment through migrations to new fog nodes.

However, each migration comes with a cost because opera-
tors are associated with local state, e.g., a cached portion of
the event stream or a street map. This state can accumulate
up to several GB of data [24] that have to be transferred dur-
ing a migration. Frequently performing migrations to find
better placements thus can significantly decrease system per-
formance. For example, migrating GBs of state with each
cell change of a consumer in a GSM network, while only
several MBs of data are streamed to and from operators
increases the network utilization.

© ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in

Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems,

Arlington, Texas, USA, 2013. http://doi.acm.org/10.1145/2488222.2488265

Operators

+

Streams

Consumers

Sources Mobile

Sensor

s1

ωF

ωD ωD

Mobile

Sensors

s2

R(ω
Dist

,c
)

Rs(ω
Dist

,c)
R

(ω
S,c

)

Rs(ω
F,c

)

c

c

Street

Map

Lat = 32.66
Lon = -97.1
Id = s2

Distance = 1 km
Id = s2

Count = 1

(a) Operator Graph

Broker Hierachy

Fog Node

(West Dallas)

Fog Node

(Texas Tech)

Fog Node

(East Arlington)

Fog Node

(Dallas)

Cloud Data Center

(Texas)

Fog Node

(Arlington)

VM

VM ωD

ωF

Sources&Consumers
DIQ

Mobile

Sensors

Target

Container

Mobile

Consumer

(b) Broker Hierarchy

Figure 1: System Model and CEP Operator Graph

In this paper, we propose methods for providers of virtual-
ized environments to support operator migrations in MCEP
systems. These methods exploit application knowledge of
the MCEP system and predicted mobility patterns to plan
the migration ahead of time. First, it allows us to amor-
tize the migration costs by selecting migration targets that
ensure a low expected network utilization for a sufficiently
long time. Second, it allows us to serialize the operator for
the migration and migrating parts of the operator a priori in
away where unnecessary events are not migrated and band-
width is reduced. In more detail, our contributions are:

1. The definition of a probabilistic data structure, called
Migration Plan (plan), which defines future targets
and times for the migration, and a distributed algo-
rithm to create such plans.

2. A migration algorithm, which uses a plan to minimize
the network utilization while keeping the end-to-end
latency below a threshold.

3. An analysis and evaluation study of the cost imposed
by the creation and execution of a plan and its benefits.

The remainder of the paper is structured as follows: Sec-
tion 2 introduces the underlying system model and Section 3
clarifies the problem. We present in Section 4 our plan-based
migration approach. In Section 5 we present findings from
our analysis. The approach’s evaluation is presented in Sec-
tion 6. Section 7 discusses related work before we conclude
the paper and give an outlook on future work in Section 8.

2. SYSTEM MODEL

2.1 MCEP model
The operation of a MCEP system is commonly modeled by

a directed, acyclic operator graph G = (Ω∪S∪U,L) where Ω
denotes the set of operators, S the set of sources (e.g., range
queries [18] or a mobile sensor in a smartphone), U the set of
consumers, L ⊆ (Ω ∪ S × Ω ∪ U) the event streams between
operators, sources, and consumers. For example, Figure 1(a)
depicts an operator graph that can detect the number of
friends that were closer than 1 km to a user c over the last
hour. Primary events are location updates of users, asso-
ciated with a source-specific id, which are streamed to ωD.
Operator ωD utilizes a street map to compute the distance

between a friend and c. Operator ωF then counts the num-
ber of distances smaller than 1km with disjoint source-ids
and publishes the result on a social platform or the mobile
device of the consumer. More sophisticated operator graphs
can report about dangerous traffic situations [18] or allow
monitoring of suspects [13].

Each ω ∈ Ω encapsulates an arbitrary function that al-
lows detecting patterns on deterministically ordered event
streams. Events of those streams are managed in a set of
dedicated queues Q. The number of buffered events in Q

depends on the operators’ semantics, which determine the
selection and consumption of events from the queues [6,21].

We refer to these dynamically changing queues as mutable
state, while the immutable state of an operator is the part
of the operator that is read-only and fixed in size. For ex-
ample, the map of ωD, a database for face recognition, or
the executable code of the operator. Intermediate results,
i.e., states of variables in an operator’s implementation, are
denoted as computational state.

2.2 Broker Hierarchy
The operator graph is deployed on a federation of k dis-

tributed brokers {b1 . . . bk}. Similar to typical mobile in-
frastructures, e.g., GSM networks or location services [9],
brokers are organized in a spatially-partitioned hierarchy.
The communication delay to mobile consumers decreases in
a root to leaf direction.

The broker hierarchy is implemented through a combina-
tion of cloud data-centers and fog nodes (see Figure 1(b)).
The latter can be routers or nearby workstations, that pro-
vide virtualized resources∗. Such a hierarchy roughly ap-
proximates the network topology, since core network devices
on the path from the consumer to the data center can be uti-
lized for the processing. Within this mobile infrastructure
each ω ∈ Ω is hosted by its own dedicated VM that provides
the execution environment for the operator.

Mobile consumer and sources share event streams over
a wireless interface with the broker hierarchy. In order to
improve their expected link quality, they greedily connect
to the topologically closest broker, denoted as leaf broker.
Since processing tasks are deemed to consume a lot of energy,
those mobile devices are only thin clients, leaving all the
processing to the infrastructure.

∗Such in-network virtualization, i.e., fog computing [3], is
currently promoted by companies like Cisco.

3. PROBLEM DESCRIPTION
A placement Pts,te is the assignment of operators ω ∈ Ω,

of a given operator-graph G, to brokers in between time ts
to time te. When a mobile source or consumer connects
via new access-points to new leaf brokers the end-to-end la-
tencies and the network utilization can increase since now
more brokers are potentially involved in transferring event
streams. For example, when the source in Figure 2 changes
its connection from the leaf broker b1 to b2, it also means
that from now on all streams for ωD, placed on b1, have to
be transferred from b2 to b1, possibly over multiple hops in
the broker hierarchy. In order to improve the system perfor-
mance, the system has to adapt the placement Pi = Pts,te at
time te to a new placement Pi+1 via migrations Mj , ..,Mk of
one or multiple operators. To reduce the network utilization
imposed by keeping ωD at b1 the system migrates ωD to b2,
which can also affect the placement of ωF .

Note, that also migrations themselves may impose a sig-
nificant cost in terms of network utilization, given that a mi-
gration requires transferring the whole state of an operator
to a new migration target which can be as large as several
GB. Therefore, it is important to account for those costs
when performing a migration. Instead of always deploying
the best possible placement, a placement should only be de-
ployed if its migration costs can be amortized by the gain of
the next placement. This gain depends on many dynamic
parameters such as the mobility of sensors and consumers as
well as the actual workload of the event processing system.

The decision to initiate a migration may also be unavoid-
able in some cases for ensuring the responsiveness of the
CEP system, e.g., to allow users to respond to traffic situa-
tions in real-time. In this case, the global end-to-end latency
has to stay, at least on average, below a consumer-defined
restriction Rc. In particular, it has to stay below the restric-
tion on all paths in G from any source si ∈ S to a consumer
c ∈ U . On these paths, the detection is delayed due to com-
munication delays between neighboring operators and the
computational delay, the time that an operator requires to
process a new input event. To ensure that the global end-to-
end latency stays below Rc, the sum of the computational
delay dc(ω) and in- and outgoing streaming delay din/out(ω)
of all those coordinated ω has to stay below a local R(ω,c).
For instance, in Figure 1(a) ωD and ωF reserve a part of
their restriction for the global optimization.

When preserving latency constraints it is also important
to consider the downtime of operators during migrations,
as a consequence of having to halt an operator and start
it again at the migration target. When all state is already
available on the migration target at the migration time we
achieve a minimal downtime, since the operator can start
processing immediately. Consider, for example, in Figure 2,
the map and event streams can already be transferred to b2
before the source connects to b2 and the operator ωD has to
be migrated to b2. However, uncertain future locations of
the source may lead to a situation where the network uti-
lization is increased because the state is copied to b2 but the
source never connects to b2 and a migration is unnecessary.
This requires to migrate the operator and its state to future
placements where the expected network utilization is low.

The mobile migration problem addressed in this paper is
to find a sequence of placements P1, P2, ..., Pp and Migra-
tions M1,M2, ...,Mm for an operator graph G in a broker

vmF

Broker

(b2)

Broker

(b1) vmD vmD
ωD

ωF

ωD

Source

(1)
(2)

(3)

(3)

(4)
Migration

event stream street map

low latency

connection

Figure 2: Migration

hierarchy, where the overall network utilization is low and
the consumer defined latency restriction is met.

More formally, we consider the average bandwidth-delay
product during a time interval as the metric to express net-
work utilization. Let bdp(Pi) be the sum over the average
bandwidth-delay product of links in the broker network in
a placement Pi. Then, the cost for a placement in between
time ts and te is Cpla(Pi) = bdp(Pi) ∗ (te − ts). We can
define the costs CMig(Mj) for each migration Mj , accord-
ingly. Furthermore, let d(si, c) be the end-to-end latency
from any source si ∈ S to any consumer c ∈ U over a path
(ω1, ω2, ..., ωn) in the operator-graph.

An optimal sequence of migrations is found if:

1) Ctot =
∑p

i=0 Cpla(Pi) +
∑m

i=0 CMig(Mi) is minimal

subject to

2) ∀c ∈ U :
∑|S|

i=0 d(si, c) ≤ Rc at all time

4. PLAN-BASED MIGRATION APPROACH
The MCEP live migration system assigns a dynamically

updated live Migration Plan (plan) to each operator. The
plan defines for an operator a set of future migration targets,
a deadline by when an operator needs to be ready to execute
at its migration target, and a time when the migration will
be initiated such that the migration deadline can be met.

At the time when according to the plan a migration needs
to be initiated for an operator, the live migration system will
begin to copy first the execution environment (VM) and im-
mutable state (step (1) in Figure 2), then relevant mutable
state that is required for future selections when the opera-
tor starts executing at the migration target (e.g., only one
of three possible events in step (2)). Since the latter state
allows to recompute computational state at the target, we
don’t need to transfer computational state. In the meantime
the operator will continue to execute at its original place-
ment until the transfer of state has been completed. Finally,
at the times indicated in the plan, events are streamed to
the new placement (step (3)) and the resources taken up by
an operator at its original location are released (step (4)).

The performance characteristics of the live migration de-
pend on how plans are created, as well as how they are
adapted to the dynamics of the MCEP systems, i.e., where
sources and consumers are connected to the broker hierar-
chy, how the usage of resources changes as well as how the
load of the event system varies.

In this section, we first propose a simple model for a plan
that triggers migrations at discrete time steps (see Subsec-
tion 4.1) and later show how to coordinate an operator’s plan
with the plans of its neighbors. Furthermore, we will show

b1 b2

t2 t3

b1

t1

H = b2

B = 0.25mb/s

tim = t1

TQ = {sin=t1}

RL = {sin=0.1 ms,

sout=0.1 ms}

Figure 3: Basic Migration Plan

how to refine the basic mechanisms to deal with the inherent
uncertainties which follow from the mobility of sources and
consumers, variations in the workload, and resource usage
in the broker hierarchy (see Subsection 4.2).

4.1 Creating a Migration Plan
The live migration system continuously anticipates the

movement of its connected sources and consumers, as well as
the load of event streams and latencies between the opera-
tors connected in the MCEP system in order to determine a
plan. For mobile sources and consumers, this is achieved by
dead reckoning mechanisms [28] or relying on information
from navigation systems. The event load on links is esti-
mated on average over the most recent traffic measurements,
while latencies can be estimated via regular ping messages
between neighbors or using Vivaldi Coordinates [8].

The quality of a created plan depends on the accuracy of
this information; in fact unforeseen behavior may degrade
the performance properties of our system and in the worst
case even violate constraints. For now, however, to under-
stand the basic principle of the proposed migration scheme
we will treat this information as if it was accurate.

In this context we will answer

• How far and at which granularity do we have to plan
migrations ahead?

• What are possible migration targets that can be incor-
porated in the migration plan of a single operator?

• How should the migrations of multiple operators be
best coordinated?

We address this by first proposing the basic Migration
Plan model, which allows studying migrations at varying
granularities. In order to select possible migration targets,
we propose the time-graph model, that allows finding migra-
tion targets, depending on the plans of other operators. The
proposed coordination algorithm negotiates the plans with
dependent operators and migration targets, in order to find
minimum cost plans for each operator and reserve resources
to ensure the execution of an operator at all times.

Migration Plan Model

A plan describes the upcoming migration behavior of an op-
erator ω, determining when it is going to be hosted at which
broker, as well as its expected resource requirements. In
other words, it is the trajectory of an operator in the broker
hierarchy. As depicted in Figure 3 for ωD of the example,
the plan provides an expected placement of an operator for a
sequence of discrete time steps ti ∈ TS = {t0, ..., tmax}. An
expected placement is a 5-tuple ep = (H,B, tim, TQ, RL),
where H is the expected host of the operator, B the average
expected bandwidth of the operator’s outgoing stream, tim
is the time, at which the transfer of immutable state has
to be initiated, TQ a deterministic starting point for each
queue q ∈ Q from which events on the mutable state has to

s f

v1

[b1]

v2

[b2]

v3

[b3]

v4

[b4]

v5

[b1]

v6

[b2]

v7

[b3]

v8

[b4]

vm-3

[b1]

vm-2

[b2]

Vm-1

[b3]

vm

[b4]

...

start t1 t2 tmax stop

10 m
b*s

150 mb*s

10 mb*s

12 mb*s

14 mb*s

150 mb*s

v9

[b1]

v10

[b2]

v11

[b3]

v12

[b4]

t3

10 mb*s 10 mb*s

10 mb*s

14 mb*s

150 m
b*s

...

150 mb*s

150 mb*s

168 mb*s

0 mb*s

0 m
b*s

0
m

b
*s

150 m
b*s

Figure 4: Timegraph Example

be transferred, and RL indicates which part of the latency
restriction is reserved for the incoming and outgoing streams
L of ω.
Since consumers and sources are constantly connected to

leaf brokers, we can use the same abstraction to model and
share their movements. For example, the plan indicates for
a mobile sensor to which leaf broker it will be connected to
and the expected size of its sensor stream.

Time Graph

The time-graph = {Vtg, Etg} (see Figure 4) is a data-struc-
ture that allows for each individual operator ω to identify
costs and durations of future migrations and placements.
The time-graph for a single ω ∈ Ω comprises migration tar-
gets which are suitable to fulfill the constraints of a place-
ment. Note, that even not performing a migration imposes a
cost by streaming events over the in- and outgoing streams.

Each vertex vtg ∈ Vtg represents the possible placement
of ω at a broker b, starting at time step ti ∈ TS and ending
at the next time step ti+1 ∈ TS. For example vertex v1
in Figure 4 is labeled with b1 at t1, which represents the
placement at broker b1 starting at t1. Two special vertices
which do not indicate future placements, labeled as s and
f in Figure 4, represent the start and end of all possible
sequences of migrations and placements.

Each directed edge etg = (vj , vk) ∈ Etg represents the
migration between brokers or no migration if etg connects
the same broker. Furthermore, an edge indicates that a
migration starting at time step tj of vj is expected to be
completed at time step tk of vk. For example, when the
migration from b3 to b4 is started at time t1, then all state is
expected to be transferred by t3 and ω can start processing.
The edge weight wj,k of (vj , vk) ∈ Etg represents the costs

that are expected to occur in the time interval [tj , tk) – the
average bandwidth-delay products weighted with that inter-
val (see Section 3). This comprises the expected migration
costs CMig(vj , vk) and expected placement costs Cpla(vtg)
at the broker of vj during [tj , tk). Note that the placement
costs are not only considered in the case that an edge rep-
resents no migration but also if it represents a migration.
This is because ω still processes events at the previous bro-
ker, while the migration happens in the background. The
edge weight of 10mb ∗ s between two subsequent vertices of
b1 are the placement costs during that time step, while the
edge weight of 168mb ∗ s between v3 and v12 comprises the
placement costs of 2 ∗ 12mb ∗ s at b3 and migration costs of
144mb ∗ s.

1: stableP lan, tmpP lan, neighborP lans, TG← ∅

2: upon trigger generatePlan()
3: if notInAwaitState() then
4: await notWaitForFeedback() ∧ noTargetCoordination()
5: TG← createTimeGraph(TG)
6: path← determineShortestPath(TG)
7: P ← createInitialPlan(path)
8: if P deviates from tmpPlan then
9: tmpP lan← P
10: trigger send planUpdatedMsg(P) to all neighbors
11: else
12: tryInitTargetCoordination()
13: end if
14: end if
15: end

16: upon receive planUpdatedMsg(plan) from neighbor n
17: neighborP lans[n]← plan
18: trigger generateP lan()
19: end

20: upon receive planAcceptedMsg()
21: tryInitTargetCoordination()
22: end

23: function tryInitTargetCoordination()
24: if allFeedbackReceived() ∧ noPlanGeneration() then
25: checkNeedSendPlanAcceptedMsg()
26: checkNeedSendReservationRequest(tmpPlan)
27: end if
28: end

29: upon receive reservationReplyFromTargets(tmpP lan)
30: if tmpPlan is executable on all targets then
31: stableP lan← tmpP lan
32: else
33: trigger generatePlan()
34: end if
35: end

36: upon timeout(timer in regular intervals)
37: if checkMonitoring() ∨ checkLatencyRrestriction() then
38: trigger generateP lan()
39: end if
40: end

Figure 5: Generating a Migration Plan

Migration Plan Creation

We now detail a distributed algorithm for the creation of the
basic plan for an individual operator ω (see Algorithm 5),
executed at the operator’s current host. The algorithm finds
a shortest weighted path in a time-graph (TG) that is local
to ω and generates an executable plan (stableP lan) from this
path. The time-graph is maintained using the set of plans
from all neighbors in the operator graph (neighborP lans)
and the anticipated event loads and restrictions given by
the expected placements in these plans.

The first plan is created after the deployment of an opera-
tor. Afterwards, the plan creation is triggered concurrently
when the latency restrictions are no longer preserved on the
current broker, predictions on the outgoing bandwidth and
collected latencies deviate beyond a threshold (Line 36-40)
from previous predictions, or the plan of the neighboring
operators changes (Line 16-19).

In the first step of the plan generation the time-graph is
created, which models the expected placement and migra-
tion costs for this operator for the next TS time steps (Line
5). In a subsequent step an initial plan is determined by
traversing the shortest path in the time-graph. This path
contains a sequence of migration targets and times to mi-
grate between them, where the expected overall network uti-

lization is low and the latency restrictions are expected to
be preserved (Line 6-7). We replace a previous stable plan
with the newly found plan only if this new plan deviates in
the expected placements at any time step (Line 8). How-
ever, before implementing the new plan it is consolidated
by coordinating it with the neighboring operators (Line 10)
and the brokers that are selected as migration targets. Mi-
gration targets might not have enough resources to execute
the plan or neighbors adapt their own plan due to the plan
that is to be consolidated. In both cases another iteration
of the plan generation is triggered (Line 18/33).

Maintaining the time-graph in a stable manner. Algo-
rithm 6 outlines the creation of the time-graph TG. At first
a set of brokers that have in general enough resources to ex-
ecute the operator are selected as possible future migration
targets (Line 2). Then it populates an empty graph with
the start and a stop vertex (Line 3).

In the following steps vertices for each combination of dis-
crete time steps TS, starting at the current time now, and
possible migration targets (Targets) are created (Line 4-5).
However, vertices are omitted when the associated broker
comes not into consideration to host an operator at ts+now

(e.g., v11 in Figure 4). This is the case when latency restric-
tions are not expected to be preserved or a local information
on the migration targets, resource reservations indicates that
not enough resources to execute the operator at the poten-
tial migration target are available.

When the vertex v is created, the algorithm anticipates
which migrations are possible and which previously created
vertices are therefore connected to v over a directed edge
(Line 7-14). This requires to estimate the size of the mutable
state, according to the average size of the queues and the
time tmig that it takes to migrate all state between any
possible host bp and the host b of v. Since tmig may span
over more than one time step, the vertex that represents bp
at time step now+ ts− tmig is selected as source of the edge
e. However, the operator has to continue its execution at
bp during the the migration, which means that all vertices
labeled with bp between ts+ now− tmig and ts+ now have
to exist (Line 10).

The weight of this new edge is the sum of the placement
costs Cpla(v) of all vertices representing bp — the sum over
the average bandwidth-delay product between the bp and
the expected placement from the neighbors plan weighted
with the time intervals during the given time steps — and
migration cost CMig(vj , vk) between bp and b.

Initial Migration Plan. In order to extract an initial plan
(see Lines 6-7 of Algorithm 5) we find the shortest path in
the time-graph (the dashed line in Figure 4). At each time
step of the shortest-path a broker is determined that repre-
sents the expected host (ep.H) for an expected placement
ep of the plan. Expected values for the bandwidths (ep.B)
are taken from the bandwidth estimation for the operators
outgoing stream. Furthermore, the starting time for the mi-
gration of immutable state (ep.tim) is computed for each
time ti by subtracting the migration time tmig. The first
event of each queue q ∈ Q (ep.TQ) is then captured accord-
ing to a window-model, e.g., [18]. Those windows determine
the set of events in q that are required for the correlation at
a discrete time, therefore if we model the windows position

1: function createTimeGraph(Time-Graph G)
2: Targets← getPossibleTargets()
3: s, f ← createStartAndStopNode(G)
4: for ∀ts ∈ TS do
5: for ∀b ∈ Targets do
6: if shouldCreateVertex(b,G, ts+ now) then
7: v ← createV ertex(G, ts+ now, b)
8: for ∀bp ∈ Targets do
9: tmig ← estimateStateMigrationT ime(bp, b)
10: if checkEdgeCondition(bp, b) then
11: e← edge(ts+ now − tmig , bp, ts, b, G)
12: we ← calculateEdgeWeight(e, tmig)
13: end if
14: end for
15: end if
16: end for
17: end for
18: end

Figure 6: Time Graph Maintenance

at ti we can approximate the first required event from the
windows bounds.

Coordination. An operator starts the coordination of plans
by sending the plan to each neighbor (Line 10 of Algo-
rithm 5). Then the operator waits until it received at least
one feedback message from each neighbor until it starts the
coordination with the selected targets (Line 24/26). A feed-
back can either be a changed plan of a neighbor or an accep-
tance of the plan. Note, that we even consider a plan that
was sent concurrently by a neighbor and still in transmission
when the plan coordination was started as feedback.

When a neighbor receives a plan, it re-evaluates its own
plan before it decides on a feedback (Line 18). If the newly
determined plan deviates from the current plan, the opera-
tor starts to coordinate its own plan, by sending a changed
plan of its own as feedback (Line 10). Otherwise, the op-
erator will send the feedback to all neighbors that recently
updated their plans that it accepts their plans (Line 12/25).
To reduce the number of coordination steps when neighbors
concurrently generate plans, we ensure that a plan is only
generated if all feedback is available and the plan is not co-
ordinated with migration targets (Line 3-4). In the analysis
we show that this coordination eventually terminates.

The coordination with migration targets happens in two
steps. First, a request is sent to all migration targets, asking
if i) they have enough resources available to host the opera-
tor ii) they can ensure the local latency restrictions. If this
is not the case, the plan is rejected and re-evaluated at the
initiator of the coordination, with a time-graph that does
not create vertices for brokers that rejected the plan.

Although, these conditions are already checked when the
time-graph is created, other plans of other operators com-
pete for the resources. Therefore, plans have to reserve the
resources at the migration target in a second step. This
enables a broker to approximate its future resource utiliza-
tion. If all future migration targets can execute the plan
the resources are reserved and previous reservations of the
previous plan are revoked.

Stability

Updated plans of neighbors bear the potential to make the
plan of an operator unstable if the mobility is inaccurately
captured or communication characteristics keep changing
(e.g., diverging bandwidths). For example, if the operator

generates a new plan with each location update of a source
that instantly triggers a migration of an operator to a new
host, we arbitrarily increase the network utilization.

To alleviate the mobility problem in the basic plan, we
allow to restrict the number of time steps for the creation of
the plan. The longer a consumer or source does not deviate
from its predicted location, the more time steps can be con-
sidered for the time-graph. The intuition behind that can be
seen in Figure 4. Edge weights that include migration costs
are typically higher than for edges between the same broker.
Therefore it is unlikely that an edge from any broker bi to
another broker bj is considered for the shortest path if only
few time steps are included, even if a potential migration
target promises lower placement costs. At the same time
we make sure that an operator eventually can migrate, even
with a small number of time steps, by gradually decreasing
the initial migration cost from the current host to neighbors
the longer an operator stayed at a broker.

To ensure that a plan does not continuously change, only
because of a small deviation in the measured bandwidth or
latency, edge weights are only replaced in a time-graph if
these measurements change beyond a threshold.

Properties

The number of brokers that are selected in Line 2 of Al-
gorithm 6 has a severe impact on the performance of the
live-migration system. Modelling all brokers, in a large-scale
scenario with thousands of broker, is computationally costly,
because the number of vertices and edges grows cubically.
The number of vertices, per time step in the time-graph,
grows linearly within each time step with the number of
brokers nb, thus the complexity is O(nb ∗ |TS|). More severe
is the number of edges, which grows quadratically per time
step, because we connect each broker with all other brokers
of the next time step. Thus the complexity is O(n2

b ∗ |TS|),
which is cubic if the number of brokers nb equals |TS|. Fur-
thermore, each broker has to acquire information about the
latency, bandwidth and available resources of these brokers,
to determine the placement costs, which can only be deter-
mined by regularly sending messages between the broker.

Although selecting all brokers as migration targets gives a
near-optimal solution to the mobile migration problem, we
decrease the network and computation costs by only select-
ing the most relevant broker. To increase the scalability,
we utilize the spatial-temporal locality property. Mobile ob-
jects move only within local bounds, e.g., do not connect to
the system from London and seconds later from New York.
Hence, good future migration targets are found close to the
current broker that hosts the operator. Hence, each broker
keeps coarse grained information on brokers responsible for
far away locations, and fine-grained information on nearby
broker.

4.2 Uncertainty-aware Migration Plans
So far, we presented plans as sequences of definite place-

ments. However, since these sequences represent the pre-
dicted future, it comprises various uncertainties. Sources
and consumers can change their movement pattern, e.g., ve-
hicles changing their routes, or they hand-off between ad-
jacent leaf broker at unexpected times. Data-rates of event
streams can also vary, e.g., when an operator detects less
events than expected.

Depending on how the system captures the movement of
mobile devices, the actual future connection to a leaf broker
is predicted more or less accurately. Simple dead reckon-
ing mechanisms predict future locations based on the di-
rection and speed of the last few reported locations, which
is typically only accurate for nearby locations. The next
sequence of leaf brokers and when a source or consumer
connects to them is therefore highly uncertain. This can
be improved by using more definite locations of navigation
systems. Learning connection patterns between neighboring
leaf broker gives a more accurate view than dead reckoning,
but less accurate than the path of a navigation system. For
example, while driving on a highway vehicles will connect
with high probability to the same sequence of leaf broker
that cover subsequent sections of that road and with a low
probability take the next exit that may require to connect
to another leaf broker.

Since data-rates of event streams can vary, it is possible
that placing an operator ω at its planned migration target
imposes higher costs compared to an optimal placement. In
case the placement costs dominate over the migration costs,
it is beneficial to stall the decision for a concrete migration
target until it is certain that the placement can be improved.
However, dependent operators, e.g., with large state, now
require the information about all possible migration targets
of ω to plan their migrations.

In this context we have to answer:

• What is a meaningful representation of an uncertain
connection and migration decision?

• Given the uncertain representation of neighbors what
are the best migration targets incorporated in a plan?

We address the question of the uncertainty-aware repre-
sentation by expanding the plan to a Markov chain. The
second one is addressed by a set of heuristics that aim to
minimize the expected overall migration and placement costs
of a single operator.

Uncertainty-aware Migration Plan Model

An uncertainty-aware plan is represented as Markov chain,
as depicted in Figure 7. It allows for more than one ex-
pected placement at the same time step, connecting adja-
cent time steps with probabilistic state-transitions. We dis-
tinguish two kinds of uncertainty-aware plans. First, tempo-
rally skewed migrations, describe that instead of migrating
at a fixed time step a mobile consumer/source or operator
will initiate the migration within a temporal interval of dis-
crete time steps. For example, a vehicle’s connection change
from b1 to b2 according to the plan in Figure 7 is performed
with probability 0.5 at time t1 and with probability 0.5 at
t2. Second, spatially skewed migrations, allow to describe
multiple migration possibilities at the same time step, e.g.,
if a transition from b1 to b3 at t2 in Figure 7 were included.

Creating the Uncertainty-aware Migration Plan

This section describes how the system creates uncertainty-
aware plans for a consumer or source to indicate the possible
future leaf broker and its data-rates. Furthermore, upon
receiving uncertainty-aware plans, an operator has to adapt
its own plan. To this end it can select from a pool of policies
that aim to minimize the expected bandwidth-delay product
but vary in their complexity.

b1

b2 b21.0

0.5

0.5

t1 t2

1.0

b1

t0

H = b2

B = 0.25mb/s

tim = t1

TQ = {...}

RL = {...}

Figure 7: Uncertainty-aware Migration Plan

Planning for consumers and sources. Dead reckoning
methods and navigation systems provide a sequence of time-
stamped uncertain future locations† for mobile sources and
consumers. This allows us to determine the expected place-
ments ep of the plan for a set of future time steps ti ∈ TS.
Expected hosts (ep.H) are all future leaf brokers responsible
for the future location at ti. The average over the monitored
recent traffic determines the expected bandwidth (ep.B).
Probabilities for state transitions from previous time steps
ti−1 are estimated based on the proportion of the overlap of
the uncertain location with the leaf brokers area weighted
by the extent of the uncertain location.

This method changes for learned connection patterns of
consumers and sources. These learned patterns describe
how probable it is for a source or consumer to change its
connection to another leaf broker after it stayed connected
for a certain amount of time to its current leaf broker. Such
learned probabilities are maintained in a graph where each
vertex represents a broker and has an edge to all neighboring
brokers the source or consumer can connect to next. Each
edge in the graph is annotated with the probability to change
the connection and the average time a source or consumer
is connected to a broker before it connects to the neighbor.

Such a graph can then be exploited to find a sequence of
expected hosts ep.H for an uncertainty-aware plan. A sim-
ple algorithm follows paths in the graph sequentially from
broker to broker, starting from the current leaf broker of a
mobile source or consumer. The algorithm keeps track of the
annotated times of edges while traversing the graph and re-
ports a broker as ep.H at a ti ∈ TS if the next edge traversal
increases the sum of annotated times on that path beyond ti.
State-transition probabilities of the uncertainty-aware plan
are equivalent to the probability that a connection changes.
Thresholds on the probability that a path represents the
actual connection pattern can reduce the number of states.

Policies of operators. In the following section we present
policies to process and create uncertainty-aware plans.

Naive Policy: Since each sequence of state transitions in a
neighbors probabilistic plan resembles the sequence of bro-
kers of the basic plan creation, the naive approach is to
create a plan using multiple time-graphs; in particular, one
time-graph for each possible combination of these individ-
ual sequences. For example, if the operator ωD of our run-
ning example receives the plan of Figure 7 from the source
and a basic plan from ωF it creates one time-graph with
the sequence seq1 = {b1,b2,b2} and one with the sequence
seq2 = {b1,b1,b2} of ωDs plan. All shortest paths in these

†Note, this can be a typical GPS normal distribution

time-graphs are then combined to a plan, where each short-
est path represents one sequence of state transitions in the
resulting plan. Consider the case when the resulting short-
est path of the time-graph for seq1 leads to the sequence
seq3 = {b3,b4,b4} and for seq2 to seq4 = {b3,b3,b4}. Since
the probability for ωF to follow the basic plan is 1 and the
probability of the source to connect according to the se-
quence seq1, respectively seq2, is 0.5, each of those resulting
sequences has the probability of 1 ∗ 0.5 to represent the ac-
tual migration sequence of ωD. When both are combined to
a single plan it looks structurally similar to Figure 7. This
policy allows an operator to accurately follow the uncertain
movement of a neighbor by creating an uncertain plan for
the operator. However, it yields a high computational cost,
because it requires to maintain many time-graphs.

Weighted Sum: This policy modifies the cost function to
determine the placement costs Cpla in a time-graph, in or-
der to create a plan that minimizes the overall expected
placement and migration costs. It uses the weighted sum
over the bandwidth-delay products to all expected hosts at
a time ti ∈ TS in a neighbor’s plan to determine place-
ment costs Cpla(vj) for a vertex vj at that time. The weight
is the individual probability that an expected placement is
chosen, i.e., the summed product of all state transitions on
sequences to that expected placement, e.g., 0.5 for both ex-
pected placements at t2 and 1 for the expect placement at
t3 in Figure 7. The computational costs are far lower than
for the naive approach.

Temporal Adjustment: Since temporally skewed migra-
tions of neighbors only indicate that the migration between
any pair of brokers bj , bk can vary in time, the shortest path
is determined in a time-graph that only considers one se-
quences of transitions between those in the neighbors plans.
For example only for sequence seq1 = {b1,b2,b2} of the exam-
ple in Figure 7. An operator can then calculate a temporally
skewed plan of its own or use this plan to find the single se-
quence of brokers with the lowest expected bandwidth-delay
product. This is done by determining the probability that
the operator is allowed to migrate at another time step in
a predefined temporal interval [ti − ts, ti + te], instead of
the time ti at which the ith migration occurs according to
the shortest path. Let seq3 = {b3,b4,b4} be the initial re-
sulting sequence, then for a ts of 1 seq′3 = {b3,b3,b4} and
seq′′3 = {b4,b4,b4} are also considered. The operator can
then choose between selecting the sequence with the lowest
expected overall bandwidth-delay product, according to the
weighted sums at each time step, as plan or to use all of
them as a temporally skewed plan. Like the naive approach
this approach also allows an operator to follow the uncertain
movement of a neighbor, however, with a smaller accuracy
and computational cost.

Changes in data-rates: The last policy is the only one
that creates an uncertainty-aware plan without previously
receiving such plans from neighbors. Since a time-graph
comprises estimated costs on future placements and migra-
tions, the actual costs at the time of an estimated migration
might differ. Recall that an operator with small state can
defer its migration to such a time. In order to reflect these
scenarios in the plan, we select the k shortest paths from
a single time-graph, since they are the most likely paths to
actually have the lowest costs. For example, due to a devi-
ation in the bandwidth it can be good to also consider the
edge from b1 to b2 at t1 in Figure 4.

1: upon timeout migrationTimer(time t)
2: nextMigration← findNextTarget(t)
3: if nextMigration.tim = t ∧ ¬stateMigrated then
4: trigger send immutalbeState to nextMigration.H
5: end if
6: for ∀tq ∈ nextMigration.TQ do
7: if shouldMigrate(tq) then
8: initiateMutableStateTransfer(tq)
9: initiateStreaming(tq)
10: end if
11: end for
12: if allStateAtTarget(nextMig.ti) then
13: stopOperator()
14: trigger send start() to nextMigration.H
15: end if
16: end

Figure 8: Execution of a Migration Plan

Each of these k paths represents a sequence of transitions
in the plan. The probabilities that these paths represent
the actual shortest path are determined by estimating the
probability that the estimated cost for one of these paths is
lower than for all the other paths and therefore describes
the actual migration behavior. We therefore understand
the sum of all weights Wtg on these paths as random vari-
able Xtg. The confidence interval (min(Xtg),max(Xtg)) is
given by the interval that determines how far bandwidths
and latencies can deviate before the time-graph is created
anew. However, without the knowledge of the real distribu-
tion within that interval, we can either assume that values
are distributed according to a rather typical distribution,
such as poison or uniform, learn those distributions, or use
hints from the application on the actual distribution of band-
widths from in and outgoing streams. The continuous so-
lution for the probability, that the j-th path has the lowest
cost is then:

Pmin(Xj) =

∫ max(Xj)

y=min(Xj)

∏
x 6=j

P (Xx > y)

For example, the weights for all depicted paths in Fig-
ure 4 including only brokers of b1 and b2 accumulate to the
same costs. Therefore the probability for both paths in the
interval [t1, t2] is 0.5.

4.3 Executing a Migration Plan
Algorithm 8 allows the operator to implement the migra-

tion according to the probabilistic state transitions in a plan.
It decides on one of the possible placements from the plan
and informs the live-migration system about when to trans-
fer and initialize an operator at the migration target. The
algorithm serializes the migration of immutable and muta-
ble state, while it continues processing at the previous broker
until the migration target starts processing.

At each time step t ∈ TS (see Line 1) of the plans, the
algorithm checks if any possible migration needs to be ini-
tiated. It starts at the state that models the current place-
ment, e.g., b1 at t1 in Figure 7. For the next possible mi-
gration according to this plan, e.g., from b1 to b2 at t2, the
operator checks if it has to start transferring the immutable
state before the next time step. For uncertainty-aware plans
this is checked for the sequence that currently has the lowest
expected bandwidth-delay product (see Line 2-3). The mi-
gration itself starts out by sending the VM and immutable
state to the selected migration target (see Line 4). This is

skipped if the immutable state already started to be trans-
ferred in a previous time step.

In the next step (see Line 6-11), we determine if parts of
the mutable state have to be transferred before the next step.
This is done by estimating for each queue Q the size of the
mutable state that is currently available in all queues start-
ing from TQ on and how long it takes to migrate these states.
In this step, we also inform the neighbors in the operator-
graph that they have to start streaming to the migration
target and eventually stop streaming to the current host.
They in return inform the migrating operator about the first
event they transferred to the migration target, which indi-
cates when to stop the streaming of mutable state from the
current host to the migration target.

In a final step (see Line 12-15), the previous broker stops
the processing at the time when mutable and immutable
state is available at the migration target. Finally, it initial-
izes the operator, in a rollback-recovery like fashion [17] at
the target.

5. ANALYSIS

5.1 Locality of Plan Generation
The overhead in terms of messages to generate a plan

depends on where the plan is generated. Which is either lo-
cally at each operator ω or at a central coordinator, e.g., at
a dedicated node in the cloud. Note that a time-graph with
vertices for all combinations of placements of operators in-
creases the total number of vertices to the power-set. This
is why it is more scaleable, even for a central coordinator,
with a global view on all operators, to maintain a single
time-graph for each operator.

A locally generated plan imposes the overhead to exchange
plans (and feedback) with neighbors, which happens in av-
erage at a frequency fp(ω) with an average size mp for each
message. In the central case all changes in measured and
estimated bandwidths have to be sent to the coordinator,
which happens in average at a frequency of fm(ω) and with
an average size of mm for each message. Stable plans are
sent to individual operators with a frequency fs(ω). Other
messages, i.e., to reserve resources at targets and collect in-
formation of latencies on links between neighbors, are nearly
the same for both possibilities. A locally generated plan pays
off, iff:

|Ω|∑
i=0

fp(ωi) ∗mp >

|Ω|∑
i=0

fm(ωi) ∗mm + fs(ωi) ∗mp

5.2 Threshold for migration generation
In this section we derive a threshold, that determines when

a potential second path in the time-graph is shorter than the
selected shortest path. This gives a bound on when it is safe
to not generate a new plan. Let (v1, ..., vv) be the currently
selected minimal path and (v′1, ..., v

′
v) any other path. Let

D be difference in their overall costs of the edge weights w.

D =

|E|−1∑
i=0

w((vi+1, vi))−

|E|−1∑
i=0

w((v′i+1, v
′
i))

Only ifD is positive, a second path can be shorter. Thus if
the change in all weights stays in the bounds of the following
threshold at the ith edge, D is guaranteed to be negative and

the selected path is shorter.

|w((vi+1, vi))− w((v′i+1, v
′
i))|

2

5.3 Termination
An important property of the coordinated plan genera-

tion algorithm is that it eventually terminates, i.e., no new
shorter path is selected, iff the estimated latencies on links
and bandwidths incorporated in a time-graph do not change
while the plan is generated. We claim that, with each newly
selected shortest path for the plan generation of an opera-
tor the overall costs Ctot, the sum over all placement and
migration costs, strictly monotonically decreases. We show
the termination property by a proof of contradiction.

Proof. Assume that the total costs Ctot increase to C′
tot

after a new shortest path is selected for an operator ω. The
only links that can now increase the placement costs are
those directly involved in sharing event streams with neigh-
boring operators of ω. The only migration costs that can be
increased are those imposed by ω. Since these costs are used
to calculate the edge weights of the time-graph, at least the
previous shortest path would have been shorter.

6. EVALUATION
We implemented the migration approach with the Om-

netpp simulator [26]. The traffic simulation package SUMO [1]
enabled us to model realistic traffic patterns of vehicles on
an OpenStreetMap graph [11]. The approach was tested
with a generic operator graph resembling Figure 1(a), that
allowed us to extract meaningful thresholds‡.

Brokers were organized in a hierarchical tree data-structure,
where each tier contained a dynamic number of nbx ∗ nby
simulated cloud or fog-nodes. With each level in the hierar-
chy the computational power increased quadratically, while
the latency between neighbors in the hierarchy were similar.
Vehicles were always connected to a leaf-node of the tree
that managed the area where the car was located in. Over
the course of 1000 simulated seconds approx. 1000 vehi-
cles drove in an area of the size 7.7x3.5km. Each connected
vehicle published approx. one event per second. Each mea-
surement was taken approx. 5 times.

We initially distributed all virtual brokers in the broker
hierarchy randomly and tested three possible migration ap-
proaches: i) the static approach that didn’t perform any
migration, ii) the greedy approach that greedily selected ev-
ery few seconds the broker with the best placement cost,
and iii) our MigCEP approach.

6.1 Impact of state and streaming size
Since the MCEP approach is designed to consider the

state and streaming size for an optimal sequence of migra-
tions, we studied their influence on the main performance
criteria, the network utilization. Furthermore, an increase in
the number of brokers on the same area increases the number
of hand-overs in the system, the main source of dynamics.
Therefore, we also evaluated the impact of the number of
brokers in the hierarchy on the network utilization.

In the experiment, we gradually increased the event size of
one of the sources in the operator graph from 50 to 250 bytes

‡For simplicity we omitted source c. We parametrized the
operator graph regarding the state size, event size, and de-
tection rate.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 15000 30000 45000

bd
p

state size [byte]

MigCEP
greedy

static

(a) Event Size 50; 4*4 broker/level

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 15000 30000 45000

bd
p

state size [byte]

MigCEP
greedy

static

(b) Event Size 250; 4*4 broker/level

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 15000 30000 45000

bd
p

state size [byte]

MigCEP
greedy

static

(c) Event Size 50; 10*4 broker/level

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 15000 30000 45000

bd
p

state size [byte]

MigCEP
greedy

static

(d) Event Size 250; 10*4 broker/level

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16

bd
p

distances between time-steps [s]

MigCEP - state 0 B
greedy - state 0 B

MigCEP - state 15000 B
greedy - state 15000 B

(e) Distance between TS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

bd
p

size of TS [s]

range=5000
range=2500

range=0

(f) Varying ranges and |TS|

Figure 9: Evaluation of basic time-graph based approach

and the immutable state size of the operator that received
those events from 0 bytes to 60000 bytes. The number of
brokers varied from 21 fog-nodes in a quad-tree with a sin-
gle cloud data-center root to a tree with one simulated cloud
data-center as root and a flat topology of 40 fog-nodes. The
information from the simulated navigation system of the ve-
hicle was used to generate plans for vehicles. On the y-axis
in Figure 9 (a-d) the results of the average bandwidth-delay
product (bdp) is depicted, relative to the static approach.
The x-axis depicts the immutable state size in bytes.

The results demonstrate the strength of our approach in
both broker hierarchies. Our approach outperforms by far
the static approach, since it adjusts the placements. While
the resulting migration and placement costs are comparable
to the greedy approach when the size of immutable state is
low, the benefit increases the larger the immutable state is,
since our approach amortizes the migration costs. The sys-
tem had to adapt the placement of the operator more often
in the case of larger event sizes (Figure 9(b) and 9(d)) which
is why the benefit is more distinguished in those cases. The
overhead averaged on low 27 additional coordination mes-
sages (resource reservations, plan updates, and feedback)
per coordination — independent of event and state size.

6.2 Impact of vertices in the time-graph
The performance of the plan generation depends on the

number of vertices in the time-graph. This number changes
with the granularity of migration times in a sequence of time-
steps TS and the number of selected brokers.

The distance between time-steps dictates the system on
when it can perform a migration. The longer the distance,
the less vertices in the time-graph; however, the less chances
to find the optimal time for a migration. Figure 9(e) de-
picts the results, relative to the maximal measured bdp, for
varying distances between 1 and 16 seconds, effectively re-
ducing the number of vertices by 1

4
with each larger step.

It demonstrates that the increase in the bdp is linear, while
the number of vertices multiplicativly decrease.

Moreover, the number of time-steps of TS dictates how
far into the future a prediction is made. In the experiment
we increased this size from 10 to 500. We also restricted the
number of brokers that are considered for the time-graphas
possible target, by only selecting nearby brokers that man-
age ranges that are no more than 0, 2500, or 5000 meters
away. This includes brokers in higher or lower levels of the
hierarchy responsible for the same range. Figure 9(f) shows
that a larger range gives a better prediction since more bro-
kers were involved. However, the performance only grace-
fully degrades with fewer brokers. Few time-steps limited
the opportunity for planning migrations and too many time-
steps reduce the chance to place the operator on the right
broker in the future.

6.3 Impact of uncertainties
The future placements typically encounter a lot of uncer-

tainties, depending on how the mobility pattern and com-
munication characteristics are captured. The general setup
to test the policies dealing with these uncertainties (Sec-
tion 4.2) was to deploy both ωF s as state-less operators and
ωD as state-full operator. For the naive and weighted sum

policy (ws), we tested the three methods to capture mo-
bility patterns, uncertain locations from the dead reckoning
approach (linear), certain locations that could stem from a
navigation system (navi), and learned transitions between
leaf broker (learned). For the temporal policies we restricted
the simulation to the learned temporal transition on the
path of the navigation system, since the policy is only ex-
pressive for this capture method. To test the k-shortest
path approach we also randomly increased and decreased
the event-sizes. Hence, the placement of one of the ωF s had
to be constantly adapted for an optimal placement.

 0

 0.5

 1

 1.5

 2

 30000 45000 60000

bd
p

state size [byte]

MigCEP (navi)
MigCEP (learn - ws)

MigCEP (learn - naive)
MigCEP (lin)

greedy

(a) Spatially Skewed Plans

 0

 0.5

 1

 1.5

 2

 30000 45000 60000

bd
p

state size [byte]

MigCEP (ws)
MigCEP (naive)

MigCEP (tmp seq)
MigCEP (tmp skew)

greedy

(b) Temporally Skewed Plans

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 1.2

 0 10 20 30 40 50 60 70 80

bd
p

k-paths

MigCEP - f=1.25
MigCEP - f=20

(c) Changing data-rates

Figure 10: Impact of uncertainty

The x-axis of Figure 10(a) and Figure 10(b) depicts the
varying state size. The average bandwidth-delay product de-
picted on the y-axis shows the effect of different methods to
capture the mobility using different policies on the network
utilization; using the greedy approach as baseline. Each
policy increased the network utilization less severe than the
greedy approach after the state size crossed a specific thresh-
old. That threshold is the point where the reduction in the
migration rate makes up for less optimal anticipated place-
ments. Depicted in Figure 10(c) are the results for different
numbers of sequences selected form the k-shortest path ap-
proach, where the frequency f in the change in the event-size
ranged from every 20 seconds to every 1.25 second. The re-
sults are depicted relative to the bdp value of the largest
k for each frequency. For the high-change rate, more paths
increased the possibility for wrong placement decisions, how-
ever, for slow change rates the system had a better chance
to adapt itself.

7. RELATED WORK
The placement of operators has already been studied in

context of DCEP [7, 20, 22, 23]. However the main focus of
these work are systems where sensors and consumers aren’t
mobile and the communication characteristics rarely change.
Therefore none of the systems considered the impact of mi-
gration costs on the placement, nor do they have to consider
the mobility of a consumer, which influences the time when
it is required to trigger a migration.

Previous work in DCEP focused on uncertainty in detect-
ing events, e.g., on noisy events captured by sensors [16] or
predicted future events [10]. However, none of them stud-
ied the impact on the system resources when planing future
placements with uncertain location information.

Mobility-aware publish-subscribe systems [14,15] dynami-
cally adapt filter operators to new access points of publishers
or subscribers. However, filter operators are stateless and
therefore none of these systems considers the migration cost
itself in the optimization.

Live migration [12,19] in cloud computing environments is
used to increase data-access locality, energy saving, or load
balancing. A typical goal is to reduce the downtime, the time
during which the execution is stopped. On the one hand,
pre-copying techniques [4] copy disk-images, i.e., the com-
plete state of the operator, and memory-pages in advance
before the processor state. This can arbitrarily increase the
bandwidth, because events that are potentially deleted from
the queues Q as soon as the VM starts at the target are also
migrated. On the other hand, post-copying [12] techniques

transfer first the processor state and then the pages. This
can increase the latency if the next required page is not mi-
grated yet, even to such an extent, that latency restrictions
are not preserved.

Content-delivery networks improve end-user performance,
data availability, and reduce server load by migrating data.
They have been considered for mobile environments [2] and
cloud environments [27]. However, they do not have to con-
sider dependencies between different operators.

8. CONCLUSION
In this paper we presented methods to improve the over-

all network utilization for real-time applications with defined
end-to-end latency restrictions in future mobile infrastruc-
tures. Using a MCEP system as example, we demonstrated
that it pays off to plan migrations ahead of time according to
the mobility of users or dependent migrations. Costly migra-
tions of state, in terms of network utilization, can be amor-
tized by selecting suitable targets in a time-graph data struc-
ture that models the expected costs. Furthermore, we pre-
sented how application knowledge improves live-migration
systems. Execution environments that are typically used in
DCEP provide the possibility to find a better serialization
of operators, because they allow a live-migration system to
infer which state has to be transferred.

Our ongoing work will focus on further optimization pos-
sibilities. We tested the system with only simple predic-
tion mechanisms for data-rates, however, more sophisticated
ones could greatly improve the performance. So far, we did
not consider the fact that different operators might require
the same mutable state—an overlapping set of ingoing event-
streams. Finding such overlaps would allow the system to
coordinate the migration of multiple operators while migrat-
ing the immutable state only once, thus further improving
the network utilization.

Acknowledgment

This work is supported by contract research ”CEP in the
Large” of the Baden-Württemberg Stiftung. The authors
would like to thank the reviewers and D. Lillethun for their
helpful comments.

9. REFERENCES
[1] M. Behrisch, L. Bieker, J. Erdmann, and

D. Krajzewicz. SUMO - Simulation of Urban
MObility: An Overview. In Proc. of 3rd Int.
Conference on Advances in System Simulation
(SIMUL), pages 63–68, Barcelona, Spain, Oct. 2011.

[2] M. M. Bin Tariq, R. Jain, and T. Kawahara. Mobility
Aware Server Selection for Mobile Streaming
Multimedia Content Distribution Networks. In
F. Douglis and B. D. Davison, editors, Web Content
Caching and Distribution, pages 1–18. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog
Computing and Its Role in the Internet of Things. In
Proc. of 1st MCC workshop on Mobile Cloud
Computing, pages 13–16. ACM, 2012.

[4] R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schiöberg. Live Wide-Area Migration of Virtual
Machines Including Local Persistent State. In Proc. of
3rd Int. Conference on Virtual Execution
Environments (VEE), pages 169–179. ACM, 2007.

[5] A. T. Campbell, S. B. Eisenman, N. D. Lane,
E. Miluzzo, R. A. Peterson, H. Lu, X. Zheng,
M. Musolesi, K. Fodor, and G.-S. Ahn. The Rise of
People-Centric Sensing. IEEE Internet Computing,
12(4):12–21, 2008.

[6] S. Chakravarthy and D. Mishra. Snoop: An Expressive
Event Specification Language For Active Databases.
Data & Knowledge Engineering, 14(1):1–26, 1994.

[7] G. Cugola and A. Margara. Deployment Strategies for
Distributed Complex Event Processing. Springer
Computing, 95(2):129–156, 2013.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: A Decentralized Network Coordinate System.
In Proc. of 2004 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), pages
15–26. ACM, 2004.

[9] C. du Mouza, W. Litwin, and P. Rigaux. SD-Rtree: A
Scalable Distributed Rtree. In Proc. of the 23rd Int.
Conf. on Data Engineering (ICDE), pages 296–305.
IEEE, Apr. 2007.

[10] Y. Engel, O. Etzion, and Z. Feldman. A Basic Model
for Proactive Event-driven Computing. In Proc. of 6th
ACM Int. Conference on Distributed Event-Based
Systems (DEBS), pages 107–118. ACM, 2012.

[11] M. Haklay and P. Weber. OpenStreetMap:
User-Generated Street Maps. IEEE Pervasive
Computing, 7(4):12–18, Dec. 2008.

[12] M. R. Hines, U. Deshpande, and K. Gopalan.
Post-Copy Live Migration of Virtual Machines.
SIGOPS Oper. Syst. Rev., 43(3):14–26, July 2009.

[13] K. Hong, S. Smaldoney, J. Shin, D. Lillethun,
L. Iftodey, and U. Ramachandran. Target Container:
A Target-Centric Parallel Programming Abstraction
for Video-based Surveillance. In Proc. of 5th
ACM/IEEE Int. Conf. on Distributed Smart Cameras
(ICDSC), pages 1–8, Aug. 2011.

[14] S. Hu, V. Muthusamy, G. Li, and H.-A. Jacobsen.
Transactional Mobility in Distributed Content-Based
Publish/Subscribe Systems. In Proc. of 29th IEEE
Int. Conf. on Distributed Computing Systems
(ICDCS), pages 101–110, June 2009.

[15] K. Jayaram, C. Jayalath, and P. Eugster. Parametric
Subscriptions for Content-Based Publish/Subscribe
Networks. In Proc. IFIP/ACM/USENIX Conf. on
Middleware, pages 128–147, 2010.

[16] G. G. Koch, B. Koldehofe, and K. Rothermel. Higher

Confidence in Event Correlation Using Uncertainty
Restrictions. In Proc. of 28th Int. Conf. on Distributed
Computing Systems (ICDCS) Workshops, pages 417
–422, June 2008.

[17] B. Koldehofe, R. Mayer, U. Ramachandran,
K. Rothermel, and M. Völz. Rollback-Recovery
without Checkpoints in Distributed Event Processing
Systems. In Proc. of 7th ACM Int. Conf. on
Distributed Event-Based Systems (DEBS). ACM, 2013.

[18] B. Koldehofe, B. Ottenwälder, K. Rothermel, and
U. Ramachandran. Moving Range Queries in
Distributed Complex Event Processing. In Proc. of 6th
ACM Int. Conf. on Distributed Event-Based Systems
(DEBS), pages 201–212. ACM, 2012.

[19] R. K. K. Ma and C.-L. Wang. Lightweight
Application-Level Task Migration for Mobile Cloud
Computing. In Proc. of 26th IEEE International
Conference on Advanced Information Networking and
Applications (AINA), AINA ’12, pages 550–557. IEEE
Computer Society, 2012.

[20] P. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-Aware Operator Placement for
Stream-Processing Systems. In Proc. of 22nd Int.
Conf. on Data Engineering (ICDE), pages 49–60.
IEEE Computer Society, 2006.

[21] P. Pietzuch, B. Shand, and J. Bacon. Composite
Event Detection as a Generic Middleware Extension.
IEEE Network, 18(1):44–55, Feb. 2004.

[22] S. Rizou, F. Dürr, and K. Rothermel. Solving the
Multi-operator Placement Problem in Large-Scale
Operator Networks. In Proc. of 19th Int. Conf. on
Computer Communication Networks (ICCCN), pages
1–6. IEEE Communications Society, Aug. 2010.

[23] B. Schilling, B. Koldehofe, and K. Rothermel. Efficient
and Distributed Rule Placement in Heavy
Constraint-Driven Event Systems. In Proc. of 13th
IEEE Int. Conf. on High Performance Computing and
Communications (HPCC), pages 355 –364, Sept. 2011.

[24] Z. Sebepou and K. Magoutis. CEC: Continuous
Eventual Checkpointing for Data Stream Processing
Operators. In 41st Int. Conf. on Dependable Systems
Networks (DSN), pages 145–156, June 2011.

[25] J. Shin, R. Kumar, D. Mohapatra, U. Ramachandran,
and M. Ammar. ASAP: A Camera Sensor Network for
Situation Awareness. In Proc. of 11th Int. Conf. on
Principles of Distributed Systems (OPODIS), pages
31–47. Springer-Verlag, 2007.

[26] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of the European Simulation
Multiconference (ESM), June 2001.

[27] P. Wendell, J. W. Jiang, M. J. Freedman, and
J. Rexford. DONAR: Decentralized Server Selection
for Cloud Services. In Proc. of ACM SIGCOMM,
SIGCOMM ’10, pages 231–242, New York, NY, USA,
2010. ACM.

[28] O. Wolfson, A. P. Sistla, S. Chamberlain, and
Y. Yesha. Updating and Querying Databases that
Track Mobile Units. Distributed and Parallel
Databases, 7:257–387, July 1999.

