Mobile Fog: A Programming Model for Large—-Scale
Applications on the Internet of Things

Kirak Hong, David Lillethun, Umakishore

Ramachandran
College of Computing
Georgia Institute of Technology
Atlanta, Georgia, USA
{khong9, davel, rama }@cc.gatech.edu

ABSTRACT

The ubiquitous deployment of mobile and sensor devices is
creating a new environment, namely the Internet of Things
(IoT), that enables a wide range of future Internet appli-
cations. In this work, we present Mobile Fog, a high level
programming model for future Internet applications that are
geospatially distributed, large—scale, and latency—sensitive.
We analyze use cases for the programming model with cam-
era network and connected vehicle applications to show the
efficacy of Mobile Fog. We also evaluate application perfor-
mance through simulation.

Keywords

fog computing; cloud computing; programming model; In-

ternet of Things; future Internet applications; situation aware-

ness applications

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems|: Distributed ap-
plications

1. INTRODUCTION

The growing ubiquity of mobile and sensor devices, such
as smart phones and surveillance cameras, is enabling a wide
range of novel, large-scale, latency—sensitive applications
that are often classified as Future Internet Applications. For
example, traffic applications can analyze recent location in-
formation shared by vehicles to detect traffic patterns, such
as accidents or traffic jams, and use these patterns to en-
rich navigation systems in vehicles |5]. Smart surveillance
applications can support police officers by displaying video
streams on their smart phones showing suspicious people
who were nearby within the last few minutes [3].

Platform as a Service (PaaS) clouds are attractive for
developing large—scale applications due to their scalability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MCC’13, August 12, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2180-8/13/08 ...$15.00.

Beate Ottenwalder, Boris Koldehofe
Institute of Parallel and Distributed Systems
University of Stuttgart
Stuttgart, Germany
{ottenwaelder,koldehofe}@ipvs.uni-

stuttgart.de

and high-level programming models that simplify develop-
ing large-scale web services. However, existing PaaS pro-
gramming models are designed for traditional web appli-
cations, rather than future Internet applications running
on various mobile and sensor devices. Furthermore, pub-
lic clouds, as they exist in practice today, are far from the
idealized utility computing model. Applications are devel-
oped for a particular provider’s platform and run in data
centers that exist at singular points in space. This makes
their network distance too far from many users to support
highly latency—sensitive applications.

Cisco recently proposed a new computing paradigm called
fog computing |2| that runs generic application logic on re-
sources throughout the network, including routers and ded-
icated computing nodes. In contrast to the cloud, putting
intelligence in the network allows fog computing resources to
perform low—latency processing near the edge while latency—
tolerant, large—scope aggregation can still be efficiently per-
formed on powerful resources in the core of the network.
Data center resources may still be used with fog computing,
but they do not constitute the entire picture.

However, developing applications using fog computing re-
sources is tricky because it involves orchestrating highly dy-
namic, heterogeneous resources at different levels of net-
work hierarchy to support low latency and scalability re-
quirements of applications. To ease such complexity, this
paper presents a PaaS programming model, called Mobile
Fog, that provides a simplified programming abstraction
and supports applications dynamically scaling at runtime.
Our contributions include the design of our programming
model and the use case analysis of Mobile Fog. While Mo-
bile Fog can support diverse applications, we use situation
awareness applications as canonical examples in this work.

This paper is structured as follows: Section [2| discusses
related work. Section [3] explains the details of the Mobile
Fog programming model. Section [4 shows specific use cases
for our programming model. Finally, Section [6] concludes
with future work.

2. RELATED WORK

Cloud and data center systems provide highly scalable
solutions for web-scale applications, but edge devices must
communicate across the Internet to reach the cloud data
centers. Satyanarayanan, et al. [7], show that WAN laten-
cies can be high and that these latencies interfere with in-
teractive applications. We argue that situation awareness
applications are vulnerable to the same issue due to the

doi.acm.org/10.1145/2491266.2491270

© ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in Proceedings of the
2nd ACM SIGCOMM workshop on Mobile Cloud Computing, Hong Kong, China, 2013. http://

sense-process-actuate loop, as would be any other applica-
tions with feedback loops. In short, the could is too far from
many mobile users for latency—sensitive applications.

Two systems that can provide resources for computing
near the edge of the network are the MediaBroker [6] for
live sensor stream analysis, and Cloudlets |7] for interactive
applications. However, neither currently supports widely
distributed geospatial applications.

Recent advances in software—defined networking (SDN) [4]
allow programming in-the-middle network resources. How-
ever, these approaches only allow injecting routing logic into
network elements, not generic application logic. Further-
more, SDN offers neither an elastic resource model nor a
programming model for general-purpose applications.

Bonomi et al. |2] define the characteristics of fog comput-
ing and show that the fog is the appropriate platform for
various applications, including connected vehicles and smart
cities. This work complements our work since it presents the
potential benefits of fog computing in terms of efficiency and
latency while our work focuses on the right programming
model for developing applications on the fog.

3. PROGRAMMING MODEL

As a programming model for large—scale situation aware-
ness applications, Mobile Fog has two design goals: The first
is to provide a high-level programming model that simpli-
fies development on a large number of heterogeneous devices
distributed over a wide area. The second goal is to allow
applications to dynamically scale based on their workload
using on—demand resources in the fog and in the cloud.

3.1 System Assumptions

In this work, we assume various devices are available to
Mobile Fog for running large—scale applications. These het-
erogeneous devices include edge devices such as smartphones
and connected vehicles, on-demand computing instances in
a fog computing infrastructure, and a compute cloud with an
Infrastructure as a Service (IaaS) interface (see Figure [1f).
The physical devices are placed at different levels of the
network hierarchy from the edge to the core network. We
assume each device is associated with a certain geophysical
location through a localization technique such as GPS.

For the fog computing infrastructure, we assume physical
devices called fog computing nodes are placed in the net-
work infrastructure. For example, specialized routers can
accommodate generic application computing in addition to
packet forwarding, while dedicated computing devices can
also be placed within the network for the sole purpose of fog
computing. We further assume that the fog provides a pro-
gramming interface that allows managing on—demand com-
puting instances, similar to an IaaS cloud, including creating
and terminating computing resources for a specific geospa-
tial region and at a certain level of network hierarchy. Each
computing instance has certain system resource capacities
such as CPU speed, number of cores, memory size, and stor-
age capacity, as specified by Mobile Fog. Once computing
instances are created in the fog, Mobile Fog can use the
instances to execute application code.

3.2 Application Model

Many large—scale future Internet applications require location—

and hierarchy—aware processing to handle the data streams
from widely distributed edge devices. In Mobile Fog, an ap-

Core

Network
Hierarchy
Loation ' Edge
M F4
e’ "o

Figure 1: A logical structure of an application

plication consists of distributed Mobile Fog processes that
are mapped onto distributed computing instances in the
fog and cloud, as well as various edge devices. While run-
ning, each process performs application—specific tasks such
as sensing and aggregation with respect to its location and
level in the network hierarchy.

Mobile Fog exposes the physical hierarchy of devices through
a logical hierarchy of Mobile Fog processes that is described
in Figure[I[] As shown in the figure, a process on an edge
device becomes a leaf node while a process in the cloud be-
comes the root node of a hierarchy, while processes on fog
computing nodes become intermediate nodes. A connection
between two processes indicates a communication path al-
lowed through the Mobile Fog communication API, which
is not necessarily a direct physical connection, but rather a
logical one. Since communication costs within a data center
are relatively inexpensive, root processes are connected to
each other in a mesh network (e.g., F1 and F8 in the cloud).

Each Mobile Fog process handles the workload from a
certain geospatial region. For instance, Figure [I] shows pro-
cesses F'5 and F6 mapped onto a connected vehicle and a
smartphone within region A. These leaf processes are con-
nected to process F3 running on a edge fog node that covers
the region A. Similarly, processes F3 and F4 are connected
to F2 running on a core fog node that covers a region en-
compassing A and B.

3.3 API

In Mobile Fog, application code consists of a set of event
handlers that the application must implement (Table|l]) and
a set of functions that applications can call (Table [2]). The
event handlers are invoked by the Mobile Fog runtime sys-
tem upon certain events. For example, on_ create() is in-
voked when an application is started while on__message() is
invoked when a message arrives. Mobile Fog runs the same
application code on various devices, including smartphones,
smart cameras, connected vehicles, and the computing nodes
in the fog and the cloud. This symmetric design simplifies
large—scale application development since a developer does
not need to write different programs for heterogeneous de-
vices with different connectivity.

Mobile Fog also provides detailed information about the
underlying physical devices in order to allow application
code to perform its task with respect to the geophysical
location, available system resources, device capabilities, and
network hierarchy level. In particular, application code can

Handler

Description

void on__create (node self)

Called when a new node is created.

void on_ sense(type t, data d)

Called upon a new sensor reading from a passive sensor (e.g., a camera).

void on_ message (tag t, node sender,
message m)

Called when a new message arrived at a node. A tag specifies an application-
specific type of the message. A sender specifies the identifier of the source
node.

void on_ new_ child(node child)

Called at a parent node when a new child node is connected.

void on_ new__parent(node parent)

Called at a child node when a new parent node is connected.

void on_ child leave(node child)

Called at a parent node when a child node is leaving.

void on__parent_ leave(node parent)

Called at a child node when a parent node is leaving.

Table 1: Mobile Fog Event Handlers

Programming Interface

Description

void send__up (tag t, message m)

Sends a message from a child node to its parent node.

void send__down (tag t,
message m, set<int>index)

Sends a message from a node to its child nodes.

void send__to (tag t,
message m, node destination)

Sends a message to a specific destination node.

data sense (type t)

Retrieve a sensor data from an active sensor (e.g., temperature sensor).

int num__children()

Get the number of children of the calling node.

Location query_ location()

Get the location of this device. Returns a location range (location coverage)
if invoked on a fog computing node. If invoked on an edge device, returns a
single location point.

int query__level()

Get the level of this device in the network hierarchy.

CapDesc query__capability(type t)

Query a specific type of capability such as sensing and actuation functionality
on a device. As a result, a descriptor for the capability is returned if the device
has the capability.

ResDesc query_resource (type t)

Query a specific type of resource (e.g., CPU and memory) on a device. As a
result, a descriptor for the resource is returned.

set<object> get_object(key k, location-
Range Ir, timeRange tr)

Get application context data that matches a key, location range, and time
range.

void put_object(object o, key k, location
1, time t)

Put application context data associated with a key, location (range), and time
(range).

Table 2: Mobile Fog Application Programming Interface

retrieve information about available system resources by in-
voking query_resource(). An application can also query
the device capabilities through query__capability(). Depend-
ing on the capabilities of the physical device, the applica-
tion code can invoke sense() to retrieve specific sensor data.
However, if the sensor type is passive, the application code
is notified of new sensor data through the on__sense() event
handler. Mobile Fog also provides information about the lo-
cation through query_location(). If a process is running on
an edge device, query_location() returns the location of the
underlying device, whereas it returns the geospatial cover-
age of a process running on a computing node in the fog or
the cloud. Finally, an application can query its level in the

network hierarchy through query_ level().

Running processes on different devices can communicate
with each other using our hierarchical communication API,
send_up() and send_down(), as well as a point-to-point
communication API, send_to(). We provide the hierarchical
communication API to encourage application developers to
perform more efficient in—network processing. On the other
hand, we provide the point-to-point API to support commu-
nication with mobile nodes while the connection between a
mobile node and a computing instance in the fog changes as

the mobile node moves.

Once the code is written, an application developer com-
piles the code to generate a Mobile Fog process image that
can be deployed with an associated unique identifier called
an appkey. With the appkey, a developer can manage the
application using the management interfaces provided by
Mobile Fog. To launch an application, a developer invokes
start__app() with four parameters. The first parameter, app-
key, specifies the application code to deploy. Region speci-
fies a geospatial region where the application will run. Level
specifies the total number of levels in the hierarchy of Mobile
Fog processes. For instance, a video surveillance application
may need three levels of hierarchy to perform motion de-
tection at smart cameras, face recognition at fog computing
instances, and aggregation of identities at a cloud comput-
ing instance. The Capacity parameter specifies the class of
on—demand computing instances at each level of the network
hierarchy. In the previous example, each fog computing in-
stance requires high CPU capacity for face recognition while
the cloud computing instance requires high storage capac-
ity to record the location of each individual over time. We
also allow defining a dynamic scaling policy, which will be
explained in detail in Section [3.4

Unlike the computing instances in the fog and the cloud,
edge devices join an application by invoking connect_fog()

with the appkey. As a result, the edge device creates a
local Mobile Fog process, using its local system resources,
that connects to the Mobile Fog process on a fog computing
instance covering the location of the edge device.

If an edge device is mobile, the connection from the edge
device to a fog computing node changes as the location of the
edge device changes. When a mobile device moves from one
region to another, a Mobile Fog process covering the new re-
gion becomes the new parent of the edge device. To acknowl-
edge such a handover to the application, Mobile Fog in-
vokes a set of handlers, on__child_join(), on_parent_join(),
on__child_leave(), and on__parent_leave() on the mobile de-
vice, the old parent, and the new parent.

3.4 Dynamic Scaling

Many future Internet applications, especially sensor— and
event—based applications, deal with dynamic workloads from
the real world. To support these applications, Mobile Fog uses
on—demand computing instances in the fog and the cloud
to provide transparent scalability based on a user—provided
scaling policy. The scaling policy includes a set of monitor-
ing metrics, such as CPU utilization and bandwidth, and
scaling conditions that trigger dynamic scaling (e.g., CPU
utilization over 80%).

When a computing instance becomes overloaded due to
the dynamic workload, Mobile Fog creates on—demand fog
instances at the same network hierarchy level as the over-
loaded instance. To distribute the workload over multiple
computing instances, Mobile Fog splits the geospatial cov-
erage of the overloaded process into multiple smaller cover-
ages. Similarly, when multiple nearby processes at the same
network hierarchy level become underloaded according to
the user—provided scaling policy, Mobile Fog merges their
geospatial coverages into a single coverage area and termi-
nates all the processes except one for the merged coverage.

To allow transparent scaling, an application has to store
its application—specific data in a local object store called the
spatio—temporal object store. An application can store its ob-
jects tagged by type, location, and time using put_object()
and get_object(). For example, a traffic monitoring applica-
tion may store detected license plate numbers, tagged by the
detection time, camera location, and type LicensePlate Num-
ber. Upon dynamic scaling, Mobile Fog automatically parti-
tions the objects onto multiple Mobile Fog processes accord-
ing to the location of the objects and geospatial coverage of
the processes.

4. APPLICATIONS

4.1 Vehicle Tracking using Cameras

A metro area may have hundreds of cameras monitor-
ing the highways. These sensors could enable an applica-
tion that uses traffic cameras to help police identify and
track vehicles for which they have issued a search, which
we refer to as a BOLO. Pseudocode for a simplified ver-
sion of this application is given in Figure[2] to illustrate how
our API provides the necessary abstractions to keep track
of device capabilities and to build applications with sense-
process-actuate patterns. For brevity, a few important parts
of the application have been intentionally omitted.

There are three types of Mobile Fog processes in this ap-
plication. Camera processes are the leaves of the tree and
are responsible for sensing the environment and delivering

Tracking < 0
function on_sense(Type ¢, Data frame)
if —query_capability(CAP_MOTION_DET) Vv
detect__motion(frame) then
send_up(MSG__VIDEO_FRAME, Message(frame))
end if
end

function on_message(Tag t, Node sender, Message m)

if t = MSG_VIDEO_FRAME then
Interest < 0

10: Vehicles < detect_ vehicles(m.frame)

11: for Yvehic € Vehicles do

12: if vehic € Tracking then

13: update__position(vehic)

14: put_object(vehic, vehic.license_no,
m.time, m.location)

15: else

16: license < detect_ license(vehic)

17: if license then

18: license__no < read_ license(license)

19: if is_bolo(license_mno) then

20: put_object(vehic, license_no,

m.time, m.location)

21: Tracking < Tracking U {vehic}

22: send_up(MSG_FOUND_ VEHIC, vehic)

23: end if

24: else

25: Interest < Interest U {vehic}

26: end if

27: end if

28: end for

29: if |Interest| > 0 then

30: ptz__cmd < get_ PTZ(choose__vehicle(Interest))

31: else

32: ptz__cmd < get_ PTZ(REST_POSITION)

33: end if

34: send_down(MSG__PTZ, ptz_cmd, {sender})

35: else if t = MSG_PTZ then

36: if query_capability(CAP_PTZ) then

37: execute PTZ(m.ptz__cmd)

38: end if

39: end if

40: end

Figure 2: BOLO Vehicle Tracking Algorithm

video frames to their parent processes. Lines 2-6 in Figure 2]
show the handler that is executed every time a video frame
is produced. Our API can be used to determine whether a
“smart camera” has the ability to detect motion in the scene
(line 3), and if present, it can be used to avoid sending video
to the camera’s parent unless motion is detected.

The lowest tier of fog instances are the immediate parents
of the cameras and are responsible for identifying and track-
ing vehicles (lines 9-28) as well as controlling the cameras
(lines 29-38). This allows the most intensive computation
to be handled by the most widely distributed and lowest—
latency resources. Video frames received by processes with
camera children are processed by lines 9-34. First, a com-
puter vision algorithm is used to detect_vehicles() in the
video. If a vehicle is in the set of vehicles being tracked by
this camera (i.e., it was previously detected), then the ve-
hicle’s position in space is updated and the location of the
vehicle at that time is stored by put_object() on line 14.
Otherwise it is a newly detected vehicle, and the algorithm
attempts to identify it by its license plate. If the plate can
be read clearly on line 16, then we can detect the license
number (line 18) and determine if there is a BOLO for that
vehicle (line 19). If so, we record the vehicle’s location, add
it to the set of vehicles being tracked, and notify this pro-

Requires: n //number of levels in hierarchy

function on_new_parent(node parent)
if query_level()= n then
da < create_detection_ algorithm(query_location())
rq < generate_range query(query_location())
send_up(MSG_DEPLOY ,Message(da, rq, mobileld))
end if
end

9: function on_message(tag t, node sender, message m)
10: if t = MSG_SENSOR_DAT A query_level()= n — 1 then

11: put_object(sensor__data(m),"DAT",m.time,m.location)
12: else if t = MSG_DEPLOY then
13: if m.rq.range C query_location()) then
14: put_object(m.da,"DETECTION",NULL,
m.rq.range))
15: location__multicast(MSG__RQ,
Message(m.rq, nodeld),m.rq.range)
16: else
17: send_up(m)
18: end if
19: else if t = MSG_RQ then
20: if query_level()=n — 1 then
21: B + get_object("DAT",m.rq.time,m.rq.range)
22: send_to(MSG_BUFF, message(B), m.nodeld)
23: else
24: location_ multicast(MSG__ RQ,m,m.rq.range)
25: end if
26: else if t = MSG_ BUFF then
27: D « get_object("DETECTION", NULL, NULL)
28: P « process__events(D, m.Events)
29: send_to(MSG_ PATTERN,message(P), mobileld(P))
30: end if
31: end

Figure 3: Traffic Monitoring with MCEP

cess’ parent that a new BOLO vehicle was detected (lines
20-22).

However, if the license is not sufficiently clear to read, we
can use pan-tilt-zoom (PTZ) camera capabilities to zoom in
for a better view. Line 25 adds the vehicle to a set of “ve-
hicles of interest”. Since a camera can only zoom in on one
vehicle at a time, lines 29-33 select the vehicle to focus on
using a choose__vehicle() algorithm and then sends the PTZ
command to the camera (line 34). Lines 35-38 handle the
PTZ command when it is received by the camera. The in-
corporation of PTZ creates a sense-process-actuate feedback
loop that requires the low latency provided by the fog.

4.2 Traffic Monitoring using MCEP

Information from sensors on mobile devices, e.g., vehicles,
can help detect traffic situations if the information is shared
and aggregated. For example, a sequence of several similar
movement and acceleration patterns from different vehicles
on the same road can determine if an accident blocks the
road. The Mobility—driven distributed Complex Fvent Pro-
cessing (MCEP) system [5] enables deriving such patterns
from sensor data. MCEP allows consumers to specify their
interest in recent, nearby patterns with a detection algo-
rithm (da) and an associated spatio-temporal range query
(rq), which is parametrized with a time and range. For
example, a range query could select relevant sensor data
around a consumer that occurred in the last hour within a
one kilometer perimeter around the consumer.

Figure [3] shows how a simplified version of the MCEP
system is implemented using the Mobile Fog programming
model. Vehicles are on the nth level of the Mobile Fog hi-
erarchy and connect to the MCEP system by calling con-
nect_fog() (not shown). Sensor data from those vehicles is

buffered by Mobile Fog processes on level n — 1, henceforth
referred to as edge processes (Lines 17-18). This buffering
allows efficiently answering spatio—temporal range queries
after the vehicle has moved away from the edge process.

Each connected vehicle can post a query by sending a
MSG_DEPLOY message containing a detection algorithm,
range query, and its ID to its parent using send_up() (see
Lines 3-8), e.g., the vehicle connected to F'5 in Figure The
detection algorithm is pushed up the hierarchy to the Mobile
Fog process that is associated with a geospatial range that
fully contains the range of the query (Line 19-25), e.g., F3 in
Figure[I] This process is going to perform the detection al-
gorithm and pushes the range query down, via send__down(),
to all Mobile Fog processes that overlap with the range of
the query (Lines 22 & 31), e.g., F5 and Fg in Figure
Edge processes buffer the relevant sensor data for the detec-
tion and thus process the range query. Results of the range
query are sent via ID to the resource node that hosts the
detection algorithm (Lines 27-29) and processed there. De-
tected patterns are sent via ID to the mobile device (Lines
34-36). With each location update of a vehicle, or when a
vehicle connects to a new resource node, the callback inter-
faces on__child_leave() and on__new_parent() deploy a new
detection algorithm and range query, and revoke the previ-
ous one (see Line 2). To automatically migrate detection
algorithms and buffered sensor data when Mobile Fog scales
up or down, they are put in the context store.

S. EVALUATION

To show the benefits of Mobile Fog over a cloud—based
approach, in terms of communication cost, we conducted a
network simulation using OMNeT++ |8| with realistic traf-
fic patterns generated by SUMO [1]. We simulated a thou-
sand randomly moving vehicles over fifteen minutes on the
road network of an urban area (7.7 x 3.5 km). The entire
area was covered by a Quadtree communication structure:
one cloud as root, four core fog computing nodes, and six-
teen edge fog nodes that directly communicate with vehicles.
Fog nodes at each level cover uniformly divided parts of the
entire area. The network latency between each pair of nodes
is 20 milliseconds.

Based on the above setup, we simulated two large—scale
application scenarios requiring low end-to-end latencies. The
first application is vehicle-to—vehicle video streaming, where
each vehicle randomly chooses another vehicle within a query
range and starts streaming a fixed sized video to the target
vehicle. In this application, a cloud—based approach streams
all videos through the cloud while the Mobile Fog-based ap-
proach streams videos through intermediate fog computing
nodes, similar to software defined networking. The second
application is Mobile CEP, where a vehicle requests process-
ing sensor data from a certain query range. In this appli-
cation, the Mobile Fog—based approach stores sensor data
in the nearby edge fog computing nodes, while the cloud—
based approach stores all sensor data in the cloud. Both ap-
plications use the send__up() and send__down() API to han-
dle user requests in the Mobile Fog-based approach, which
means higher level nodes in the Quadtree will be utilized to
handle larger query ranges.

Figure [4] (a-b) shows the relative end-to—end latency and
core network traffic of the Mobile Fog—based approach com-
pared to the cloud—based approach while varying the query
range. The results show that the Mobile Fog—based ap-

‘ T 2.5 S — 2.5 600000
1.4 Network Traffic —— - 1.4 Network Traffic —}—
12 L Latency 112 5L Latency 42 500000 - B
|- - O o B |- -
. 1 1 _— f s & £ 400000
2 08| 408 £ o o 2
g : ce g y 5 o 300000 - B
© 06 [406 = © 1+ w41 =
S ‘a S 200000 - .
0.4 -4 0.4 ©
0.2 4 0.2 057 1°° 100000 -]
0- ‘ ‘ ‘ 0 0 4+ ‘ ‘ ‘ 0 0 ‘ . R
0 3000 6000 9000 12000 0 200 400 600 800 1000 0 02 04 06 08 1

query range [meter]

(a) Vehicle-to—vehicle video streaming

query range [meter]

(b) Traffic monitoring using MCEP

Cummulative Fraction of Nodes

(c) Workload distribution of MCEP

Figure 4: Relative latency and network traffic of Mobile Fog compared to the cloud—based approach

proach significantly reduces both end—to—end network la-
tency and core network traffic when query ranges are small,
since Mobile Fog allows users to be served by nearby fog
nodes. In the vehicle-to—vehicle video streaming application
(Figure , the Mobile Fog—based approach always out-
performs the cloud—based approach since the video stream
goes through the cloud only when a vehicle picks a far—
away target vehicle. However, in the MCEP scenario (Fig-
ure , the cloud—based approach outperforms Mobile
Fog when the query range is very large because the Mobile
Fog—based approach has to aggregate sensor data stored in
edge fog computing nodes before serving a user query. If
such a wide—scope aggregation happens frequently, the Mo-
bile Fog-based approach could also push sensor data up to
the cloud to achieve lower latency and lower network traffic
for query processing at the expense of higher network traffic
for normal operation.

Figure shows the various workloads at different fog
nodes. We measured the total number of events stored at
each Mobile Fog process running on edge fog nodes in the
MCEP scenario. The number of events stored at each pro-
cess is directly related to the necessary storage capacity,
as well as the processing needs since more events implies a
higher chance of a user request. As shown in the figure, the
workload distribution over different Mobile Fog processes is
highly skewed, i.e., only a few processes are overloaded be-
cause certain regions have higher vehicle traffic. This result
motivates dynamic scaling to handle the highly skewed and
dynamic workload of applications.

6. DISCUSSION AND FUTURE WORK

In this paper we discussed the design of Mobile Fog, a
programming model for large—scale, latency—sensitive appli-
cations in the Internet of Things (IoT). Since this is ongoing
research, it creates interesting research problems for future
work.

Runtime system implementation: We plan to develop a
runtime system that implements the Mobile Fog program-
ming model on real fog-enabled devices. The key challenge
is to develop a distributed runtime system that can migrate
Mobile Fog processes across different devices while provid-
ing reliability, security, and performance isolation for shared
infrastructure resources.

Process placement algorithm: To achieve better network
bandwidth utilization, latency, and load balance across dis-
tributed devices, we are currently working on an algorithm

that can adaptively find a near-optimal placement of Mobile
Fog processes. The key challenge in this direction is to find
a better placement based on dynamic constraints includ-
ing available resources, application workload, and migration
cost for Mobile Fog processes.

Acknowledgment

This work is supported by contract research “CEP in the
Large” of the Baden-Wiirttemberg Stiftung.

7. REFERENCES

[1] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz.
SUMO - Simulation of Urban MObility: An overview.
In Advances in System Simulation, SIMUL ’11, 2011.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog

computing and its role in the internet of things. In

Workshop on Mobile cloud Computing, MCC 12, 2012.

K. Hong, S. Smaldone, J. Shin, D. J. Lillethun,

L. Iftode, and U. Ramachandran. Target container: A

target-centric parallel programming abstraction for

video-based surveillance. In International Conference

on Distributed Smart Cameras, ICDSC 11, 2011.

B. Koldehofe, F. Diirr, M. A. Tariq, and K. Rothermel.

The power of software-defined networking: line-rate

content-based routing using openflow. In Workshop on

Middleware for Next Generation Internet Computing,

MWA4NG 12, 2012.

[5] B. Koldehofe, B. Ottenwiélder, K. Rothermel, and

U. Ramachandran. Moving range queries in distributed

complex event processing. In Distributed Fvent-Based

Systems, DEBS ’12, 2012.

D. J. Lillethun, D. Hilley, S. Horrigan, and

U. Ramachandran. MB++: An integrated architecture

for pervasive computing and high-performance

computing. In Embedded and Real-Time Computing

Systems and Applications, RTCSA ’07, 2007.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Computing, 8(4), October -
December 2009.

[8] A. Varga and R. Hornig. An overview of the
OMNeT++ simulation environment. In Simulation
tools and techniques for communications, networks and
systems & workshops, Simutools 08, 2008.

3

4

6

	Introduction
	Related Work
	Programming Model
	System Assumptions
	Application Model
	API
	Dynamic Scaling

	Applications
	Vehicle Tracking using Cameras
	Traffic Monitoring using MCEP

	Evaluation
	Discussion and Future Work
	References

