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Abstract—The advent of mobile phones paved the way for
a new paradigm for gathering sensor data termed ‘Public
Sensing” (PS). PS uses built-in sensors of mobile devices
to opportunistically gather sensor data. For instance, the
microphones that are available in a crowd of mobile phones
can be used to capture sound samples, which can be used to
construct a city noise map.

A great challenge of PS is to reduce the energy consumption
of mobile devices since otherwise users might not be willing
to participate. One crucial part in the overall power consump-
tion is the energy required for the communication between
the mobile devices and the infrastructure. In particular, the
communication required for sending sensing queries to mobile
devices has been largely neglected in the related work so far.

Therefore, in this paper, we address the problem of minimiz-
ing communication costs for the distribution of sensing queries.
While existing systems simply broadcast sensing queries to all
devices, we use a selective strategy by addressing only a subset
of devices. In order not to negatively affect the quality of
sensing w.r.t. completeness, this subset is carefully chosen based
on a probabilistic sensing model that defines the probability of
mobile devices to successfully perform a given sensing query.

Our evaluations show that with our optimized sensing query
distribution, the energy consumption can be reduced by more
than 70% without significantly reducing the quality of sensing.

Keywords-Mobile Computing, Energy-aware systems

I. INTRODUCTION

Modern mobile phones are equipped with various sensors
such as positioning sensors (GPS), accelerometers, magnetic
field sensors, light sensors, acoustic sensors (microphone),
or barometers. Moreover, fast communication technologies
like 3G networks or WiFi together with cheap flat rates are
available, which has led to an “always on” usage pattern
where mobile phones are constantly connected to the Internet
and can access server infrastructures.

These technology trends effectively turn mobile phones
into powerful networked sensor platforms, which can be uti-
lized to gather environmental data. Using mobile phones for
sensing has been termed “Public Sensing”, “Mobile Phone
Sensing”, “Urban Sensing”, or “Participatory Sensing” in
the literature (throughout this paper, we use the term “Public
Sensing” (PS)). The fact that PS can be used on-demand to
gather data of larger geographic areas without big upfront
investments makes it an attractive alternative to classical

sensor networks, in particular, in densely populated areas
such as urban centers.

Despite these advantages, implementing a PS system
also raises new challenges. In particular, minimizing the
energy consumption of mobile phones is a prerequisite since
otherwise users might not be willing to participate in PS.
Basically, energy is consumed by two operations, namely,
sensing data including positioning to geo-reference the
sensed data, and communication including the transmission
of sensed data as well as the messages for tasking mobile
devices to sense [1]. Although a number of approaches for
optimizing sensing have been proposed, including our own
work [2], [3], only few approaches tackle the problem of
optimizing the communication part of energy consumption.
However, as for instance shown by Balasubramanian in [4],
mobile communication consumes a considerable amount of
energy. Hence, optimizing communication is essential for
the implementation of an energy-efficient PS system.

Therefore, in this paper, we focus on optimizing the
communication part of PS, more precisely, the distribution of
sensing queries. Most existing PS systems perform tasking
of mobile devices by simply broadcasting a sensing query to
all available devices. Obviously, this simple strategy wastes
energy for devices that cannot participate in sensing, for
instance, due to their geographic distance to the sensing
query. Consider, for instance, a sensing query for sensing
the temperature and noise level at the Big Ben in London
within the next ten minutes. Broadcasting this query to all
mobile devices in London certainly involves many devices
which cannot reach Big Ben within the given deadline.

The main contribution of this paper is therefore an effi-
cient sensing query distribution mechanism that only sends
queries to devices that are likely to actually execute the given
sensing query successfully. Since we assume that we cannot
control the movement of devices in our PS system—i.e.,
sensing is performed opportunistically, whenever a device
is close to the location of a sensing query—, we cannot be
perfectly sure that a device actually comes close enough to
execute a given query before the sensing deadline. Therefore,
we present the design of a probabilistic sensing model. This
model describes the likelihood that a mobile device is able
to sense data for a given sensing query by utilizing spatial
information about the device provided by a specifically
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designed location update protocol. Based on this model,
we present an algorithm for selecting a minimum set of
devices to receive a given query such that the chances of
successful sensing this query are not negatively affected.
In our evaluations we show that this optimization reduces
the energy consumption by more than 70% compared to an
implementation that distributes a given sensing query to all
available mobile devices.

The rest of this paper is structured as follows. After giving
an overview of the related work in Section II, we introduce
the underlying system model of our approach in Section III.
In Section IV and V, we introduce the query model of our
PS system and the problem statement. The basic PS system
is then introduced in Section VI. The main contributions
of this paper are our probabilistic sensing model and the
device selection algorithm for query distribution, which are
presented in Section VII and VIII, respectively. Finally, in
Section IX we evaluate the performance of our approach
before Section X concludes this work.

II. RELATED WORK

Most of the work which has been published in the field of
PS so far presents architectural frameworks that do not deal
with algorithmic details of saving energy. A good overview
of these systems is given in the survey of Lane et al. [5].
Only recently, energy efficiency also got into the focus
of PS research. The approaches for saving energy can be
classified into concepts for reducing the number of sensing
operations and concepts to reduce communication. In order
to reduce sensing costs, we investigated techniques to reduce
the energy required for positioning in previous work [2], [6].
Moreover, in [3] and [7] we presented cooperative sensing
algorithms that coordinate sensing between mobile devices
to avoid redundant sensor readings. A more generic way to
increase energy efficiency has been proposed by Priyantha
et al. [8] and Lu et al. [9], where the former proposed
dedicated hardware components to enable energy-efficient
sensing. The latter introduced sensor-specific pipelines to
reduce the processing costs of recorded sensor data.
Considering the aspect of efficient query distribution,
only a few approaches have been proposed so far. Lu et
al. [10] showed with their “Bubble-Sense” system how
a sensing query can be “pinned” to a physical location
by periodically exchanging ad-hoc messages between the
devices near that location. However, this concept relies on
the wide availability of ad-hoc communication interfaces on
all devices, which are still hard to configure and therefore
are rarely available in practice. Moreover, if no device is
nearby the location of the sensing query, the query is lost
and can only be restored by a node that has stored the query.
Other concepts that are more closely related to our work
were proposed by Reddy et al. [11], Ruan et al. [12] and
Cardone et al. [13]. Similar to our work, their approaches
choose a subset of mobile devices to which a sensing query
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Figure 1. System Architecture

is distributed. To decide which devices are most suitable
for being included into that subset, their approaches analyze
historic information about the user movement patterns and
extract the places were the user regularly resides. However,
this requires that the user agrees to store a privacy critical
user profile of its movement history.

Therefore, the query distribution approach we present
in this paper uses a different strategy. First, we do not
have to analyze the user profile but rather estimate the
future movement of a user based only on its last known
position. Hence, obfuscation techniques can be used on top
of our approach to hide individual user IDs. Moreover,
we are the first so far to provide a probabilistic sensing
model that is used for selecting the appropriate devices for
query distribution to account for the inevitable uncertainty
of opportunistic sensing.

III. SYSTEM MODEL

Next, we present the architecture of our PS system (see
Fig. 1). Our system consists of a computing infrastructure
and a set of mobile devices. Mobile devices are carried by
their owners, who are moving according to an underlying
road graph. Since we strive for an opportunistic sensing
approach, we assume that the movement of the mobile
devices cannot be influenced by the system. Each device is
equipped with a set of sensors for recording environmental
phenomena, a positioning system (e.g., GPS), and a mobile
communication interface such as UMTS or LTE.

The computing infrastructure of the system consists of
a set of servers and a central gateway that serves as query
interface for clients that request sensor data from the system.
For reasons of scalability, the geographical coverage of the
sensing system is partitioned into disjoint service areas,
where each of the servers is responsible for one service area.
A server can communicate with the mobile devices located
in its service area via mobile communication. Furthermore,
we assume that a server is aware of all mobile devices
that are currently located in its service area. This can be
implemented by a node registration mechanism like the
one used in cellular networks, for instance. The servers are



connected with each other and with the gateway through a
fixed communication network.

To characterize the energy consumption of the mobile
devices for mobile communication, we follow the measure-
ments of Balasubramanian et al. [4]. They showed that the
energy for transferring small pieces of data is negligibly
small in comparison to the energy that is needed for power-
ing up and down the communication interface. More details
of this energy model are presented in Section IX.

IV. QUERY MODEL

In order to start the gathering of sensor data for a certain
location, a client sends a sensing query to the gateway. In the
following, we explain the query parameters in more detail.
A sensing query contains the following parameters:
o The sensing range, which is defined by the center
coordinates (z,y) and the radius 7.
o The sensor type s;, which defines the type of the
requested sensor data.
o The sensing deadline t;, which defines the time until
when the sensor data must be recorded.

A sensing query is distributed to a subset of mobile
devices, as presented later in detail, which try to record
sensor data for that query using their build-in sensors. A
sensing query ¢, which was issued at time ?,, is satisfied
if there is at least one mobile device m that fulfills the
following two conditions:
D) 3t € [ty td] = d((x,y), posm(t)) < rq, where d(-,-)
denotes the Euclidean distance and pos,,(t) the posi-
tion of m at time t.

2) sy € m.types, where m.types denotes the sensors that
are available on device m.

To simplify matters, we neglect the inaccuracy of the
positioning system in the description of our concepts. Never-
theless, all concepts can be extended to take the positioning
error into account using techniques like map-matching. Fur-
thermore, we limit our considerations to the case in which
data for only a certain sensor type is queried and denote
the set of all devices that are equipped with this sensor as
M. For cases in which different types of sensor data are
queried, the following concepts can be extended by defining
an individual set of devices for each sensor type.

V. PROBLEM STATEMENT

Simply broadcasting a sensing query to all mobile devices
m € M would cause a high energy consumption on the
devices, since every received message consumes additional
energy. In particular, this is critical if many sensing queries
are issued to the PS system. The problem of this naive
distribution is that it includes also devices that cannot
participate in sensing until the query deadline because of
their spatial distance to the sensing range.

In our optimized approach, we tackle this problem by
distributing the query to only a subset of devices (called

the recipient set R C M) that have a high probability of
actually sensing the query successfully. However, reducing
the recipient set also increases the risk that a sensing query
is missed, since not all devices are aware of the query. Our
goal is now to find a minimal recipient set that achieves the
same sensing result as the naive distribution.

Let o(M) € {true, false} denote the successful or un-
successful execution of a given query ¢ when ¢ is distributed
to all m € M. Our problem can now be formalized as:

minimize |R)|
RCM (1)
subject to  o(R) = o (M)

Sending ¢ only to R instead of M avoids the energy for
receiving ¢ on all devices in M\R. This is in particular
very beneficial if M is rather large or if many queries are
distributed to the mobile devices.

Note that the size of the minimal R is 1 if o(M) = true
and 0 if o(M) = false. However, since we cannot foresee
the value of o(M) at decision time and do not know the
future movement of the mobile devices, in most cases we
will choose a larger R to ensure that the given sensing
constraint is fulfilled. In particular, we will include all
mobile devices in R that are very likely to sense ¢ before
the sensing deadline. For this purpose, we present in the
following a probabilistic sensing model that predicts the
sensing probability for each device. Based on this proba-
bilistic model, we present a recipient selection algorithm that
chooses a recipient set that promises high sensing success.

VI. BASIC SENSING SYSTEM

To begin with, we first present a basic sensing systems that
implements a simple query distribution serving as a refer-
ence for evaluating the energy efficiency of our optimized
approach. To illustrate the operations of this system, we
describe its processing steps with the help of a sensing query.

Assume a client queries the system by sending a query ¢
to the query interface of the gateway. The gateway forwards
q to the server whose service area intersects with the sensing
range of g. If the sensing range overlaps with the service
areas of multiple servers, the query is forwarded to all of
these servers, and the server covering the center (z,y) of
query g operates as coordinator. For the rest of this paper,
we only consider the case where ¢ is forwarded to one server
and do not consider the coordination in more detail.

The query distribution algorithm that runs on the server is
illustrated in Fig. 2. As indicated in lines 2—4, q is distributed
to every mobile device m € M. A mobile device that
received a sensing query constantly checks if it is in the
sensing range of the received query. In this case, it records
data for ¢ and uploads the recorded data to the server. As
soon as the server receives sensor data from a mobile device
m,, it returns the sensed data back to the gateway, which
forwards the query result to the client. To avoid energy



1: procedure QUERY DISTRIBUTION(q)

2 D+ M > Modified in optimized approach
3 for all m € D do

4 SENDQUERY (m, q)

5: result + 0

6 while ()00 < tq) A (result = 0) do
7 result < RECEIVERESULT(m,.)
8 if result = 0 then

9: return error

10: for all m € D\{m,} do

11: STOPQUERYMSG(m, q)

12: return result

Figure 2. Query Distribution Algorithm

consuming redundant sensor readings on the mobile devices,
the server subsequently sends a message to all devices that
initially received ¢ to stop the execution of the query (lines
10-11). If ¢ is not sensed until the sensing deadline ¢4, the
sensing query fails, and the server returns an error message
to the gateway, which in turn informs the client (lines 8-9).

VII. PROBABILISTIC SENSING MODEL

The basic idea of our optimized approach is to reduce the
query distribution to only a subset R C M (line 2 in Fig. 2
is replaced by D < R) and include only those devices in R
that promise a high sensing success. To this end, we present
a probabilistic sensing model defining the probability that a
device satisfies a given sensing query.

We introduce the probabilistic sensing model in four steps:
First we introduce the concept of location updates, which is
needed to obtain spatial information about the devices on the
server. Then, we present a movement prediction model that
estimates future device positions based on the last location
update. Subsequently, we define the sensing probability for
a device on a single path and then extend this definition to
reflect the sensing probability over multiple paths.

A. Location Update Protocol

In the basic sensing system, a server knows which devices
are currently located in its service area but has no informa-
tion about their spatial distribution within this area. However,
to determine the probability that a device can satisfy a
given sensing query, an estimation about the current device
position is needed. To provide this information, we require
a device to run a location update protocol which triggers the
device to send location update messages to the server.
Since sending the device position to the server consumes
additional energy and is therefore critical for our goal of
increasing energy efficiency, we have designed a specific
location update protocol that adapts to the needs of the
query distribution scenario. The problem of existing location

update protocols (for a comparison see [14], [15]) is that
they trigger a mobile device to update its position on the
server in a proactive manner. For instance, the distance-based
update protocol triggers a location update message whenever
the current position of the mobile device deviates by more
than a predefined threshold from the position on the server.
However, if sensing queries are issued only very rarely, the
overhead for using such an update protocol can exceed the
energy savings that can be achieved using our adaptive query
distribution, which requires location information about the
devices. As a result, these proactive update protocols are not
suitable for our scenario.

Instead, we propose a passive location update protocol that
adapts to the number of sensing queries and increases energy
efficiency by sending location updates in an opportunistic
fashion. As mentioned in Section III, the energy overhead
for powering up and down the communication interface
is much larger than the actual transmission energy for
small messages. We utilize this characteristic for our update
protocol as follows: A device updates its current position on
the server after each communication with the server (line 4,
7 and 11 in Fig. 2). Since the communication interface of
the device is already powered up, the energy for sending
a location update messages is rather small. The second
advantage of this protocol is that the number of location
updates scale with the number of sensing queries that are
issued to the system. As we will see later on, the overhead of
this update protocol will not exceed the energy savings from
our approach even if only few queries need to be distributed.

Note that if only a small number of location updates
will be sent, the device position on the server can get
very inaccurate over time. However, we will see that our
approach also works on inaccurate position information and
automatically adapts the size of recipient set R to account
for this case. On the other hand, the frequency of location
updates is limited by the sampling time of the positioning
sensor, i.e., updates are only sent when the positioning
sensor provides a new position. In the following, we refer
to the position of the device that is stored on the server as

Pu-

B. Movement Prediction Model

For inferring sensing probabilities, it is important to know
whether the sensing range of a given sensing query lies on
the future movement path of a certain mobile device. For
this purpose, the movement prediction model enumerates the
possible movement paths of a device and assigns each path
a probability that the device will actually take this path.
As mentioned earlier, mobile devices move on a road
graph that is known to the server. This road graph is defined
by a set of road nodes and a set of edges that interconnect
these nodes (see Fig. 3a). For each road node r, the set
of its adjacent road nodes is given as A,. To reflect the
significance of different roads, an individual turning function



e Road Node
ﬁ o Root Node
Pu o Leaf Node

(a) Road Graph
Geometry

(b) Tree of Possible Movement
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fr+ A x A, — [0,1] is given for each road node. The value
of fr(ra,rp) depicts the probability that a mobile device
leaves the road node r towards road node r;, when having
entered it via road node r,. This function can for example
be derived from road traffic analysis [16].

For predicting the movement of device m, we enumerate
the different paths that the device can take starting from
its last known position p,,. However, since the number of
possible paths grows exponentially over time, we limit this
number by assuming that m moves towards some unknown
destination on the graph traversing the shortest path (which
is also the basic assumption of most sophisticated mobility
models, for instance the random waypoint model). The
movement of m from time ¢, (the time of the last location
update p,) until sensing deadline ¢4 can then be described
by a tree of road nodes which is rooted at p, (see Fig. 3b).
The leaves of this tree consists of all points on the road
graph that are distance $;,40 = (td — tw) - Vmax away, where
Umae depicts the maximum speed of device m. Note that
the value of v,,,,, can either be obtained directly from the
device or some value on the device speed can be assumed
(for instance, by taking speed limits of the road graph into
account). Each path from the root node towards a leaf
describes one possible movement path w that m can take
until t;. We describe a path w by the nodes that are traversed
on this path, i.e., w = (Froot,** * ; Tleas)-

To reflect the probability that a devices takes a certain
path, we introduce the random variable X,,. The probability
P(X,, = w) that m takes path w is then given by multiply-
ing the respective turning probabilities at the encountered
road nodes when traversing w:

i<|w|—1

P(X, =w) = H Fopg(wli — 1, wli +1])  (2)

Having defined the probability that a device moves on a
given path, we will define in the following the probability
that it can sense a given query under the condition that it
moves on this path.

C. Single Path Sensing Probability

To denote the sensing probability we introduce the random
variable X € {0, 1}, which reflects the case that a device m
can sense a given query ¢ (Xs = 1) or not (X = 0). We will
first derive the distribution of X under the assumption that

sensing
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m takes a certain path w, i.e., P(X; | X\, = w), before we
derive the general distribution of X in the next subsection.

Assuming that m traverses path w, the line segment
[pi,,pi,] that intersects w with the sensing range of ¢
contains the points from which m can sense ¢ (see Fig. 4).
In the following, we refer to the end of path w, which is
Smaz away from p,,, as Penq. To determine whether m can
sense ¢, we are interested in the likelihood that m passes
line segment [p;, , p;,] in the time frame between ¢ is queried
(referred to as t,) and sensing deadline ¢4. To this end, we
derive in the following a probabilistic representation of the
position of device m for time ¢, and #4.

To consider a device’s movement speed, we assume that
a probability density function (pdf) fx, (v) of the random
variable X, is given, which describes the average speed of
the device for an arbitrary time interval. We assume that the
values of X, for two disjoint time intervals are independent.
This pdf can either be provided directly by the device or we
can just assume an appropriate probability distribution to
approximate the device speed (e.g., Gaussian distribution).
The distance d that a device passes in a given time period
At is then given by the following formula:

d= X, At

We denote the distance that m passes on w between time t,,,
when the last location update was received, and ¢, as Xg, .
Analogous, we denote the distance that m passes between
tq and t; as Xg,. Both are defined as follows:

Xdl =Xy - (tq - tu)
Xa, = Xy - (ta—ty)

The two variables X4, and X, are a linear transformation
of the random variable X,,. Therefore, they are both random
variables as well. The pdfs for the linearly transformed
variables are then given as follows:

1 d

ty —tu Ix, (tq —tu>
1 dy

tg— 1, Fx <td—tq)

Based on these probabilistic definitions, the position of m
on w at time t, is given as p,, + Xg, and as p, +Xg4, +Xg,
for time t;. We can now formulate the case in which m
passes line segment [p;,,p;,] in the time frame [t,, 4] by
the following two conditions:

fxa, () =

fxa, (do) =



1) When m receives ¢ from the server at time ¢, it must
not have moved further than point p;, on w. Otherwise
m has already passed ¢ when it receives the query.

2) When the sensing deadline of ¢ is reached at time ¢4,
m must have reached at least point p;, on w.

More formally, we say a device m can sense ¢ on a given
path if the following two conditions are fulfilled:

Xa, <Diy (€)]
Xdl + Xd2 > Diy (€Y

Here, p; depicts the distance between p, and p; on path
w. Note that due to our shortest path assumption, we can
assume that a device only moves towards the end of path w.

To formulate these two conditions in a closed form, we
need to define the joint pdf of the random variables X4, and
X4, + X4,. Due to the independence of X4, and Xg4,, we
get the convolution of the pdf of both variables as:

fXd1 Xay +Xa, (dlﬂ d) = fXdl Xy (dh d— dl)
= [xa, (d1) - fxy, (d—di)

We can now formulate the probability that m senses ¢
when moving on path w by integrating this joint pdf over
the boundaries that we defined in Equation 3 and 4:

P(X, =1|Xy =w)
_P Xd1 < Piss Piy < Xd1 + ng < pend)

p12 Pend
/ / fXdl fXd2 (
Piy

Note that we assume that there are only two intersection
points between w and the range of ¢. Cases in which the
sensing range intersects the path on more than two points
can be handled by summing up the single probabilities for
each intersection using the inclusion-exclusion method [17].

(%)
— ) dydx

D. Multiple Path Sensing Probability

To get the overall probability P(X; = 1) that a device can
sense a given query g, we have to combine the definitions
from Equations 2 and 5. Given the probability that device
m moves on path w and the probability that m can sense ¢
if it moves on w, we apply Bayes’ Theorem as follows:

=) =3P

Vwi

Xs=1]w;) P(Xy=w;) (6)

In the following, we denote the probability P(X, =
device m sensing query q as p, q-

1) for

VIII. RECIPIENT SELECTION

We can now use these definitions to find a recipient set
for the query distribution. The basic idea is to define the
joint sensing probability for a given set of devices and use
this metric to find a recipient set that promises high energy
efficiency and sensing success.

The joint sensing probability for a given set of devices
D is given as the probability that query ¢ will be satisfied
when it is distributed to all m € D. To this end, we use
the single device sensing probability from Equation 6 and
calculate the joint sensing probability p, for D as:

po(D)=1= T (1 =pm.a) (7)

VmeD

This function can be derived from the special case of a
binomial distribution, where at least one event is true. Note
that we can easily extend our system by requiring that a
sensing query is only satisfied if it is sensed by & different
devices. In this case, Equation 7 has to be adapted to
consider k£ sensing events (see [17] for the combinatoric
details).

To find a promising recipient set R, we use this definition
to quantify the sensing success of different R € 2™ in order
to find a small R that has a high sensing probability. As a
first step, we limit the solution space of this decision by
restricting the number of devices that are candidates for
being included in R. As we can conclude from Equation
7, only those devices are valuable candidates that have a
sensing probability greater than zero. Hence, we define the
candidate set, which is given as C' = {m € M |py, 4 > 0}.
Now, we define R by greedily including the mobile device
with the highest sensing probability in C' until p,(R) reaches
a predefined system parameter p, € (0,1], which we refer
to as the rarget probability. In the evaluation, we will see
which values of ji,, will result in a high energy efficiency.

In more detail, R is computed by the following algorithm:

1: procedure RECIPIENT SET SELECTION(C), /1)
2 R+ 0

3 pg 1

4 repeat

5 m < GETMAXPROBDEVICE(C)

6 R+ RU{m}
7 C <+ C\{m}

8 Pg < Pq - (1
9 until (1 —p, > )

10: return 1R

— Pm.g)
V(R=C)

The function call in line 5 returns the device with the
currently largest value of p,, , in C. The algorithm stops
when the joint sensing probability of R reaches the target
probability 1, or when R is equivalent to C. In the latter
case, the target probability 1, cannot be reached. However,
to provide a best effort solution by maximizing the sensing
probability, the algorithm returns R, which is equal to C.
Note that this algorithm automatically adapts the size of
the recipient set to the accuracy of the device positions on
the server. More precisely, if a device has not updated its
position on the server for a long time, the probability p,, 4
is rather small, since the device may have taken a large



number of possible paths. As a result, many devices have to
be included in R to reach target probability i, .

IX. EVALUATION

In this section, we present the evaluation results of our
system. Since real-world experiments would require a large
number of physical devices and participants, we evaluated
our system with the help of a mobility simulator. Before
we present the simulation results, we shortly introduce the
simulation setup and the energy model we used.

A. Simulation Setup

We used the ONE network simulator [18] to implement
the concepts presented in this paper. To allow for the
calculation of sensing probabilities for several hundreds of
devices in real-time, we precalculated the shortest path dis-
tances for each pair of road nodes in advance. Furthermore,
we approximated the integrals for the calculation of the
probabilistic sensing model numerically. For simulating the
device mobility, we used the built-in mobility traces files
of the simulator, which implement a random shortest path
movement of pedestrians on the road graph of Helsinki with
size 15km?. We assume not to have any prior knowledge
about the turning probabilities at intersections on this map
and, thus, assume them to be uniformly distributed. Having
accurate information about turning probabilities would even
improve our concepts, hence, the following results can be
seen as lower bound on the performance of our approach.
We simulated 3 hours of pedestrian movement and generated
a sensing query per minute at a random position on the map
with a sensing deadline of 300 seconds.

B. Energy Model

To characterize the energy of the mobile device, we use
the widely referenced model of Balasubramanian et al. [4].
They subdivide the energy consumed by the mobile devices
for transmitting data into three parts. The ramp energy is
needed for powering up the communication interface and
is given as 3.5J. The transmission energy is consumed for
the data transmission and is given as 0.025J/KB. The tail
energy is the energy that the interface consumes until it
is powered down. The tail time is given as 12.5s and the
interface consumes 0.62 J/s until it powers down. This leads
to the following energy model that describes the energy
consumption of receiving x KB data at time ¢ when the last
data transfer ended at time ¢':

_ J0.0250+ (t —t')-0.62 2 ift—t <125s
] 0.0252 +12.55-0.62Z + 357 else

Balasubramanian et al. have also shown that the energy for
sending and receiving is equivalent for message sizes below
1 KB. Hence, we use the above energy model for both cases.

For the rest of this paper, we only consider the com-
munication energy (i.e., for receiving sensing queries and
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sending location updates). Also considering the energy that
is consumed by the devices for positioning (e.g., GPS) would
add the same amount of energy in all approaches and is
therefore not decisive.

C. Energy Efficiency and Sensing Success

To begin with, we look at the energy efficiency and the
sensing success of the query distribution.

Fig. 5 shows the total energy consumption cumulated over
all mobile devices for different simulation scenarios. In each
scenario, 500 mobile devices were simulated and a different
value for the target probability parameter 1, (see Section
VIII) was chosen. The figure shows the results of the basic
approach and the optimized query distribution. First, we see
that the basic approach consumes significantly more energy
in every scenario than the optimized approach. Even if fi),
is set to 1, i.e., a query is distributed to all devices in the
candidate set, the optimized approach consumes 68 % less
energy than the basic approach. For smaller values of ,,,
the energy consumption can be reduced even more.

To see if this energy reduction has a negative impact on
the sensing success, we compare the number of successfully
satisfied queries for the same scenarios as before (see Fig. 6).
For this analysis, the basic approach serves as a base
line, since it achieves the best possible sensing result by
distributing a sensing query to all devices. The figure shows
that setting the target probability to higher values than 0.8
results in the same number of satisfied queries as in the basic
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approach. Even if i, is set to 0.6, still 95 % of the queries
are satisfied compared to the basic approach.

These results show that the energy consumption for query
distribution can be reduced significantly without reducing
the sensing success. In particular, setting the target probabil-
ity parameter to u,, = 0.85, our approach reduces the energy
consumption by 70 % compared to the basic approach while
the same number of queries are satisfied.

To see how energy and sensing success vary over device
density, Fig. 7 and 8 show the same results for different
number of mobile devices in the simulation. We see that the
energy savings increase with the number of devices. This
clearly highlights the benefit of our approach: While the
energy for query distribution grows linearly with the number
of devices in the basic approach, our approach limits the
number of query receivers in order to save energy. Further-
more, choosing j, = 0.8, the average energy consumption
over all scenarios can be reduced by 70 % while on average
98 % of the queries can be satsified compared to the basic
approach. From this analysis we can conclude that i, = 0.8
is a good parameter setting in order to reduce energy without
reducing sensing success in all scenarios.

D. Message Overhead

To understand how the presented energy values are com-
posed, we look at the number of messages that are sent
in the system. Fig. 9 and 10 show the message overhead
for the query distribution and the location update messages,
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respectively. We see that the basic approach sends a large
number of queries on the one hand. On the other hand, it
does not require any location update messages. However, the
energy spent for sending queries dominates the saved energy
for location updates compared to the optimized approach.
For the optimized approaches, we see that a smaller value
of 1, results in less query messages. Clearly, the smaller i,
the less devices are necessary to reach the target probability.
Hence, less query messages are distributed.

Fig. 10 shows the number of location update messages
that are sent for different scenarios in which the number
of queries requested by the clients vary. To this end, the
interarrival time between two consecutive queries is varied
for different simulations (shown on the x-axis). We see that
the number of location updates decreases with the number
of queries that are issued to the system. As intended, the
message overhead of our location update protocol adapts
to the query distribution, which makes our approach also
efficient in scenarios where sensing queries are issued only
rarely, as we will see in the following.

E. Query Rate

Finally, we look at the efficiency of our system for different
numbers of queries requested by the clients in Fig. 11. We
see that our optimized approach performs better in relation
to the basic approach, the more frequently queries are issued.
On the other hand, the larger the time between two queries,
the less are the energy saving of the optimized approach.
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Obviously, the more queries need to be distributed, the more
energy can be saved in the query distribution.

Looking at the situation when queries are requested less
frequently, we see that our approach converges to the basic
approach. In particular, this means that our update protocol
adapts to this scenario by reducing the sending rate of
location updates. Since the location information on the PS
server is rather old, the recipient set selection algorithm has
to include almost all devices for new queries.

X. CONCLUSION & FUTURE WORK

In this paper, we presented an efficient query distribution
approach for PS systems. In comparison to other PS systems
that simply broadcast sensing queries or rely on historical
movement data of users, our approach distributes queries
selectively and only relies on the last known position of a
mobile device. We presented a probabilistic sensing model
and an algorithm that restricts the distribution to those
devices that are best suited for sensing. We showed that our
approach can significantly increase the energy efficiency in
comparison to a basic system, while still providing a very
high sensing success rate. The total energy savings of the
system increase with a higher number of mobile devices and
with a higher query rate.

In future work, we are going to extend our work on query
distribution in PS. Instead of considering one shot queries,
we investigate the distribution of periodic sensing queries
which have to be sensed in certain time intervals. To this
end, we have to extend our probabilistic sensing model to
consider more than one sensing of a query and introduce
adaption mechanisms for the re-distribution of queries.

XI. ACKNOWLEDGEMENTS
This work was funded by the Com’N’Sense project of the
German Research Foundation (DFG).
REFERENCES

[1] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell,
“Sensing meets mobile social networks: the design, imple-
mentation and evaluation of the cenceme application,” in

[2]

(3]

(3]

(6]

(71

(8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Proc. of the Conf. on Embedded Network Sensor Systems,
2008.

P. Baier, F. Diirr, and K. Rothermel, “Psense: Reducing energy
consumption in public sensing systems,” in Proc. of the Conf.
on Advanced Information Networking and Applications, 2012.

H. Weinschrott, F. Diirr, and K. Rothermel, “Streamshaper:
Coordination algorithms for participatory mobile urban sens-
ing,” in Proc. of the Conf. on Mobile Adhoc and Sensor
Systems, 2010.

N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani, “Energy consumption in mobile phones: a measurement
study and implications for network applications,” in Proc. of
the Conf. on Internet Measurement, 2009.

N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. Campbell, “A survey of mobile phone sensing,” Commu-
nications Magazine, IEEE, vol. 48, pp. 140-150, 2010.

P. Baier, H. Weinschrott, F. Diirr, and K. Rothermel, “Map-
Correct: automatic correction and validation of road maps us-
ing public sensing,” in Proc. of the Conf. on Local Computer
Networks, 2011.

D. Philipp, F. Diirr, and K. Rothermel, “A sensor network
abstraction for flexible public sensing systems,” in Proc. of
the Conf. on Mobile Ad-Hoc and Sensor Systems, 2011.

B. Priyantha, D. Lymberopoulos, and J. Liu, “Littlerock: En-
abling energy-efficient continuous sensing on mobile phones,”
Pervasive Computing, IEEE, vol. 10, pp. 12-15, 2011.

H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell, “The jigsaw continuous sensing engine for mobile
phone applications,” in Proc. of the Conf. on Embedded
Networked Sensor Systems, 2010.

H. Lu, N. D. Lane, S. B. Eisenman, and A. T. Camp-
bell, “Bubble-sensing: Binding sensing tasks to the physical
world,” Pervasive and Mobile Computing, vol. 6, 2010.

S. Reddy, D. Estrin, and M. Srivastava, “Recruitment frame-
work for participatory sensing data collections,” in Proc. of
the Conf. on Pervasive Computing, 2010.

Z. Ruan, E. C. H. Ngai, and J. Liu, “Wireless sensor deploy-
ment for collaborative sensing with mobile phones,” Comput.
Netw., vol. 55, pp. 3224-3245, 2011.

G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea,
M. Talasila, and R. Curtmola, “Fostering participaction in
smart cities: a geo-social crowdsensing platform,” Commu-
nications Magazine, IEEE, vol. 51, pp. —, 2013.

A. Leonhardi and K. Rothermel, “A comparison of protocols
for updating location information,” Cluster Computing, vol. 4,
pp. 355-367, 2001.

P. Baier, F. Diirr, and K. Rothermel, “Opportunistic position
update protocols for mobile devices,” in Proc. of the Conf.
on Ubiquitous Computing, 2013.

M. Mabher, “Estimating the turning flows at a junction: a
comparison of three models,” Traffic Engineering & Control,
vol. 25, pp. 19-22, 1984.

P. J. Cameron, Combinatorics: Topics, Techniques, Algo-
rithms. Cambridge University Press, 1994.

A. Keridnen, J. Ott, and T. Kirkkéinen, “The ONE Simulator
for DTN Protocol Evaluation,” in Proc. of the Conf. on
Simulation Tools and Techniques, 2009.



