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Abstract—The advent of mobile phones paved the way for
a new paradigm for gathering sensor data termed “Public
Sensing” (PS). PS uses built-in sensors of mobile devices
to opportunistically gather sensor data. For instance, the
microphones that are available in a crowd of mobile phones
can be used to capture sound samples, which can be used to
construct a city noise map.

A great challenge of PS is to reduce the energy consumption
of mobile devices since otherwise users might not be willing
to participate. One crucial part in the overall power consump-
tion is the energy required for the communication between
the mobile devices and the infrastructure. In particular, the
communication required for sending sensing queries to mobile
devices has been largely neglected in the related work so far.

Therefore, in this paper, we address the problem of minimiz-
ing communication costs for the distribution of sensing queries.
While existing systems simply broadcast sensing queries to all
devices, we use a selective strategy by addressing only a subset
of devices. In order not to negatively affect the quality of
sensing w.r.t. completeness, this subset is carefully chosen based
on a probabilistic sensing model that defines the probability of
mobile devices to successfully perform a given sensing query.

Our evaluations show that with our optimized sensing query
distribution, the energy consumption can be reduced by more
than 70% without significantly reducing the quality of sensing.
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I. INTRODUCTION

Modern mobile phones are equipped with various sensors

such as positioning sensors (GPS), accelerometers, magnetic

field sensors, light sensors, acoustic sensors (microphone),

or barometers. Moreover, fast communication technologies

like 3G networks or WiFi together with cheap flat rates are

available, which has led to an “always on” usage pattern

where mobile phones are constantly connected to the Internet

and can access server infrastructures.

These technology trends effectively turn mobile phones

into powerful networked sensor platforms, which can be uti-

lized to gather environmental data. Using mobile phones for

sensing has been termed “Public Sensing”, “Mobile Phone

Sensing”, “Urban Sensing”, or “Participatory Sensing” in

the literature (throughout this paper, we use the term “Public

Sensing” (PS)). The fact that PS can be used on-demand to

gather data of larger geographic areas without big upfront

investments makes it an attractive alternative to classical

sensor networks, in particular, in densely populated areas

such as urban centers.

Despite these advantages, implementing a PS system

also raises new challenges. In particular, minimizing the

energy consumption of mobile phones is a prerequisite since

otherwise users might not be willing to participate in PS.

Basically, energy is consumed by two operations, namely,

sensing data including positioning to geo-reference the

sensed data, and communication including the transmission

of sensed data as well as the messages for tasking mobile

devices to sense [1]. Although a number of approaches for

optimizing sensing have been proposed, including our own

work [2], [3], only few approaches tackle the problem of

optimizing the communication part of energy consumption.

However, as for instance shown by Balasubramanian in [4],

mobile communication consumes a considerable amount of

energy. Hence, optimizing communication is essential for

the implementation of an energy-efficient PS system.

Therefore, in this paper, we focus on optimizing the

communication part of PS, more precisely, the distribution of

sensing queries. Most existing PS systems perform tasking

of mobile devices by simply broadcasting a sensing query to

all available devices. Obviously, this simple strategy wastes

energy for devices that cannot participate in sensing, for

instance, due to their geographic distance to the sensing

query. Consider, for instance, a sensing query for sensing

the temperature and noise level at the Big Ben in London

within the next ten minutes. Broadcasting this query to all

mobile devices in London certainly involves many devices

which cannot reach Big Ben within the given deadline.

The main contribution of this paper is therefore an effi-
cient sensing query distribution mechanism that only sends

queries to devices that are likely to actually execute the given

sensing query successfully. Since we assume that we cannot

control the movement of devices in our PS system—i.e.,

sensing is performed opportunistically, whenever a device

is close to the location of a sensing query—, we cannot be

perfectly sure that a device actually comes close enough to

execute a given query before the sensing deadline. Therefore,

we present the design of a probabilistic sensing model. This

model describes the likelihood that a mobile device is able

to sense data for a given sensing query by utilizing spatial

information about the device provided by a specifically
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designed location update protocol. Based on this model,

we present an algorithm for selecting a minimum set of

devices to receive a given query such that the chances of

successful sensing this query are not negatively affected.

In our evaluations we show that this optimization reduces

the energy consumption by more than 70% compared to an

implementation that distributes a given sensing query to all

available mobile devices.

The rest of this paper is structured as follows. After giving

an overview of the related work in Section II, we introduce

the underlying system model of our approach in Section III.

In Section IV and V, we introduce the query model of our

PS system and the problem statement. The basic PS system

is then introduced in Section VI. The main contributions

of this paper are our probabilistic sensing model and the

device selection algorithm for query distribution, which are

presented in Section VII and VIII, respectively. Finally, in

Section IX we evaluate the performance of our approach

before Section X concludes this work.

II. RELATED WORK

Most of the work which has been published in the field of

PS so far presents architectural frameworks that do not deal

with algorithmic details of saving energy. A good overview

of these systems is given in the survey of Lane et al. [5].

Only recently, energy efficiency also got into the focus

of PS research. The approaches for saving energy can be

classified into concepts for reducing the number of sensing

operations and concepts to reduce communication. In order

to reduce sensing costs, we investigated techniques to reduce

the energy required for positioning in previous work [2], [6].

Moreover, in [3] and [7] we presented cooperative sensing

algorithms that coordinate sensing between mobile devices

to avoid redundant sensor readings. A more generic way to

increase energy efficiency has been proposed by Priyantha

et al. [8] and Lu et al. [9], where the former proposed

dedicated hardware components to enable energy-efficient

sensing. The latter introduced sensor-specific pipelines to

reduce the processing costs of recorded sensor data.

Considering the aspect of efficient query distribution,

only a few approaches have been proposed so far. Lu et

al. [10] showed with their “Bubble-Sense” system how

a sensing query can be “pinned” to a physical location

by periodically exchanging ad-hoc messages between the

devices near that location. However, this concept relies on

the wide availability of ad-hoc communication interfaces on

all devices, which are still hard to configure and therefore

are rarely available in practice. Moreover, if no device is

nearby the location of the sensing query, the query is lost

and can only be restored by a node that has stored the query.

Other concepts that are more closely related to our work

were proposed by Reddy et al. [11], Ruan et al. [12] and

Cardone et al. [13]. Similar to our work, their approaches

choose a subset of mobile devices to which a sensing query
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Figure 1. System Architecture

is distributed. To decide which devices are most suitable

for being included into that subset, their approaches analyze

historic information about the user movement patterns and

extract the places were the user regularly resides. However,

this requires that the user agrees to store a privacy critical

user profile of its movement history.

Therefore, the query distribution approach we present

in this paper uses a different strategy. First, we do not

have to analyze the user profile but rather estimate the

future movement of a user based only on its last known

position. Hence, obfuscation techniques can be used on top

of our approach to hide individual user IDs. Moreover,

we are the first so far to provide a probabilistic sensing

model that is used for selecting the appropriate devices for

query distribution to account for the inevitable uncertainty

of opportunistic sensing.

III. SYSTEM MODEL

Next, we present the architecture of our PS system (see

Fig. 1). Our system consists of a computing infrastructure

and a set of mobile devices. Mobile devices are carried by

their owners, who are moving according to an underlying

road graph. Since we strive for an opportunistic sensing

approach, we assume that the movement of the mobile

devices cannot be influenced by the system. Each device is

equipped with a set of sensors for recording environmental

phenomena, a positioning system (e.g., GPS), and a mobile

communication interface such as UMTS or LTE.

The computing infrastructure of the system consists of

a set of servers and a central gateway that serves as query

interface for clients that request sensor data from the system.

For reasons of scalability, the geographical coverage of the

sensing system is partitioned into disjoint service areas,

where each of the servers is responsible for one service area.

A server can communicate with the mobile devices located

in its service area via mobile communication. Furthermore,

we assume that a server is aware of all mobile devices

that are currently located in its service area. This can be

implemented by a node registration mechanism like the

one used in cellular networks, for instance. The servers are



connected with each other and with the gateway through a

fixed communication network.

To characterize the energy consumption of the mobile

devices for mobile communication, we follow the measure-

ments of Balasubramanian et al. [4]. They showed that the

energy for transferring small pieces of data is negligibly

small in comparison to the energy that is needed for power-

ing up and down the communication interface. More details

of this energy model are presented in Section IX.

IV. QUERY MODEL

In order to start the gathering of sensor data for a certain

location, a client sends a sensing query to the gateway. In the

following, we explain the query parameters in more detail.

A sensing query contains the following parameters:

• The sensing range, which is defined by the center

coordinates (x, y) and the radius rq .

• The sensor type st, which defines the type of the

requested sensor data.

• The sensing deadline td, which defines the time until

when the sensor data must be recorded.

A sensing query is distributed to a subset of mobile

devices, as presented later in detail, which try to record

sensor data for that query using their build-in sensors. A

sensing query q, which was issued at time tq , is satisfied

if there is at least one mobile device m that fulfills the

following two conditions:

1) ∃t ∈ [tq, td] : d((x, y), posm(t)) ≤ rq , where d(·, ·)
denotes the Euclidean distance and posm(t) the posi-

tion of m at time t.
2) st ∈ m.types, where m.types denotes the sensors that

are available on device m.

To simplify matters, we neglect the inaccuracy of the

positioning system in the description of our concepts. Never-

theless, all concepts can be extended to take the positioning

error into account using techniques like map-matching. Fur-

thermore, we limit our considerations to the case in which

data for only a certain sensor type is queried and denote

the set of all devices that are equipped with this sensor as

M . For cases in which different types of sensor data are

queried, the following concepts can be extended by defining

an individual set of devices for each sensor type.

V. PROBLEM STATEMENT

Simply broadcasting a sensing query to all mobile devices

m ∈ M would cause a high energy consumption on the

devices, since every received message consumes additional

energy. In particular, this is critical if many sensing queries

are issued to the PS system. The problem of this naive

distribution is that it includes also devices that cannot

participate in sensing until the query deadline because of

their spatial distance to the sensing range.

In our optimized approach, we tackle this problem by

distributing the query to only a subset of devices (called

the recipient set R ⊆ M ) that have a high probability of

actually sensing the query successfully. However, reducing

the recipient set also increases the risk that a sensing query

is missed, since not all devices are aware of the query. Our

goal is now to find a minimal recipient set that achieves the

same sensing result as the naive distribution.

Let σ(M) ∈ {true, false} denote the successful or un-

successful execution of a given query q when q is distributed

to all m ∈ M . Our problem can now be formalized as:

minimize
R⊆M

|R|
subject to σ(R) = σ(M)

(1)

Sending q only to R instead of M avoids the energy for

receiving q on all devices in M\R. This is in particular

very beneficial if M is rather large or if many queries are

distributed to the mobile devices.

Note that the size of the minimal R is 1 if σ(M) = true
and 0 if σ(M) = false. However, since we cannot foresee

the value of σ(M) at decision time and do not know the

future movement of the mobile devices, in most cases we

will choose a larger R to ensure that the given sensing

constraint is fulfilled. In particular, we will include all

mobile devices in R that are very likely to sense q before

the sensing deadline. For this purpose, we present in the

following a probabilistic sensing model that predicts the

sensing probability for each device. Based on this proba-

bilistic model, we present a recipient selection algorithm that

chooses a recipient set that promises high sensing success.

VI. BASIC SENSING SYSTEM

To begin with, we first present a basic sensing systems that

implements a simple query distribution serving as a refer-

ence for evaluating the energy efficiency of our optimized

approach. To illustrate the operations of this system, we

describe its processing steps with the help of a sensing query.

Assume a client queries the system by sending a query q
to the query interface of the gateway. The gateway forwards

q to the server whose service area intersects with the sensing

range of q. If the sensing range overlaps with the service

areas of multiple servers, the query is forwarded to all of

these servers, and the server covering the center (x, y) of

query q operates as coordinator. For the rest of this paper,

we only consider the case where q is forwarded to one server

and do not consider the coordination in more detail.

The query distribution algorithm that runs on the server is

illustrated in Fig. 2. As indicated in lines 2–4, q is distributed

to every mobile device m ∈ M . A mobile device that

received a sensing query constantly checks if it is in the

sensing range of the received query. In this case, it records

data for q and uploads the recorded data to the server. As

soon as the server receives sensor data from a mobile device

mr, it returns the sensed data back to the gateway, which

forwards the query result to the client. To avoid energy



1: procedure QUERY DISTRIBUTION(q)

2: D ← M � Modified in optimized approach

3: for all m ∈ D do
4: SENDQUERY(m, q)

5: result ← 0
6: while (tnow < td) ∧ (result = 0) do
7: result ← RECEIVERESULT(mr)

8: if result = 0 then
9: return error

10: for all m ∈ D\{mr} do
11: STOPQUERYMSG(m, q)

12: return result

Figure 2. Query Distribution Algorithm

consuming redundant sensor readings on the mobile devices,

the server subsequently sends a message to all devices that

initially received q to stop the execution of the query (lines

10–11). If q is not sensed until the sensing deadline td, the

sensing query fails, and the server returns an error message

to the gateway, which in turn informs the client (lines 8–9).

VII. PROBABILISTIC SENSING MODEL

The basic idea of our optimized approach is to reduce the

query distribution to only a subset R ⊆ M (line 2 in Fig. 2

is replaced by D ← R) and include only those devices in R
that promise a high sensing success. To this end, we present

a probabilistic sensing model defining the probability that a

device satisfies a given sensing query.

We introduce the probabilistic sensing model in four steps:

First we introduce the concept of location updates, which is

needed to obtain spatial information about the devices on the

server. Then, we present a movement prediction model that

estimates future device positions based on the last location

update. Subsequently, we define the sensing probability for

a device on a single path and then extend this definition to

reflect the sensing probability over multiple paths.

A. Location Update Protocol

In the basic sensing system, a server knows which devices

are currently located in its service area but has no informa-

tion about their spatial distribution within this area. However,

to determine the probability that a device can satisfy a

given sensing query, an estimation about the current device

position is needed. To provide this information, we require

a device to run a location update protocol which triggers the

device to send location update messages to the server.

Since sending the device position to the server consumes

additional energy and is therefore critical for our goal of

increasing energy efficiency, we have designed a specific

location update protocol that adapts to the needs of the

query distribution scenario. The problem of existing location

update protocols (for a comparison see [14], [15]) is that

they trigger a mobile device to update its position on the

server in a proactive manner. For instance, the distance-based

update protocol triggers a location update message whenever

the current position of the mobile device deviates by more

than a predefined threshold from the position on the server.

However, if sensing queries are issued only very rarely, the

overhead for using such an update protocol can exceed the

energy savings that can be achieved using our adaptive query

distribution, which requires location information about the

devices. As a result, these proactive update protocols are not

suitable for our scenario.

Instead, we propose a passive location update protocol that

adapts to the number of sensing queries and increases energy

efficiency by sending location updates in an opportunistic

fashion. As mentioned in Section III, the energy overhead

for powering up and down the communication interface

is much larger than the actual transmission energy for

small messages. We utilize this characteristic for our update

protocol as follows: A device updates its current position on

the server after each communication with the server (line 4,

7 and 11 in Fig. 2). Since the communication interface of

the device is already powered up, the energy for sending

a location update messages is rather small. The second

advantage of this protocol is that the number of location

updates scale with the number of sensing queries that are

issued to the system. As we will see later on, the overhead of

this update protocol will not exceed the energy savings from

our approach even if only few queries need to be distributed.

Note that if only a small number of location updates

will be sent, the device position on the server can get

very inaccurate over time. However, we will see that our

approach also works on inaccurate position information and

automatically adapts the size of recipient set R to account

for this case. On the other hand, the frequency of location

updates is limited by the sampling time of the positioning

sensor, i.e., updates are only sent when the positioning

sensor provides a new position. In the following, we refer

to the position of the device that is stored on the server as

pu.

B. Movement Prediction Model

For inferring sensing probabilities, it is important to know

whether the sensing range of a given sensing query lies on

the future movement path of a certain mobile device. For

this purpose, the movement prediction model enumerates the

possible movement paths of a device and assigns each path

a probability that the device will actually take this path.

As mentioned earlier, mobile devices move on a road

graph that is known to the server. This road graph is defined

by a set of road nodes and a set of edges that interconnect

these nodes (see Fig. 3a). For each road node r, the set

of its adjacent road nodes is given as Ar. To reflect the

significance of different roads, an individual turning function
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Figure 3. Road Graph and Movement Tree

fr : Ar×Ar → [0, 1] is given for each road node. The value

of fr(ra, rb) depicts the probability that a mobile device

leaves the road node r towards road node rb when having

entered it via road node ra. This function can for example

be derived from road traffic analysis [16].

For predicting the movement of device m, we enumerate

the different paths that the device can take starting from

its last known position pu. However, since the number of

possible paths grows exponentially over time, we limit this

number by assuming that m moves towards some unknown

destination on the graph traversing the shortest path (which

is also the basic assumption of most sophisticated mobility

models, for instance the random waypoint model). The

movement of m from time tu (the time of the last location

update pu) until sensing deadline td can then be described

by a tree of road nodes which is rooted at pu (see Fig. 3b).

The leaves of this tree consists of all points on the road

graph that are distance smax = (td− tu) ·vmax away, where

vmax depicts the maximum speed of device m. Note that

the value of vmax can either be obtained directly from the

device or some value on the device speed can be assumed

(for instance, by taking speed limits of the road graph into

account). Each path from the root node towards a leaf

describes one possible movement path w that m can take

until td. We describe a path w by the nodes that are traversed

on this path, i.e., w = (rroot, · · · , rleaf ).
To reflect the probability that a devices takes a certain

path, we introduce the random variable Xw. The probability

P (Xw = w) that m takes path w is then given by multiply-

ing the respective turning probabilities at the encountered

road nodes when traversing w:

P (Xw = w) =

i<|w|−1∏
i=1

fw[i](w[i− 1], w[i+ 1]) (2)

Having defined the probability that a device moves on a

given path, we will define in the following the probability

that it can sense a given query under the condition that it

moves on this path.

C. Single Path Sensing Probability

To denote the sensing probability we introduce the random

variable Xs ∈ {0, 1}, which reflects the case that a device m
can sense a given query q (Xs = 1) or not (Xs = 0). We will

first derive the distribution of Xs under the assumption that

q

sensing
range

pu pi1 pi2 pend

Figure 4. Line of Movement

m takes a certain path w, i.e., P (Xs | Xw = w), before we

derive the general distribution of Xs in the next subsection.

Assuming that m traverses path w, the line segment

[pi1 , pi2 ] that intersects w with the sensing range of q
contains the points from which m can sense q (see Fig. 4).

In the following, we refer to the end of path w, which is

smax away from pu, as pend. To determine whether m can

sense q, we are interested in the likelihood that m passes

line segment [pi1 , pi2 ] in the time frame between q is queried

(referred to as tq) and sensing deadline td. To this end, we

derive in the following a probabilistic representation of the

position of device m for time tq and td.

To consider a device’s movement speed, we assume that

a probability density function (pdf) fXv
(v) of the random

variable Xv is given, which describes the average speed of

the device for an arbitrary time interval. We assume that the

values of Xv for two disjoint time intervals are independent.

This pdf can either be provided directly by the device or we

can just assume an appropriate probability distribution to

approximate the device speed (e.g., Gaussian distribution).

The distance d that a device passes in a given time period

Δt is then given by the following formula:

d = Xv ·Δt

We denote the distance that m passes on w between time tu,

when the last location update was received, and tq as Xd1
.

Analogous, we denote the distance that m passes between

tq and td as Xd2 . Both are defined as follows:

Xd1
= Xv · (tq − tu)

Xd2
= Xv · (td − tq)

The two variables Xd1
and Xd2

are a linear transformation

of the random variable Xv . Therefore, they are both random

variables as well. The pdfs for the linearly transformed

variables are then given as follows:

fXd1
(d1) =

1

tq − tu
· fXv

(
d1

tq − tu

)

fXd2
(d2) =

1

td − tq
· fXv

(
d2

td − tq

)
Based on these probabilistic definitions, the position of m

on w at time tq is given as pu+Xd1 and as pu+Xd1 +Xd2

for time td. We can now formulate the case in which m
passes line segment [pi1 , pi2 ] in the time frame [tq, td] by

the following two conditions:



1) When m receives q from the server at time tq , it must

not have moved further than point pi2 on w. Otherwise

m has already passed q when it receives the query.

2) When the sensing deadline of q is reached at time td,

m must have reached at least point pi1 on w.

More formally, we say a device m can sense q on a given

path if the following two conditions are fulfilled:

Xd1
≤ pi2 (3)

Xd1
+Xd2

≥ pi1 (4)

Here, pi depicts the distance between pu and pi on path

w. Note that due to our shortest path assumption, we can

assume that a device only moves towards the end of path w.

To formulate these two conditions in a closed form, we

need to define the joint pdf of the random variables Xd1
and

Xd1
+Xd2

. Due to the independence of Xd1
and Xd2

, we

get the convolution of the pdf of both variables as:

fXd1
,Xd1

+Xd2
(d1, d) = fXd1

,Xd2
(d1, d− d1)

= fXd1
(d1) · fXd2

(d− d1)

We can now formulate the probability that m senses q
when moving on path w by integrating this joint pdf over

the boundaries that we defined in Equation 3 and 4:

P (Xs = 1|Xw = w)

=P (Xd1 ≤ pi2 , pi1 ≤ Xd1 +Xd2 ≤ pend)

=

∫ pi2

0

∫ pend

pi1

fXd1
(x) · fXd2

(y − x) dydx

(5)

Note that we assume that there are only two intersection

points between w and the range of q. Cases in which the

sensing range intersects the path on more than two points

can be handled by summing up the single probabilities for

each intersection using the inclusion-exclusion method [17].

D. Multiple Path Sensing Probability

To get the overall probability P (Xs = 1) that a device can

sense a given query q, we have to combine the definitions

from Equations 2 and 5. Given the probability that device

m moves on path w and the probability that m can sense q
if it moves on w, we apply Bayes’ Theorem as follows:

P (Xs = 1) =
∑
∀wi

P (Xs = 1 | wi) · P (Xw = wi) (6)

In the following, we denote the probability P (Xs = 1) for

device m sensing query q as pm,q .

VIII. RECIPIENT SELECTION

We can now use these definitions to find a recipient set

for the query distribution. The basic idea is to define the

joint sensing probability for a given set of devices and use

this metric to find a recipient set that promises high energy

efficiency and sensing success.

The joint sensing probability for a given set of devices

D is given as the probability that query q will be satisfied

when it is distributed to all m ∈ D. To this end, we use

the single device sensing probability from Equation 6 and

calculate the joint sensing probability pq for D as:

pq(D) = 1−
∏

∀m∈D

(1− pm,q) (7)

This function can be derived from the special case of a

binomial distribution, where at least one event is true. Note

that we can easily extend our system by requiring that a

sensing query is only satisfied if it is sensed by k different

devices. In this case, Equation 7 has to be adapted to

consider k sensing events (see [17] for the combinatoric

details).

To find a promising recipient set R, we use this definition

to quantify the sensing success of different R ∈ 2M in order

to find a small R that has a high sensing probability. As a

first step, we limit the solution space of this decision by

restricting the number of devices that are candidates for

being included in R. As we can conclude from Equation

7, only those devices are valuable candidates that have a

sensing probability greater than zero. Hence, we define the

candidate set, which is given as C = {m ∈ M | pm,q > 0}.

Now, we define R by greedily including the mobile device

with the highest sensing probability in C until pq(R) reaches

a predefined system parameter μp ∈ (0, 1], which we refer

to as the target probability. In the evaluation, we will see

which values of μp will result in a high energy efficiency.

In more detail, R is computed by the following algorithm:

1: procedure RECIPIENT SET SELECTION(C, μp)

2: R ← ∅
3: pq ← 1
4: repeat
5: m ← GETMAXPROBDEVICE(C)
6: R ← R ∪ {m}
7: C ← C \ {m}
8: pq ← pq · (1− pm,q)
9: until (1− pq ≥ μp) ∨ (R = C)

10: return R

The function call in line 5 returns the device with the

currently largest value of pm,q in C. The algorithm stops

when the joint sensing probability of R reaches the target

probability μp or when R is equivalent to C. In the latter

case, the target probability μp cannot be reached. However,

to provide a best effort solution by maximizing the sensing

probability, the algorithm returns R, which is equal to C.

Note that this algorithm automatically adapts the size of

the recipient set to the accuracy of the device positions on

the server. More precisely, if a device has not updated its

position on the server for a long time, the probability pm,q

is rather small, since the device may have taken a large



number of possible paths. As a result, many devices have to

be included in R to reach target probability μp .

IX. EVALUATION

In this section, we present the evaluation results of our

system. Since real-world experiments would require a large

number of physical devices and participants, we evaluated

our system with the help of a mobility simulator. Before

we present the simulation results, we shortly introduce the

simulation setup and the energy model we used.

A. Simulation Setup

We used the ONE network simulator [18] to implement

the concepts presented in this paper. To allow for the

calculation of sensing probabilities for several hundreds of

devices in real-time, we precalculated the shortest path dis-

tances for each pair of road nodes in advance. Furthermore,

we approximated the integrals for the calculation of the

probabilistic sensing model numerically. For simulating the

device mobility, we used the built-in mobility traces files

of the simulator, which implement a random shortest path

movement of pedestrians on the road graph of Helsinki with

size 15 km2. We assume not to have any prior knowledge

about the turning probabilities at intersections on this map

and, thus, assume them to be uniformly distributed. Having

accurate information about turning probabilities would even

improve our concepts, hence, the following results can be

seen as lower bound on the performance of our approach.

We simulated 3 hours of pedestrian movement and generated

a sensing query per minute at a random position on the map

with a sensing deadline of 300 seconds.

B. Energy Model

To characterize the energy of the mobile device, we use

the widely referenced model of Balasubramanian et al. [4].

They subdivide the energy consumed by the mobile devices

for transmitting data into three parts. The ramp energy is

needed for powering up the communication interface and

is given as 3.5 J. The transmission energy is consumed for

the data transmission and is given as 0.025 J/KB. The tail
energy is the energy that the interface consumes until it

is powered down. The tail time is given as 12.5 s and the

interface consumes 0.62 J/s until it powers down. This leads

to the following energy model that describes the energy

consumption of receiving xKB data at time t when the last

data transfer ended at time t′:

E =

{
0.025x+ (t− t′) · 0.62 J

s if t− t′ ≤ 12.5 s

0.025x+ 12.5 s · 0.62 J
s + 3.5 J else

Balasubramanian et al. have also shown that the energy for

sending and receiving is equivalent for message sizes below

1 KB. Hence, we use the above energy model for both cases.

For the rest of this paper, we only consider the com-

munication energy (i.e., for receiving sensing queries and
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Figure 6. Query Success Rate against μp

sending location updates). Also considering the energy that

is consumed by the devices for positioning (e.g., GPS) would

add the same amount of energy in all approaches and is

therefore not decisive.

C. Energy Efficiency and Sensing Success

To begin with, we look at the energy efficiency and the

sensing success of the query distribution.

Fig. 5 shows the total energy consumption cumulated over

all mobile devices for different simulation scenarios. In each

scenario, 500 mobile devices were simulated and a different

value for the target probability parameter μp (see Section

VIII) was chosen. The figure shows the results of the basic

approach and the optimized query distribution. First, we see

that the basic approach consumes significantly more energy

in every scenario than the optimized approach. Even if μp

is set to 1, i.e., a query is distributed to all devices in the

candidate set, the optimized approach consumes 68% less

energy than the basic approach. For smaller values of μp,

the energy consumption can be reduced even more.

To see if this energy reduction has a negative impact on

the sensing success, we compare the number of successfully

satisfied queries for the same scenarios as before (see Fig. 6).

For this analysis, the basic approach serves as a base

line, since it achieves the best possible sensing result by

distributing a sensing query to all devices. The figure shows

that setting the target probability to higher values than 0.8
results in the same number of satisfied queries as in the basic
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Figure 8. Query Sucess Rate against # Devices

approach. Even if μp is set to 0.6, still 95% of the queries

are satisfied compared to the basic approach.

These results show that the energy consumption for query

distribution can be reduced significantly without reducing

the sensing success. In particular, setting the target probabil-

ity parameter to μp = 0.85, our approach reduces the energy

consumption by 70% compared to the basic approach while

the same number of queries are satisfied.

To see how energy and sensing success vary over device

density, Fig. 7 and 8 show the same results for different

number of mobile devices in the simulation. We see that the

energy savings increase with the number of devices. This

clearly highlights the benefit of our approach: While the

energy for query distribution grows linearly with the number

of devices in the basic approach, our approach limits the

number of query receivers in order to save energy. Further-

more, choosing μp = 0.8, the average energy consumption

over all scenarios can be reduced by 70% while on average

98% of the queries can be satsified compared to the basic

approach. From this analysis we can conclude that μp = 0.8
is a good parameter setting in order to reduce energy without

reducing sensing success in all scenarios.

D. Message Overhead

To understand how the presented energy values are com-

posed, we look at the number of messages that are sent

in the system. Fig. 9 and 10 show the message overhead

for the query distribution and the location update messages,
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respectively. We see that the basic approach sends a large

number of queries on the one hand. On the other hand, it

does not require any location update messages. However, the

energy spent for sending queries dominates the saved energy

for location updates compared to the optimized approach.

For the optimized approaches, we see that a smaller value

of μp results in less query messages. Clearly, the smaller μp,

the less devices are necessary to reach the target probability.

Hence, less query messages are distributed.

Fig. 10 shows the number of location update messages

that are sent for different scenarios in which the number

of queries requested by the clients vary. To this end, the

interarrival time between two consecutive queries is varied

for different simulations (shown on the x-axis). We see that

the number of location updates decreases with the number

of queries that are issued to the system. As intended, the

message overhead of our location update protocol adapts

to the query distribution, which makes our approach also

efficient in scenarios where sensing queries are issued only

rarely, as we will see in the following.

E. Query Rate

Finally, we look at the efficiency of our system for different

numbers of queries requested by the clients in Fig. 11. We

see that our optimized approach performs better in relation

to the basic approach, the more frequently queries are issued.

On the other hand, the larger the time between two queries,

the less are the energy saving of the optimized approach.
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Figure 11. Energy Consumption against Query Rate

Obviously, the more queries need to be distributed, the more

energy can be saved in the query distribution.

Looking at the situation when queries are requested less

frequently, we see that our approach converges to the basic

approach. In particular, this means that our update protocol

adapts to this scenario by reducing the sending rate of

location updates. Since the location information on the PS

server is rather old, the recipient set selection algorithm has

to include almost all devices for new queries.

X. CONCLUSION & FUTURE WORK

In this paper, we presented an efficient query distribution

approach for PS systems. In comparison to other PS systems

that simply broadcast sensing queries or rely on historical

movement data of users, our approach distributes queries

selectively and only relies on the last known position of a

mobile device. We presented a probabilistic sensing model

and an algorithm that restricts the distribution to those

devices that are best suited for sensing. We showed that our

approach can significantly increase the energy efficiency in

comparison to a basic system, while still providing a very

high sensing success rate. The total energy savings of the

system increase with a higher number of mobile devices and

with a higher query rate.

In future work, we are going to extend our work on query

distribution in PS. Instead of considering one shot queries,

we investigate the distribution of periodic sensing queries

which have to be sensed in certain time intervals. To this

end, we have to extend our probabilistic sensing model to

consider more than one sensing of a query and introduce

adaption mechanisms for the re-distribution of queries.
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