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Abstract—Nowadays, millions of users share their complete
movement trajectory online when using real-time traffic moni-
toring applications, pay-as-you-drive insurances, or when sharing
their last road trip with friends. However, many users still hesitate
to use location-based applications as they are not willing to
reveal, for instance, their driving behavior or the occurrence
of a speeding violation.

Therefore, we present novel speed protection algorithms pro-
tecting users from revealing a violation of given speed limits
when using location-based applications. Our algorithms support
time-based and distance-based position updates. To protect posi-
tions indicating a speeding violation, we either adjust temporal
information by delaying position updates or adjust their spatial
information. We evaluate our algorithms by using real world
traces and show that the protected movement trajectory of the
user is of high quality even after removing speeding violations.

Index Terms—Location-based applications, speed protection,
movement trajectory, location management, location privacy.

I. INTRODUCTION

Driven by the availability of accurate positioning systems such

as GPS and powerful mobile communication technologies like

UMTS or LTE, location-based services (LBS) like friend find-

ers or geo-social networks attract millions of users today. Such

LBSs can be classified into two basic categories: LBSs using

singular positions and LBSs based on movement trajectories.

An example of the first class are services based on sporadic

location “check-ins” like Foursquare [6], where the user can

document his presence at certain points of interest. Another

example are friend finder applications, which notify users

about geographically close friends based on knowledge about

the current user position. In contrast to these LBSs based on

single positions, the second class of LBSs requires knowledge

about the complete movement trajectory of a user typically

acquired as GPS traces recording the sensed positions plus

the timestamps of the positions. For instance, several LBSs

for sharing hiking trails, jogging paths, etc. exist [3]. Other

examples include pay-as-you-drive insurances, community-

based mapping based on collected GPS traces (as used by

the OpenStreetMap project), or real-time traffic monitoring.

In this paper, we consider the second class of LBSs based

on movement trajectories. Our focus is on the protection of

private information that can be derived from such trajectories,

in more detail, the protection of speed information. Although

the user is typically aware of the fact that LBSs as the ones

mentioned above collect movement trajectories, he is seldomly

aware that this information can be used to derive further infor-

mation beyond geographical positions. In particular, movement

trajectories consisting of positions and timestamps can be

used to calculate the speed of the user. Although this speed

information is mandatory for many applications like real-

time traffic monitoring—e.g., to detect traffic jams—, the user

might involuntarily reveal information about his behaviour that

he is not willing to share, in particular, information about when

and where he might drove too fast.

At this point, we have to make clear that in the case

of violations of speed limits, the protection of information

is ambivalent. On the one hand, the protection of private

information—in particular, location information—is a com-

monly accepted goal. On the other hand, it should be clear

to everybody that speed limits are there to protect people,

and therefore, monitoring speed information is an important

measure for law enforcement. Our decision to design mecha-

nisms to protect speed information are based on the commonly

accepted principle that everybody should be able to control,

which information about him he reveals to someone else. In

other words: If the user is aware that the collected information

might be used for detecting speeding violations—for instance,

as part of a pay-as-you-drive insurance with special rates for

safety-conscious drivers, or using a tachograph for trucks—,

no protection mechanisms are necessary. On the contrary,

the insurance or police might want to ensure that the driver

does not manipulate the speed information using tamper-proof

devices (which is a different research topic on its own right).

However, if the driver does not explicitly agree on accurately

monitoring his speed, our mechanisms will make sure that no

information can be recorded that might later be used against

him. This is a very important prerequisite for ensuring the

acceptance of location-based services based on trajectories

and speed information. Clearly, although everyone would

assume that he obeys speed limits in general, the possibility

to detect violations will deter users from participating in

such services like automatic traffic jam detection. Even if the

recorded information cannot be used by the police due to legal

restrictions, private companies like car insurances might use

information found on the Internet (e.g., in OpenStreetMap GPS

traces) to screen their customers and adjust rates. This poses a

serious psychological barrier in providing unfiltered trajectory

information to LBSs.

Various cases from the past have shown that speed in-
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formation is indeed used without knowledge of the users.

For instance, in 2001, a car rental company in the US

fined customers for speeding violations using GPS-equipped

cars [19]. One customer was billed $150 for each of his alleged

speeding violations where the trace showed a speed faster

than 79 mph. For tracking, the company installed GPS-devices

in their cars. Nowadays, sensing and tracking technology of

mobile devices and car navigation systems can be used to

track users. For instance, new navigation systems provide real-

time speed and location data to servers calculating real-time

traffic conditions, which is clearly a service that many drivers

find useful and would actively support. However, in 2010,

a company providing such services sold their collected GPS

records to the Dutch police, which used the data to target

speed traps where they could catch most drivers [18]. Imme-

diately, the company stressed that they only stored anonymous

data such that individual speeders could not be identified

by the police. However, as shown in [8], user identification

from anonymized trajectories is possible if, for instance, an

anonymized trajectory starts in front of an individual home.

Therefore, identifying individual speeders would be possible.

As we can see from these examples, publishing user trajec-

tories without protecting the speed information can have severe

monetary and legal effects on the user if speeding violations

can be revealed, as well as for the acceptance of LBSs based

on trajectory information. To remove these concerns and,

therefore, to support the acceptance of LBSs, we present our

speed protection algorithms protecting the speed information

of a user trajectory in real-time by adjusting the reported

trajectory to the allowed speed limit such that users do not

have to fear any negative impact due to speeding violations. To

protect trajectories from indicating speedings, we either adjust

temporal information by delaying position updates or adjust

spatial information of positions. In our evaluation, we analyze

real world traces and show that protecting speed information

of movement trajectories is necessary. Furthermore, we show

that the accuracy decrease introduced by our speed protection

algorithms only affects few position updates such that the

speed protected trajectory is of high quality.

The rest of the paper is structured as follows: First, we

present our system model and location model in Sec. II. Then,

we introduce our problem statement in Sec. III. In Sec. IV,

we introduce our speed protection algorithms. Our proof of

correctness and our evaluation are presented in Sec. V and

Sec. VI. In Sec. VII, we present related work. Finally, we

conclude the paper in Sec. VIII.

II. SYSTEM MODEL AND LOCATION MODEL

Our system model is depicted in Fig. 1 and consists of mobile

objects, location servers, and clients.

The mobile object (MO) has an integrated positioning

system, such as GPS, to determine the current user position

π. The MO provides π to a location server (LS) storing

and managing position information of several MOs. To this

end, the MO sends a position update to the LS by using

function update(π, t) consisting of its position π and the
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Clients

Fig. 1. System model
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temporal information defining the corresponding time t. The

LS provides different clients, for instance, different location-

based applications, with stored positions. Using an LS relieves

the MO from sending π individually to different clients.

Position π has to be sent only once to the LS, while several

clients can access the stored information on the LS. The LS

controls access to the stored positions by using an access

control mechanism such as [2]. Thus, only clients with the

corresponding access rights can access the stored information.

To guarantee that no other component than our speed

protection component can directly access the MO’s position

π locally on the mobile device, existing trusted mobile com-

puting approaches such as [7] using, for instance, trusted

hardware components can be used. Otherwise, a local client

that could access π by directly querying the positioning system

could maliciously reveal a speeding violation of the MO. For a

detailed description on trusted computing approaches we refer

to [7]. In the following, we focus our description on remote

clients querying the remote LS and mention local clients only

if they behave differently.

The MO’s position π is defined by its longitude and latitude

value. Since vehicles typically move on streets, we map

positions to a graph representing the road network. As shown

in Fig. 2, a road network can be modeled by a weighted graph

G = (V,E). Each node v ∈ V represents either a junction or

defines an intermediate node that is used to model the shape of

a road. Each edge e ∈ E represents a road segment between

two nodes and has an assigned maximum allowed speed limit.

To map “raw” GPS positions to the underlying road network

map matching algorithms can be used. For an overview of

existing map matching algorithms we refer to [16]. In the

following, we do not consider the map matching any more,

but assume that π is located on a road segment of the graph.

A movement trajectory T of the MO is defined as sequence

T = {(πstart, tstart), . . . , (πend, tend)} of different positions

πi where the MO was located at time ti. Trajectory T can be

split up into a set of segments, where each segment πi, πi+1

defines the path the MO traveled from πi at time ti to πi+1



at time ti+1. We assume that MOs travel on fastest paths,

since usually a MO intends to reach its destination as quick

as possible. Therefore, πi, πi+1 is the fastest path between πi

and πi+1. The distance between πi and πi+1 is

distance(πi, πi+1) = length(FP (πi, πi+1)) (1)

defining the length of the fastest path (FP ) from πi to πi+1.

The time the MO traveled on segment πi, πi+1 is

time(πi, πi+1) = ti+1 − ti. (2)

III. PROBLEM STATEMENT

We tackle the problem that real-time position updates of a

MO’s movement trajectory T reveal speeding violations of

the MO. To solve this problem, we use our speed protection

algorithms transforming trajectory T into the speed protected

trajectory T̂ (introduced below) guaranteeing that nobody can

determine any speeding violation by analyzing T̂ .

For trajectory T = {(πstart, tstart), . . . , (πend, tend)}, a

speeding violation is detected if for at least one segment

πi, πi+1 ∈ T the MO traveled from πi to πi+1 within shorter

time than it takes the MO when driving at the maximum

allowed speed of the segment:

time(πi, πi+1) < timeMaxSpeed(πi, πi+1). (3)

This concept is also known as “section control”, where the

average speed over a certain known distance is calculated.

Here, timeMaxSpeed(πi, πi+1) defines the time it takes a

MO driving from πi to πi+1 at the maximum allowed speed.

An attacker is interested in finding segment πi, πi+1 ∈ T

indicating that the MO was speeding:

∃ πi, πi+1 ∈ T :

time(πi, πi+1) < timeMaxSpeed(πi, πi+1).
(4)

As stated previously, πi, πi+1 defines the fastest path from πi

to πi+1. If a speeding violation is detected for πi, πi+1, then

the MO is also speeding for all other slower paths from πi to

πi+1. Thus, we call this a definitely speeding semantic, where

the MO has no plausible way of denying a speeding violation.

The goal of our speed protection algorithms is to transform

trajectory T into a protected trajectory T̂ such that for every

segment πi, πi+1 at least one possible path exists where the

MO could have traveled from πi to πi+1 without speeding.

Then, the definitely speeding semantic is not fulfilled for T̂ :

∀ πi, πi+1 ∈ T̂ :

time(πi, πi+1) ≥ timeMaxSpeed(πi, πi+1).
(5)

Obviously, transforming the original trajectory T into the

speed protected trajectory T̂ introduces artificial inaccuracies.

Therefore, another goal is to alter T as less as possible to

reduce the introduced inaccuracy. Later, we will show that the

speed protection algorithms either lead to spatial or temporal

inaccuracies for positions of T̂ . Therefore, the spatial or

temporal difference should be as small as possible.

By guaranteeing that the definitely speeding semantic is not

fulfilled for the published trajectory T̂ , the MO can plausibly

deny a speeding violation since the MO could have traveled

on each segment of trajectory T̂ without driving faster than

the allowed speed. In combination with the “in dubio pro reo”

principle, this fulfills our goal to protect the speed of a MO’s

movement trajectory T̂ because no evidences of a speeding

violation exists as long as the MO could have traveled along

T̂ on the fastest path without any speeding violation.

IV. SPEED PROTECTION ALGORITHMS

In this section, we present our speed protection algorithms

(SPA for short) guaranteeing that the continuously updated tra-

jectory T̂ of the MO does not contain any speeding violation.

A. Overview

The general idea of SPA is to slow down the speed of trajectory

T̂ to the maximum speed the MO is allowed to drive on

each road segment. Since location update protocols are usually

either time-based or distance-based, we use the methods of

position adjustment (PA) and temporal delay (TD) to support

both kinds of protocols.

We use position adjustment in SPA-PA to support time-

based position update protocols, which periodically update

πi+1 after a predefined update time period TP. The constant

update rate is independent of the MO’s position change and

sends position updates even if the position of the MO did

not change. Our position adjustment shifts position πi+1 to

position π̂i+1 if a speeding violation happened between the

last updated position π̂i and the currently sensed position πi+1.

Here, position adjustment protects the speed of the MO by

decreasing the spatial accuracy of πi+1 such that the speed

protected position π̂i+1 is updated instead of πi+1 at time

ti+1. As soon as the speed of the MO is below the speed

limit, the spatial accuracy is increased until position π̂i+1 is

equal to πi+1 and the accurate position of the MO can be

updated again without revealing a speeding violation.

We use temporal delays in SPA-TD to support distance-

based position update protocols taking the traveled distance

of the MO into account. With distance-based protocols a new

position πi+1 is updated whenever the Euclidean distance

to the last reported position πi reaches a given threshold

distance D. If a speeding violation occurred between the last

updated position πi and the new sensed position πi+1, the

update of position πi+1 is delayed until time t̂i+1 such that

no speeding violation can be recognized between πi updated

at time t̂i and πi+1 updated at time t̂i+1. Our temporal delay

keeps the spatial information of the position accurate and

decreases the temporal accuracy of the update. As soon as the

speed of the MO is reduced and the MO drives slower than

the allowed speed limit, the temporal accuracy is increased

until the timestamps of the sensed and updated positions are

identical and no delay is needed any more.

Figure 3 shows an overview of the complete process. The

MO senses its position πi+1 at time ti+1 using the positioning

sensor. For time-based updates, SPA-PA uses the position

adjustment method and provides position π̂i+1 at time ti+1
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Fig. 3. Process overview

to the update algorithm. For distance-based updates, SPA-

TD uses the temporal delay method to provide position πi+1

at the delayed time t̂i+1 to the update algorithm. Then,

function update(π̂i+1 , ti+1 ) respectively update(πi+1 , t̂i+1 )
is used by the update algorithm to provide the new position

information of the MO to the LS. Finally, clients can access

this information by using function getPosition(). Next, we

present the two protection methods in more detail.

B. SPA with Position Adjustment

The detailed speed protection algorithm SPA-PA for time-

based updates is shown in Fig. 5. First, the initial posi-

tion πstart is sensed at time tstart and updated as posi-

tion π̂start by using function update(π̂start , tstart) at time

tstart. Afterwards, a new position πi+1 is sensed at time

ti+1 = ti + TP based on the MO-selected update time period

TP. Next, SPA-PA uses the last updated position π̂i to eval-

uate time(π̂i , πi+1 ) < timeMaxSpeed(π̂i , πi+1 ). If the MO

reached πi+1 from π̂i within shorter time than it takes a MO

driving at the maximum allowed speed, then updating πi+1

would reveal a speeding violation. In this case position πi+1

has to be adjusted before it can be published. To this end,

SPA-PA uses function getReachablePosition(π̂i , δt ,T ) to cal-

culate position π̂i+1 as the position that can be reached from

the last updated position π̂i within time δt = time(π̂i , πi+1 )
when driving at the maximum allowed speed on segment

π̂i , πi+1 . In case no speeding violation is detected, position

πi+1 is used as position π̂i+1 . Finally, the calculated position

π̂i+1 is updated using function update(π̂i+1 , ti+1 ).

An example of SPA-PA for time-based updates is pre-

sented in Fig. 4. For simplicity, we use a fixed value of

maxSpeed(e) = 100 km/h for each edge e and assume that

a new position is sensed after a time period of TP = 5 s.

Without SPA-PA, trajectory T shown in Fig. 4 would be

published. The MO drives with a speed of 80 km/h at time

1: πstart, tstart ← sensed position ⊲ Initial positioning

2: T ← πstart, tstart ⊲ Sensed trajectory

3: π̂start ← πstart ⊲ Initial position

4: update(π̂start, tstart) ⊲ Initial position update

5: while report movement do

6: πi+1, ti+1 ← sensed position ⊲ Triggered time-based

7: T ← T ∪ πi+1, ti+1

8: π̂i, ti ← last updated position

9: if time(π̂i, πi+1) < timeMaxSpeed(π̂i, πi+1) then

10: δt← time(π̂i, πi+1) ⊲ Speeding detected

11: π̂i+1 ← getReachablePosition(π̂i, δt, T )
12: else

13: π̂i+1 ← πi+1 ⊲ No speeding occurred

14: end if

15: update(π̂i+1, ti+1) ⊲ Update π̂i+1 at time ti+1

16: end while

Fig. 5. SPA with position adjustment

t3. At time t4, the MO accelerates up to a speed of 120 km/h

at time t5 and travels at this speed until time t6. Then, the

MO slows down to 80 km/h at time t7 that is kept until

time t10. The corresponding time-speed diagram is shown

in Fig. 4 on the right. By using SPA-PA, the maximum

speed between two updated positions in T̂ is limited to the

maximum allowed speed of 100 km/h. The generated updates

are shown in Fig. 4 with the corresponding time-speed diagram

of the speed protected trajectory T̂ . While actually a speeding

violation of the MO occurred, the reported speed is limited to

the maximum allowed speed limit. The time after the MO’s

speeding violation is used to reduce the spatial difference

between the updated and the actual position of the MO.

C. SPA with Temporal Delay

The speed protection algorithm SPA-TD for distance-based

updates is shown in Fig. 7. The positioning sensor provides a

new position to SPA-TD as soon as the Euclidean distance

between the last sensed position πi and the new sensed

position πi+1 reaches the MO-defined threshold distance D.

The initial position is updated as described for SPA-PA.

For the following position updates, it is evaluated whether

position πi+1 sensed at time ti+1 can be reached in time

time(πi, πi+1) = ti+1 − t̂i from the last updated position

πi updated at time t̂i. A speeding violation is detected if

time(πi , πi+1 ) < timeMaxSpeed(πi , πi+1 ). Then, the update

of position πi+1 must be delayed until πi+1 can be reached

from πi without exceeding the speed limit. To this end, SPA-

TD calculates time t̂i+1 at which the MO can reach πi+1 from

πi without speeding violation. SPA-TD assumes a MO driving

at the maximum allowed speed from πi to πi+1 and uses the

minimum required time timeMaxSpeed(πi, πi+1) to calcu-

late t̂i+1 as t̂i+1 = t̂i+timeMaxSpeed(πi, πi+1). The update

of position πi+1 is then delayed until time t̂i+1. Otherwise, if

πi+1 can be reached from πi without a speeding violation, time

ti+1 is used to define t̂i+1 = ti+1. Finally, position πi+1 is

updated at time t̂i+1 using function update(πi+1 , t̂i+1 ). After
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1: πstart, tstart ← sensed position ⊲ Initial positioning

2: t̂start ← tstart ⊲ Initial update time

3: update(πstart, t̂start) ⊲ Initial position update

4: while report movement do

5: πi+1, ti+1 ← sensed position ⊲ Triggered distance-b.

6: πi, t̂i ← last updated position

7: if time(πi, πi+1) < timeMaxSpeed(πi, πi+1) then

8: t̂i+1 ← t̂i + timeMaxSpeed(πi, πi+1) ⊲ Speed.

9: else

10: t̂i+1 ← ti+1 ⊲ No speeding occurred

11: end if

12: update(πi+1, t̂i+1) ⊲ Update πi+1 at time t̂i+1

13: end while

Fig. 7. SPA with temporal delay

a speeding violation occurred and the MO is again driving at a

speed below the speed limit, the temporal accuracy is increased

until no delay is needed any more for a new position update.

An example for SPA-TD is shown in Fig. 6. For this

example, we use the same MO movement and the same speed

limitations as presented in our previous example for SPA-PA.

Compared to the former example, the sensing of a new position

is triggered based on the MO-defined threshold distance D

that is set to D = 100m. The sensed positions and the

corresponding position updates are shown in Fig. 6. As shown,

the spatial position information of each sensed position is kept

accurate, while the point in time used to update the position

is adjusted to protect the speed information of the MO.

V. PROOF OF CORRECTNESS

In this section, we prove that the MO’s movement trajectory T̂

generated by our speed protection algorithm does not indicate

any speeding violation to an attacker. First, we consider SPA-

PA and proceed afterwards with SPA-TD.

A. Proof for SPA-PA

We prove the correctness of SPA-PA by contradiction. Assume

that there exists a segment in the published trajectory T̂ of the

MO indicating a speeding violation. Furthermore, assume that

trajectory T̂ = {(π̂start, tstart), . . . , (π̂end, tend)} generated

by SPA-PA consists of at least two position updates, which is

the minimum number of position updates required to derive

speed information. Following our assumption, at least one

segment π̂i, π̂i+1 ∈ T̂ has to exists indicating a speeding vio-

lation of the MO. Without loss of generality, let position π̂i+1

updated at time ti+1 be the first update indicating a speeding

violation. As we can see in Fig. 5, π̂i+1 can only be updated

using function update(π̂i+1 , ti+1 ) (cf. line 15). Moreover, our

assumption requires that the MO drove faster than the allowed

speed limit on segment π̂i, π̂i+1. However, because SPA-PA

detects the speeding violation for position πi+1 at time ti+1

(cf. line 9), the updated position π̂i+1 is calculated as the

position that can be reached from the last updated position

π̂i without speeding violation (cf. line 11). Therefore, the

updated position π̂i+1 cannot indicate a speeding violation

on segment π̂i, π̂i+1. This contradicts our assumption that

segment π̂i, π̂i+1 ∈ T̂ indicates a speeding violation. Thus, it

is guaranteed that trajectory T̂ does not contain any speeding

violations.

B. Proof for SPA-TD

For SPA-TD we can show in a similar way to SPA-PA that no

segment πi, πi+1 ∈ T̂ can exist indicating a speeding violation

of the MO. Assume trajectory T̂ provided to the LS consists

again of at least two position updates. Moreover, assume that

position πi+1 updated at time t̂i+1 is the first position update

indicating a speeding violation. The only function updating the

MO’s position πi+1 in Fig. 7 is function update(πi+1 , t̂i+1 )
(cf. line 12). However, a speeding violation is detected by SPA-

TD (cf. line 7) and the update of position πi+1 is delayed until

time t̂i+1 (cf. line 8). Therefore, the update of position πi+1

does not provide any information that the MO drove faster

than the allowed speed limit. This contradicts our assumption

that segment πi, πi+1 ∈ T̂ indicates a speeding violation of the

MO and we can state that trajectory T̂ generated by SPA-TD

protects the speed information of the MO.

VI. EVALUATION

In this section, we present our real world trace evaluation

analyzing the speed information of taxi cabs in the San

Francisco Bay Area. Moreover, we evaluate the runtime per-

formance of our speed protection algorithms using a prototype

implementation on a state of the art mobile device.

A. Analysis of Real World Traces for Speeding Violations

For our evaluation, we use the mobility traces of taxi cabs in

San Francisco, USA, provided by [15]. The dataset consists

of the movement trajectories of approximately 500 taxi cabs

collected over 30 days in 2008 in the San Francisco Bay Area.

Each trajectory defines fine grained positions of a certain taxi

cab. The position of each taxi cab is measured by its GPS

receiver and updated within an update time of less than 10 s

on average. We randomly select the time period of one day

(2008/06/01) and analyze the behavior of the taxi cabs for
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Fig. 8. Speeding violation analysis

this day. We use the map information of the OpenStreetMap-

Project [14] providing road network data, speed limits, and

further information to determine the speed limits and distances

for each road segment.

First, we analyze the driving behavior and the occurred

speeding violations that can be derived from the movement

trajectories. To this end, we distinguish for each position

update whether it indicates a speeding violation or not by

analyzing the travel time and distance between succeeding

updates as formalized in (3). Overall, we analyzed 365 348

position updates of 484 different taxi cabs. 347 818 of the up-

dates (95.20%) conform to the local speed limits, while 17 530

position updates (4.80%) indicated a speeding violation.

We further analyzed these speeding violations and calcu-

lated the speed ∆vspeeding = v − vmax as the difference

between the MO’s speed v and the allowed speed limit vmax.

The results are shown in Fig. 8, where we plotted the number

of detected speeding violations over ∆vspeeding . As we can

see, the majority (87,93%) of speeding violations occurred for

∆vspeeding ≤ 40 km/h. On average, ∆vspeeding is 20.47 km/h

for all detected speeding violations. From these results we

can see that protecting the speed information of movement

trajectories is a relevant problem.

B. Analysis of Introduced Inaccuracy

Next, we formalize the spatial and temporal inaccuracy in-

troduced by SPA-PA and SPA-TD. The protection of the

speed information leads to an artificial inaccuracy in case the

MO drives faster than the allowed speed limit. We define

∆vmax
speeding as the maximum speed difference between the

MO’s speed v and the allowed speed limit vmax. Therefore,

∆vmax
speeding depends on the individual driving behavior of the

MO. Furthermore, we define position πj ∈ T measured at

time tj as the last measured position in T where the MO drove

below the allowed speed limit. Then, we can calculate for each

position π̂k ∈ T̂ updated at time tk ≥ tj the maximum spatial

inaccuracy introduced by SPA-PA as

∆dmax(πj , π̂k) = time(πj , π̂k) ∗∆vmax
speeding. (6)

For SPA-TD, the maximum introduced temporal inaccuracy

for each position πk ∈ T̂ and the last measured non-speeding

position πj is calculated as

∆tmax(πj , πk) =
distance(πj , πk) ∗∆vmax

speeding

(vmax)2 + (vmax ∗∆vmax
speeding)

. (7)

As we can see, the maximum spatial and temporal deviation

introduced by our speed protection algorithms depends on the

MO’s driving behavior defining ∆vmax
speeding and the duration

of the speeding violation of the MO respectively the traveled

distance between position πj and position πk.

To get an insight into real world user driving behavior,

we analyze the introduced spatial and temporal inaccuracy

introduced by SPA-PA and SPA-TD for the introduced real-

world dataset. To this end, we analyze the spatial inaccuracy

introduced by SPA-PA by measuring the Euclidean distance

between position π̂i+1 calculated by SPA-PA and the original

position πi+1 which would be updated without speed protec-

tion algorithm. Formally, the spatial inaccuracy is calculated

for time ti+1 as

∆d(ti+1) = distanceeucl(π̂i+1, πi+1). (8)

The temporal inaccuracy introduced by SPA-TD is the time

between ti+1 when position πi+1 is updated without SPA-TD

and time t̂i+1 SPA-TD updates πi+1. The temporal inaccuracy

is calculated for position πi+1 as:

∆t(πi+1) = t̂i+1 − ti+1. (9)

Because the taxi cabs of the analyzed dataset triggered their

position updates in an irregular manner, the used update strat-

egy is neither strictly distance-based nor time-based. However,

since the algorithms are also applicable for irregular update

intervals and distances, we used the provided positions from

the original dataset with the original timestamps.

We analyze SPA-PA by calculating the spatial inaccuracy

∆d(ti+1) for each position update πi+1 triggered at time ti+1.

As shown in Fig. 9, 93.3% of the position updates have an

inaccuracy below 100 m. Therefore, we can state that the speed

protected movement trajectories are of high quality, and only

few updates have a low spatial accuracy.

For our analysis of SPA-TD we calculate the temporal

inaccuracy ∆t(πi+1) for each position update triggered by

position πi+1. The evaluation results are shown in Fig. 10. As

we can see, 94.56% of the position updates have a temporal
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Fig. 9. Cumulative distribution of spatial inaccuracy
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Fig. 10. Cumulative distribution of temporal inaccuracy

inaccuracy below 10 s. An inaccuracy of 60 s covers 99.14%

of all updates. Therefore, we can state that the temporal

inaccuracy introduced by SPA-TD is low.

C. Performance Evaluation

Next, we analyze the efficiency of SPA-PA and SPA-TD. Since

the protection algorithms have to be executed online on the

mobile device, which typically has relatively low computa-

tional power, efficiency is a critical factor for the algorithms.

Moreover, a small computational overhead also reduces the

energy consumption, which is desirable for battery-operated

mobile devices.

We evaluate SPA-PA and SPA-TD using a prototype imple-

mented on a state of the art mobile device (HTC Desire HD).

The used map is the road network of Stuttgart, Germany. The

time required to calculate a new speed protected position de-

pends on the selected update protocol and its update parameter.

For SPA-PA, we analyze randomly selected positions on the

map with different update time periods TP ranging from 1 s to

60 s. Figure 11 shows the evaluation results for a movement

trajectory over several runs for each measurement. As we can

see, the required time to determine a new speed protected

position increases by increasing the update period TP. This

is based on the fact that the speed protection algorithm

has to calculate the fastest path on the road network from

the last updated position to the currently evaluated position.

By increasing TP, the traveled distance also increases. The

measured time includes the time required to calculate the map

matching on the road network for the sensed position of the

MO. The map matching is required as position π provided by

the positioning system has to be mapped to the road network

before it can be used by our speed protection algorithms.

On average, the map matching takes 150 milliseconds. As

 0

 100

 200

 300

 400

 10  20  30  40  50  60

T
im

e
 [

m
s]

Update time period TP [s]

SPA-PA

Fig. 11. Performance evaluation using time-based updates

 0

 100

 200

 300

 400

 0  200  400  600  800  1000

T
im

e
 [

m
s]

Update distance threshold D [m]

SPA-TD

Fig. 12. Performance evaluation using distance-based updates

the introduced calculation of SPA-PA for time-based position

updates is well below 250 milliseconds even for larger update

time periods, we can state that protecting the speed infor-

mation of a MO is possible without affecting the real-time

property of position updates.

For SPA-TD, we vary the threshold distance D from 10 m

to 500 m. As shown in Fig. 12, the processing time of SPA-

TD stays well below 250 milliseconds. The time for the map

matching part of SPA-TD is identical to the evaluation of SPA-

PA. Generally, calculating the temporal delay of a position

update in SPA-TD takes nearly the same time than calculating

the next reachable position not indicating a speeding violation

in SPA-PA. This is based on the fact that the functions used in

the introduced algorithms mainly differ only in line 11 in Fig. 5

and line 8 in Fig. 7, where we calculate the next reachable

position and the next reachable point in time that can be used

without indicating a speeding violation for the next update.

Therefore, SPA-TD can also be calculated very fast and support

real-time position updates.

D. Analysis of Update Costs

As we can see from Fig. 5 and Fig. 7, each sensed position

of the MO leads to exactly one (protected) position update.

Therefore, the update costs of SPA-PA and SPA-TD are iden-

tical to the update costs without speed protection.

To reduce the number of required position updates sent

to the LS, advanced update protocols using dead reckon-

ing [12] can be used. Dead-reckoning is an optimization of

the distance-based update protocols where the LS estimates

the position of the MO based on the last known position, its

speed, and its movement direction. The MO calculates the

same estimation as the LS and updates its position as soon

as the actual position differs from the estimated position by



more than a certain distance threshold DT . To this end, the

update algorithm implementing the dead-reckoning algorithm

periodically evaluates its update criteria based on the time-

based update protocol of SPA-PA. Thus, SPA-PA can be used

also for dead-reckoning based updates.

VII. RELATED WORK

Location privacy approaches can be distinguished based on

their used privacy principle and their protection goal. For

an overview of different privacy approaches and possible

location privacy attacks we refer to [21]. The most prominent

privacy principle is k-anonymity [9], [13] trying to make the

user indistinguishable from k − 1 other users such that the

identity of the user is protected. That is, k-anonymity tries

to prevent an attacker from linking a trajectory—which is

not modified and therefore contains all speeding violations—

to an individual user. However, as shown in [8], spatial and

temporal information can be used to identify individual users

and therefore to identify individual speeders.

Spatial obfuscation approaches [1], [4] protect the position

information of the user by decreasing precision. However,

even obfuscated positions can possibly reveal speeding vio-

lations such that these approaches do not protect the speed

information of the user. This applies also to position sharing

approaches [5], [20] providing different precision levels to

different clients while non-trusted LSs manage only positions

of limited precision.

Dummy approaches [10], [17] send the true user position

with additionally generated false positions to the LS to pro-

tect the movement trajectory of the user. However, dummy

approaches taking user movement into account do not consider

speed information of dummies. Therefore, if all dummies and

also the true user trajectory contain speeding violations, an

attacker knows that the user is definitely speeding. As the

dummy approach is orthogonal to our approach, our speed

protection algorithms could be added to protect dummies from

revealing speeding violations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented speed protection algorithms pro-

tecting users from revealing a violation of given speed limits

when using location-based applications. The basic idea to

protect time-based position updates is to adjust the spatial

information of the user position such that the updated position

does not indicate a speeding violation. For distance-based

position updates the basic idea is to delay updates that would

indicate that the user drove faster than the current speed limit.

For our evaluation we used a large real world dataset of

taxi cabs providing precise position information. We analyzed

this dataset and showed that protecting speed information is

important to prevent revealing speeding violations. Further-

more, we used the dataset to measure the introduced spatial

and temporal inaccuracy of our speed protection algorithms

and showed that 99.14% of the distance-based updates are

covered by a temporal inaccuracy of 60 s, and that 93.3% of

the time-based updates are covered by a spatial inaccuracy

of 100 m. Finally, we proved that our algorithms can run in

real-time on a state of the art mobile device.

In future work, we will analyze the impact of our speed

protection algorithms to advanced location update protocols

such as map-based dead reckoning [11].
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