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Abstract—Nowadays, millions of users share their complete
movement trajectory online when using real-time traffic moni-
toring applications, pay-as-you-drive insurances, or when sharing
their last road trip with friends. However, many users still hesitate
to use location-based applications as they are not willing to
reveal, for instance, their driving behavior or the occurrence
of a speeding violation.

Therefore, we present novel speed protection algorithms pro-
tecting users from revealing a violation of given speed limits
when using location-based applications. Our algorithms support
time-based and distance-based position updates. To protect posi-
tions indicating a speeding violation, we either adjust temporal
information by delaying position updates or adjust their spatial
information. We evaluate our algorithms by using real world
traces and show that the protected movement trajectory of the
user is of high quality even after removing speeding violations.

Index Terms—Location-based applications, speed protection,
movement trajectory, location management, location privacy.

I. INTRODUCTION

Driven by the availability of accurate positioning systems such
as GPS and powerful mobile communication technologies like
UMTS or LTE, location-based services (LBS) like friend find-
ers or geo-social networks attract millions of users today. Such
LBSs can be classified into two basic categories: LBSs using
singular positions and LBSs based on movement trajectories.
An example of the first class are services based on sporadic
location “check-ins” like Foursquare [6], where the user can
document his presence at certain points of interest. Another
example are friend finder applications, which notify users
about geographically close friends based on knowledge about
the current user position. In contrast to these LBSs based on
single positions, the second class of LBSs requires knowledge
about the complete movement trajectory of a user typically
acquired as GPS traces recording the sensed positions plus
the timestamps of the positions. For instance, several LBSs
for sharing hiking trails, jogging paths, etc. exist [3]. Other
examples include pay-as-you-drive insurances, community-
based mapping based on collected GPS traces (as used by
the OpenStreetMap project), or real-time traffic monitoring.
In this paper, we consider the second class of LBSs based
on movement trajectories. Our focus is on the protection of
private information that can be derived from such trajectories,
in more detail, the protection of speed information. Although
the user is typically aware of the fact that LBSs as the ones
mentioned above collect movement trajectories, he is seldomly

aware that this information can be used to derive further infor-
mation beyond geographical positions. In particular, movement
trajectories consisting of positions and timestamps can be
used to calculate the speed of the user. Although this speed
information is mandatory for many applications like real-
time traffic monitoring—e.g., to detect traffic jams—, the user
might involuntarily reveal information about his behaviour that
he is not willing to share, in particular, information about when
and where he might drove too fast.

At this point, we have to make clear that in the case
of violations of speed limits, the protection of information
is ambivalent. On the one hand, the protection of private
information—in particular, location information—is a com-
monly accepted goal. On the other hand, it should be clear
to everybody that speed limits are there to protect people,
and therefore, monitoring speed information is an important
measure for law enforcement. Our decision to design mecha-
nisms to protect speed information are based on the commonly
accepted principle that everybody should be able to control,
which information about him he reveals to someone else. In
other words: If the user is aware that the collected information
might be used for detecting speeding violations—for instance,
as part of a pay-as-you-drive insurance with special rates for
safety-conscious drivers, or using a tachograph for trucks—,
no protection mechanisms are necessary. On the contrary,
the insurance or police might want to ensure that the driver
does not manipulate the speed information using tamper-proof
devices (which is a different research topic on its own right).
However, if the driver does not explicitly agree on accurately
monitoring his speed, our mechanisms will make sure that no
information can be recorded that might later be used against
him. This is a very important prerequisite for ensuring the
acceptance of location-based services based on trajectories
and speed information. Clearly, although everyone would
assume that he obeys speed limits in general, the possibility
to detect violations will deter users from participating in
such services like automatic traffic jam detection. Even if the
recorded information cannot be used by the police due to legal
restrictions, private companies like car insurances might use
information found on the Internet (e.g., in OpenStreetMap GPS
traces) to screen their customers and adjust rates. This poses a
serious psychological barrier in providing unfiltered trajectory
information to LBSs.

Various cases from the past have shown that speed in-
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formation is indeed used without knowledge of the users.
For instance, in 2001, a car rental company in the US
fined customers for speeding violations using GPS-equipped
cars [19]. One customer was billed $150 for each of his alleged
speeding violations where the trace showed a speed faster
than 79 mph. For tracking, the company installed GPS-devices
in their cars. Nowadays, sensing and tracking technology of
mobile devices and car navigation systems can be used to
track users. For instance, new navigation systems provide real-
time speed and location data to servers calculating real-time
traffic conditions, which is clearly a service that many drivers
find useful and would actively support. However, in 2010,
a company providing such services sold their collected GPS
records to the Dutch police, which used the data to target
speed traps where they could catch most drivers [18]. Imme-
diately, the company stressed that they only stored anonymous
data such that individual speeders could not be identified
by the police. However, as shown in [8], user identification
from anonymized trajectories is possible if, for instance, an
anonymized trajectory starts in front of an individual home.
Therefore, identifying individual speeders would be possible.

As we can see from these examples, publishing user trajec-
tories without protecting the speed information can have severe
monetary and legal effects on the user if speeding violations
can be revealed, as well as for the acceptance of LBSs based
on trajectory information. To remove these concerns and,
therefore, to support the acceptance of LBSs, we present our
speed protection algorithms protecting the speed information
of a user trajectory in real-time by adjusting the reported
trajectory to the allowed speed limit such that users do not
have to fear any negative impact due to speeding violations. To
protect trajectories from indicating speedings, we either adjust
temporal information by delaying position updates or adjust
spatial information of positions. In our evaluation, we analyze
real world traces and show that protecting speed information
of movement trajectories is necessary. Furthermore, we show
that the accuracy decrease introduced by our speed protection
algorithms only affects few position updates such that the
speed protected trajectory is of high quality.

The rest of the paper is structured as follows: First, we
present our system model and location model in Sec. II. Then,
we introduce our problem statement in Sec. III. In Sec. IV,
we introduce our speed protection algorithms. Our proof of
correctness and our evaluation are presented in Sec. V and
Sec. VI. In Sec. VII, we present related work. Finally, we
conclude the paper in Sec. VIIL

II. SYSTEM MODEL AND LOCATION MODEL

Our system model is depicted in Fig. 1 and consists of mobile
objects, location servers, and clients.

The mobile object (MO) has an integrated positioning
system, such as GPS, to determine the current user position
w. The MO provides 7 to a location server (LS) storing
and managing position information of several MOs. To this
end, the MO sends a position update to the LS by using
function wupdate(r,t) consisting of its position 7 and the
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temporal information defining the corresponding time ¢. The
LS provides different clients, for instance, different location-
based applications, with stored positions. Using an LS relieves
the MO from sending 7 individually to different clients.
Position 7 has to be sent only once to the LS, while several
clients can access the stored information on the LS. The LS
controls access to the stored positions by using an access
control mechanism such as [2]. Thus, only clients with the
corresponding access rights can access the stored information.

To guarantee that no other component than our speed
protection component can directly access the MO’s position
« locally on the mobile device, existing trusted mobile com-
puting approaches such as [7] using, for instance, trusted
hardware components can be used. Otherwise, a local client
that could access 7 by directly querying the positioning system
could maliciously reveal a speeding violation of the MO. For a
detailed description on trusted computing approaches we refer
to [7]. In the following, we focus our description on remote
clients querying the remote LS and mention local clients only
if they behave differently.

The MQ’s position 7 is defined by its longitude and latitude
value. Since vehicles typically move on streets, we map
positions to a graph representing the road network. As shown
in Fig. 2, a road network can be modeled by a weighted graph
G = (V, E). Each node v € V represents either a junction or
defines an intermediate node that is used to model the shape of
a road. Each edge e € E represents a road segment between
two nodes and has an assigned maximum allowed speed limit.

To map “raw” GPS positions to the underlying road network
map matching algorithms can be used. For an overview of
existing map matching algorithms we refer to [16]. In the
following, we do not consider the map matching any more,
but assume that 7 is located on a road segment of the graph.

A movement trajectory 1" of the MO is defined as sequence
T = {(7starts tstart); - - - » (Mend, tena) } Of different positions
m; where the MO was located at time ¢;. Trajectory 7' can be
split up into a set of segments, where each segment 7, ;1
defines the path the MO traveled from 7; at time ¢; to m; 1



at time t;11. We assume that MOs travel on fastest paths,
since usually a MO intends to reach its destination as quick
as possible. Therefore, 7;, ;11 is the fastest path between 7;
and m;11. The distance between 7; and ;11 is

distance(T;; Tix1) = length(FP(m;, iy1)) (1)

defining the length of the fastest path (F'P) from ; to m;11.
The time the MO traveled on segment 7;, 7,41 iS

time(m, 7TZ'+1) = ti+1 — ti. (2)
III. PROBLEM STATEMENT

We tackle the problem that real-time position updates of a
MO’s movement trajectory 7' reveal speeding violations of
the MO. To solve this problem, we use our speed protection
algorithms transforming trajectory 7" into the speed protected
trajectory 7' (introduced below) guaranteeing that nobody can
determine any speeding violation by analyzing 7T'.

For trajectory T = {(Wstarta tstart)7 B (ﬂ'enda tend)}’ a
speeding violation is detected if for at least one segment
i, Mit1 € 1T the MO traveled from 7; to 7,41 within shorter
time than it takes the MO when driving at the maximum
allowed speed of the segment:

time(77, Tir1) < timeMaxSpeed (77, Tiy1)- 3)

This concept is also known as ‘“section control”, where the
average speed over a certain known distance is calculated.
Here, timeMaxSpeed(7;, mi+1) defines the time it takes a
MO driving from 7; to ;41 at the maximum allowed speed.
An attacker is interested in finding segment 7, w11 € T
indicating that the MO was speeding:
A7, eT: A
time(77, Tir1) < timeMaxSpeed (77, Tiy1)- “
As stated previously, 7;, ;11 defines the fastest path from 7;
to m;4+1. If a speeding violation is detected for 7;, m; 11, then
the MO is also speeding for all other slower paths from ; to
m;+1. Thus, we call this a definitely speeding semantic, where
the MO has no plausible way of denying a speeding violation.
The goal of our speed protection algorithms is to transform
trajectory 1" into a protected trajectory 71" such that for every
segment 7;, m; 11 at least one possible path exists where the
MO could have traveled from m; to ;11 without speeding.
Then, the definitely speeding semantic is not fulfilled for 7"
Vi eT: )
time (T, mix1) > timeMaxSpeed (T, Tir1)-
Obviously, transforming the original trajectory 7' into the
speed protected trajectory 7" introduces artificial inaccuracies.
Therefore, another goal is to alter T as less as possible to
reduce the introduced inaccuracy. Later, we will show that the
speed protection algorithms either lead to spatial or temporal
inaccuracies for positions of 7. Therefore, the spatial or
temporal difference should be as small as possible.
By guaranteeing that the definitely speeding semantic is not
fulfilled for the published trajectory 7', the MO can plausibly

deny a speeding violation since the MO could have traveled
on each segment of trajectory T without driving faster than
the allowed speed. In combination with the “in dubio pro reo”
principle, this fulfills our goal to protect the speed of a MO’s
movement trajectory 7' because no evidences of a speeding
violation exists as long as the MO could have traveled along
T on the fastest path without any speeding violation.

IV. SPEED PROTECTION ALGORITHMS

In this section, we present our speed protection algorithms
(SPA for short) guaranteeing that the continuously updated tra-
jectory T' of the MO does not contain any speeding violation.

A. Overview

The general idea of SPA is to slow down the speed of trajectory
T to the maximum speed the MO is allowed to drive on
each road segment. Since location update protocols are usually
either time-based or distance-based, we use the methods of
position adjustment (PA) and temporal delay (TD) to support
both kinds of protocols.

We use position adjustment in SPA-PA to support time-
based position update protocols, which periodically update
m;4+1 after a predefined update time period TP. The constant
update rate is independent of the MO’s position change and
sends position updates even if the position of the MO did
not change. Our position adjustment shifts position ;41 to
position 7; 1 if a speeding violation happened between the
last updated position 7; and the currently sensed position ;1.
Here, position adjustment protects the speed of the MO by
decreasing the spatial accuracy of m; 1 such that the speed
protected position 7; 41 is updated instead of ;1 at time
ti+1. As soon as the speed of the MO is below the speed
limit, the spatial accuracy is increased until position 7; 41 is
equal to m;y; and the accurate position of the MO can be
updated again without revealing a speeding violation.

We use temporal delays in SPA-TD to support distance-
based position update protocols taking the traveled distance
of the MO into account. With distance-based protocols a new
position m; 11 is updated whenever the Euclidean distance
to the last reported position m; reaches a given threshold
distance D. If a speeding violation occurred between the last
updated position 7; and the new sensed position 7,11, the
update of position ;11 is delayed until time tAIH such that
no speeding violation can be recognized between m; updated
at time 7; and ;41 updated at time tl+1 Our temporal delay
keeps the spatial information of the position accurate and
decreases the temporal accuracy of the update. As soon as the
speed of the MO is reduced and the MO drives slower than
the allowed speed limit, the temporal accuracy is increased
until the timestamps of the sensed and updated positions are
identical and no delay is needed any more.

Figure 3 shows an overview of the complete process. The
MO senses its position ;4 at time ¢;4; using the positioning
sensor. For time-based updates, SPA-PA uses the position
adjustment method and provides position 7;11 at time ¢;11
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Fig. 3. Process overview

to the update algorithm. For distance-based updates, SPA-
TD uses the temporal delay method to provide position ;41
at the delayed time tAl-H to the update algorithm. Then,
function update(T;+ 1, i1 1) respectively update(m; ,?H 1)
is used by the update algorithm to provide the new position
information of the MO to the LS. Finally, clients can access
this information by using function getPosition(). Next, we

present the two protection methods in more detail.

B. SPA with Position Adjustment

The detailed speed protection algorithm SPA-PA for time-
based updates is shown in Fig. 5. First, the initial posi-
tion 7gqrt 1S sensed at time tg:4,+ and updated as posi-
tion Tgiqre by using function update(Tsiart, tstart) at time
tstart. Afterwards, a new position m;;; is sensed at time
tiy; = t; + TP based on the MO-selected update time period
TP. Next, SPA-PA uses the last updated position 7; to eval-
vate time(7;, iy 1) < timeMaxSpeed (7;, m;1 ). If the MO
reached 7;41 from 7; within shorter time than it takes a MO
driving at the maximum allowed speed, then updating ;1
would reveal a speeding violation. In this case position ;1
has to be adjusted before it can be published. To this end,
SPA-PA uses function getReachable Position(7;,0t, T) to cal-
culate position 7;41 as the position that can be reached from
the last updated position 7; within time §¢ = time(7;, ;4 1)
when driving at the maximum allowed speed on segment
i, i1 1. In case no speeding violation is detected, position
;47 is used as position 7, ;. Finally, the calculated position
Ti+s is updated using function update(T;s 1, tiv1).

An example of SPA-PA for time-based updates is pre-
sented in Fig. 4. For simplicity, we use a fixed value of
maxzSpeed(e) = 100km/h for each edge e and assume that
a new position is sensed after a time period of TP = 5s.
Without SPA-PA, trajectory 1" shown in Fig. 4 would be
published. The MO drives with a speed of 80km/h at time

Tstarts tstart <— sensed position

T < Tstart tstart

Tstart < Tstart

update('ﬂ-starta tstart)

while report movement do
Tit1,ti+1 < sensed position
T TUmir1,ti
7, t; < last updated position
if time(7;, mi11) < timeMaxSpeed(T;, m;11) then

10: Ot < time(T;, mit1) > Speeding detected

Tit1 < getReachable Position(w;, 0t,T')

12:  else

13: §T\i+1 — T+l

14 end if

15:  update(Tiy1,tit1)

16: end while

> Initial positioning

> Sensed trajectory

> Initial position

> Initial position update

> Triggered time-based

R A A S ol S

—_—
—_

> No speeding occurred

> Update 7;1 at time #;11

Fig. 5.

t3. At time t4, the MO accelerates up to a speed of 120 km/h
at time 5 and travels at this speed until time ¢g. Then, the
MO slows down to 80km/h at time t; that is kept until
time t19. The corresponding time-speed diagram is shown
in Fig. 4 on the right. By using SPA-PA, the maximum
speed between two updated positions in 7' is limited to the
maximum allowed speed of 100 km/h. The generated updates
are shown in Fig. 4 with the corresponding time-speed diagram
of the speed protected trajectory 7. While actually a speeding
violation of the MO occurred, the reported speed is limited to
the maximum allowed speed limit. The time after the MO’s
speeding violation is used to reduce the spatial difference
between the updated and the actual position of the MO.

SPA with position adjustment

C. SPA with Temporal Delay

The speed protection algorithm SPA-TD for distance-based
updates is shown in Fig. 7. The positioning sensor provides a
new position to SPA-TD as soon as the Euclidean distance
between the last sensed position 7; and the new sensed
position 7,41 reaches the MO-defined threshold distance D.
The initial position is updated as described for SPA-PA.
For the following position updates, it is evaluated whether
position m;y; sensed at time ¢;;; can be reached in time
time(T;,Tix1) = tip1 — t; from the last updated position
m; updated at time ti. A speeding violation is detected if
time(7y, mit1) < timeMaxSpeed (77, i+ 1 ). Then, the update
of position ;41 must be delayed until ;1 can be reached
from 7; without exceeding the speed limit. To this end, SPA-
TD calculates time tAi+1 at which the MO can reach 7;; from
m; without speeding violation. SPA-TD assumes a MO driving
at the maximum allowed speed from 7; to ;11 and uses the
minimum required time timeM axSpeed(T;, mi11) to calcu-
late tAi+1 as tA¢+1 = tAi—&—timeMaxSpeed(m). The update
of position 7;; is then delayed until time tA¢+1. Otherwise, if
m;+1 can be reached from m; without a speeding violation, time
ti+1 is used to define tAl-H = t;41. Finally, position 7,41 is
updated at time EH using function update(m; ,?Z-Jr 1). After
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I: Tstart, tstart <— sensed position > Initial positioning
2 tstart < tstart > Initial update time
3: update(wstart,am”) > Initial position update
4: while report movement do

5 w41, ti+1 < sensed position > Triggered distance-b.
6: i, t; < last updated position

7. if time(T, Tigr1) < timeMaxSpeed (77, Ti+1) then

8: tAH_l — 1t + timeM ax Speed (T, Ti11) > Speed.
9: else

10: tAiH —tig > No speeding occurred
11:  end if

12: update(wi+1,tAi+1) > Update i1 at time %\i-ﬁ-l

13: end while

Fig. 7. SPA with temporal delay
a speeding violation occurred and the MO is again driving at a
speed below the speed limit, the temporal accuracy is increased
until no delay is needed any more for a new position update.
An example for SPA-TD is shown in Fig. 6. For this
example, we use the same MO movement and the same speed
limitations as presented in our previous example for SPA-PA.
Compared to the former example, the sensing of a new position
is triggered based on the MO-defined threshold distance D
that is set to D = 100m. The sensed positions and the
corresponding position updates are shown in Fig. 6. As shown,
the spatial position information of each sensed position is kept
accurate, while the point in time used to update the position
is adjusted to protect the speed information of the MO.

V. PROOF OF CORRECTNESS

In this section, we prove that the MO’s movement trajectory T
generated by our speed protection algorithm does not indicate
any speeding violation to an attacker. First, we consider SPA-
PA and proceed afterwards with SPA-TD.

A. Proof for SPA-PA

We prove the correctness of SPA-PA by contradiction. Assume
that there exists a segment in the published trajectory 7" of the
MO indicating a speeding violation. Furthermore, assume that
trajectory T = {(Tstart, tstart)s - - -5 (Mend, tend)} generated
by SPA-PA consists of at least two position updates, which is
the minimum number of position updates required to derive
speed information. Following our assumption, at least one
segment 7;, T;+1 € T has to exists indicating a speeding vio-
lation of the MO. Without loss of generality, let position 7,41
updated at time ;.1 be the first update indicating a speeding
violation. As we can see in Fig. 5, ;11 can only be updated

using function update(T; 1, ti1 1) (cf. line 15). Moreover, our
assumption requires that the MO drove faster than the allowed
speed limit on segment 7;, 7; 1. However, because SPA-PA
detects the speeding violation for position ;4 at time ;1
(cf. line 9), the updated position 7;41 is calculated as the
position that can be reached from the last updated position
m; without speeding violation (cf. line 11). Therefore, the
updated position 7r;11 cannot indicate a speeding violation
on segment %,-,%,-ﬂ\. This contradicts our assumption that
segment 7;,7;+1 € T indicates a speeding violation. Thus, it
is guaranteed that trajectory 7" does not contain any speeding
violations.

B. Proof for SPA-TD

For SPA-TD we can show in a similar way to SPA-PA that no
segment 7;, ;11 € 1 can exist indicating a speeding violation
of the MO. Assume trajectory 1" provided to the LS consists
again of at least two position updates. Moreover, assume that
position ;1 updated at time tAZ-H is the first position update
indicating a speeding violation. The only function updating the
MO’s position ;11 in Fig. 7 is function update(m; 4 ,EH)
(cf. line 12). However, a speeding violation is detected by SPA-
TD (cf. line 7) and the update of position 7,41 is delayed until
time tAZ-H (cf. line 8). Therefore, the update of position ;1
does not provide any information that the MO drove faster
than the allowed speed limit. This contradicts our assumption
that segment 7;; ;11 € 1" indicates a speeding violation of the
MO and we can state that trajectory 7' generated by SPA-TD
protects the speed information of the MO.

VI. EVALUATION

In this section, we present our real world trace evaluation
analyzing the speed information of taxi cabs in the San
Francisco Bay Area. Moreover, we evaluate the runtime per-
formance of our speed protection algorithms using a prototype
implementation on a state of the art mobile device.

A. Analysis of Real World Traces for Speeding Violations

For our evaluation, we use the mobility traces of taxi cabs in
San Francisco, USA, provided by [15]. The dataset consists
of the movement trajectories of approximately 500 taxi cabs
collected over 30 days in 2008 in the San Francisco Bay Area.
Each trajectory defines fine grained positions of a certain taxi
cab. The position of each taxi cab is measured by its GPS
receiver and updated within an update time of less than 10s
on average. We randomly select the time period of one day
(2008/06/01) and analyze the behavior of the taxi cabs for
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this day. We use the map information of the OpenStreetMap-
Project [14] providing road network data, speed limits, and
further information to determine the speed limits and distances
for each road segment.

First, we analyze the driving behavior and the occurred
speeding violations that can be derived from the movement
trajectories. To this end, we distinguish for each position
update whether it indicates a speeding violation or not by
analyzing the travel time and distance between succeeding
updates as formalized in (3). Overall, we analyzed 365348
position updates of 484 different taxi cabs. 347 818 of the up-
dates (95.20%) conform to the local speed limits, while 17 530
position updates (4.80%) indicated a speeding violation.

We further analyzed these speeding violations and calcu-
lated the speed Avspeeding = U — Umae as the difference
between the MO’s speed v and the allowed speed limit v,,,4-
The results are shown in Fig. 8, where we plotted the number
of detected speeding violations over Avgpeeding. As we can
see, the majority (87,93%) of speeding violations occurred for
AVgpeeding < 40km/h. On average, Avgpeeding s 20.47 km/h
for all detected speeding violations. From these results we
can see that protecting the speed information of movement
trajectories is a relevant problem.

B. Analysis of Introduced Inaccuracy

Next, we formalize the spatial and temporal inaccuracy in-
troduced by SPA-PA and SPA-TD. The protection of the
speed information leads to an artificial inaccuracy in case the
MO drives faster than the allowed speed limit. We define
Av et in, as the maximum speed difference between the
MO’s speed v and the allowed speed limit v,,,4,. Therefore,
Avg et in, depends on the individual driving behavior of the
MO. Furthermore, we define position 7; € T measured at
time ¢; as the last measured position in 7" where the MO drove
below the allovy\ed speed limit. Then, we can calculate for each

position 7, € T updated at time t;, > ¢; the maximum spatial

inaccuracy introduced by SPA-PA as

Ad'maac (7Tj, %k) = time(ﬂ-jv %k) * Avgacel:ding' (6)

For SPA-TD, the maximum introduced temporal inaccuracy
for each position 7, € T" and the last measured non-speeding
position 7; is calculated as

distance(Tj,7k) * AVt aing o

(Umaz)2 + (Umafﬂ * Av:;;z:ding) .

Atmaz (7Tj 3 7Tk) =

As we can see, the maximum spatial and temporal deviation
introduced by our speed protection algorithms depends on the
MO’s driving behavior defining Ave?,,  and the duration
of the speeding violation of the MO respectively the traveled
distance between position 7; and position 7.

To get an insight into real world user driving behavior,
we analyze the introduced spatial and temporal inaccuracy
introduced by SPA-PA and SPA-TD for the introduced real-
world dataset. To this end, we analyze the spatial inaccuracy
introduced by SPA-PA by measuring the Euclidean distance
between position 7; 1 calculated by SPA-PA and the original
position ;1 which would be updated without speed protec-
tion algorithm. Formally, the spatial inaccuracy is calculated
for time ;1 as

Ad(ti+1) = distanceeud (/TFijq, 7Ti+1). (8)

The temporal inaccuracy introduced by SPA-TD is the time
between t; 1 when position ;1 is updated without SPA-TD
and time tAiH SPA-TD updates ;1. The temporal inaccuracy
is calculated for position ;4 as:

At(Tig1) = tig1 — i1 )

Because the taxi cabs of the analyzed dataset triggered their
position updates in an irregular manner, the used update strat-
egy is neither strictly distance-based nor time-based. However,
since the algorithms are also applicable for irregular update
intervals and distances, we used the provided positions from
the original dataset with the original timestamps.

We analyze SPA-PA by calculating the spatial inaccuracy
Ad(t;1) for each position update 7, triggered at time ¢; 1.
As shown in Fig. 9, 93.3% of the position updates have an
inaccuracy below 100 m. Therefore, we can state that the speed
protected movement trajectories are of high quality, and only
few updates have a low spatial accuracy.

For our analysis of SPA-TD we calculate the temporal
inaccuracy At(m;11) for each position update triggered by
position 7;41. The evaluation results are shown in Fig. 10. As
we can see, 94.56% of the position updates have a temporal
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inaccuracy below 10s. An inaccuracy of 60s covers 99.14%
of all updates. Therefore, we can state that the temporal
inaccuracy introduced by SPA-TD is low.

C. Performance Evaluation

Next, we analyze the efficiency of SPA-PA and SPA-TD. Since
the protection algorithms have to be executed online on the
mobile device, which typically has relatively low computa-
tional power, efficiency is a critical factor for the algorithms.
Moreover, a small computational overhead also reduces the
energy consumption, which is desirable for battery-operated
mobile devices.

We evaluate SPA-PA and SPA-TD using a prototype imple-
mented on a state of the art mobile device (HTC Desire HD).
The used map is the road network of Stuttgart, Germany. The
time required to calculate a new speed protected position de-
pends on the selected update protocol and its update parameter.

For SPA-PA, we analyze randomly selected positions on the
map with different update time periods TP ranging from 1 s to
60s. Figure 11 shows the evaluation results for a movement
trajectory over several runs for each measurement. As we can
see, the required time to determine a new speed protected
position increases by increasing the update period TP. This
is based on the fact that the speed protection algorithm
has to calculate the fastest path on the road network from
the last updated position to the currently evaluated position.
By increasing TP, the traveled distance also increases. The
measured time includes the time required to calculate the map
matching on the road network for the sensed position of the
MO. The map matching is required as position 7 provided by
the positioning system has to be mapped to the road network
before it can be used by our speed protection algorithms.
On average, the map matching takes 150 milliseconds. As
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the introduced calculation of SPA-PA for time-based position
updates is well below 250 milliseconds even for larger update
time periods, we can state that protecting the speed infor-
mation of a MO is possible without affecting the real-time
property of position updates.

For SPA-TD, we vary the threshold distance D from 10 m
to 500m. As shown in Fig. 12, the processing time of SPA-
TD stays well below 250 milliseconds. The time for the map
matching part of SPA-TD is identical to the evaluation of SPA-
PA. Generally, calculating the temporal delay of a position
update in SPA-TD takes nearly the same time than calculating
the next reachable position not indicating a speeding violation
in SPA-PA. This is based on the fact that the functions used in
the introduced algorithms mainly differ only in line 11 in Fig. 5
and line 8 in Fig. 7, where we calculate the next reachable
position and the next reachable point in time that can be used
without indicating a speeding violation for the next update.
Therefore, SPA-TD can also be calculated very fast and support
real-time position updates.

D. Analysis of Update Costs

As we can see from Fig. 5 and Fig. 7, each sensed position
of the MO leads to exactly one (protected) position update.
Therefore, the update costs of SPA-PA and SPA-TD are iden-
tical to the update costs without speed protection.

To reduce the number of required position updates sent
to the LS, advanced update protocols using dead reckon-
ing [12] can be used. Dead-reckoning is an optimization of
the distance-based update protocols where the LS estimates
the position of the MO based on the last known position, its
speed, and its movement direction. The MO calculates the
same estimation as the LS and updates its position as soon
as the actual position differs from the estimated position by



more than a certain distance threshold DT'. To this end, the
update algorithm implementing the dead-reckoning algorithm
periodically evaluates its update criteria based on the time-
based update protocol of SPA-PA. Thus, SPA-PA can be used
also for dead-reckoning based updates.

VII. RELATED WORK

Location privacy approaches can be distinguished based on
their used privacy principle and their protection goal. For
an overview of different privacy approaches and possible
location privacy attacks we refer to [21]. The most prominent
privacy principle is k-anonymity [9], [13] trying to make the
user indistinguishable from k — 1 other users such that the
identity of the user is protected. That is, k-anonymity tries
to prevent an attacker from linking a trajectory—which is
not modified and therefore contains all speeding violations—
to an individual user. However, as shown in [8], spatial and
temporal information can be used to identify individual users
and therefore to identify individual speeders.

Spatial obfuscation approaches [1], [4] protect the position
information of the user by decreasing precision. However,
even obfuscated positions can possibly reveal speeding vio-
lations such that these approaches do not protect the speed
information of the user. This applies also to position sharing
approaches [5], [20] providing different precision levels to
different clients while non-trusted LSs manage only positions
of limited precision.

Dummy approaches [10], [17] send the true user position
with additionally generated false positions to the LS to pro-
tect the movement trajectory of the user. However, dummy
approaches taking user movement into account do not consider
speed information of dummies. Therefore, if all dummies and
also the true user trajectory contain speeding violations, an
attacker knows that the user is definitely speeding. As the
dummy approach is orthogonal to our approach, our speed
protection algorithms could be added to protect dummies from
revealing speeding violations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented speed protection algorithms pro-
tecting users from revealing a violation of given speed limits
when using location-based applications. The basic idea to
protect time-based position updates is to adjust the spatial
information of the user position such that the updated position
does not indicate a speeding violation. For distance-based
position updates the basic idea is to delay updates that would
indicate that the user drove faster than the current speed limit.

For our evaluation we used a large real world dataset of
taxi cabs providing precise position information. We analyzed
this dataset and showed that protecting speed information is
important to prevent revealing speeding violations. Further-
more, we used the dataset to measure the introduced spatial
and temporal inaccuracy of our speed protection algorithms
and showed that 99.14% of the distance-based updates are
covered by a temporal inaccuracy of 60s, and that 93.3% of
the time-based updates are covered by a spatial inaccuracy

of 100 m. Finally, we proved that our algorithms can run in
real-time on a state of the art mobile device.

In future work, we will analyze the impact of our speed
protection algorithms to advanced location update protocols
such as map-based dead reckoning [11].
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