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Abstract—This paper discusses the unification of service 
composition based on formal specifications. The approach aims 
for a unified execution of service compositions that can be 
modeled by various specification languages covering different 
modeling paradigms. The unification of service composition 
models is realized based on formal grammars whereas the 
unification of service composition execution is realized based on 
formal queued automata. The approach introduces a 
classification of context-sensitive grammars for determining an 
optimized automaton class for the execution of service 
compositions. Finally, a prototype providing transformations of 
various modeling languages to formal grammars as well as the 
grammar-based execution of service compositions is presented. 

Keywords—Web Service, Service Composition, Unification, 
Formal Grammars, Formal Automata 

I.  INTRODUCTION 
For the modeling of service compositions various 

specification languages exist, e.g. BPEL, BPMN, ConDec, 
UML Activity Diagrams. Furthermore, various engines for 
service compositions exist supporting one or more 
specification languages. For the processing each engine uses its 
own internal model covering the service composition logic [7]. 
That means, there exists no common reference model for 
processing service compositions. The approach at hand aims at 
a unified execution of service compositions that are allowed to 
be modeled by different specification languages. Therefore, the 
approach introduces a unified model that is suitable to be an 
internal model as well as an engine for processing the unified 
model. The introduced unified model covers different modeling 
paradigms, e.g. imperative and declarative languages. 
However, the unified model is intended to be an internal 
model, i.e. it is the target of transformations and human 
modelers are not expected to directly specify the unified model. 

Figure 1 illustrates the idea of the approach: Each 
specification language requires an engine that implements the 
operational semantics of the language. Analogously, formal 
grammars and automata are correlated in language theory. The 
approach at hand proposes formal grammars for the unified 
model of service compositions and formal automata for the 
unified execution of service compositions. In general, a formal 
grammar coordinates symbols (non-terminals and terminals) 
whereas a service composition coordinates service calls. That 
means, formal grammars are suitable to cover service 

compositions by correlating the symbols of a grammar with 
service calls in a service composition. In detail, a service call is 
represented by a non-terminal (possibly in combination with a 
terminal). The creation of the non-terminal (e.g. A in Figure 2) 
represents the activation of the service call. The processing of a 
production rule specifying the particular non-terminal on the 
left hand side (lhs) represents the execution of a service call 
(e.g. rule A→a in Figure 2). The right hand side (rhs) of this 
production rule may specify a terminal representing lasting 
information about the finishing of the service call. 

Various approaches covering a unified model for service 
compositions already exist with different purpose. For 
example, [1] aims for a unified modeling in UML and a 
transformation to executables languages like BPEL. A formal 
unified model is introduced in [2] with intent to analyze 
semantic properties, e.g. behavioral equivalence of service 
compositions. Other approaches aim for defining a unified 
model to be a reference model for service compositions. For 
example, [3] introduces workflow patterns allowing the 
unification of service composition models based on a set of 
generic constructs. More accurate, [4] and [5] introduce unified 
meta-models by ontologies for the domain service composition. 
Similarly, [6] introduces an interchange format representing a 
unified model supporting all the information that is typically 
covered in existing specification languages. The approach at 
hand introduces a unified model that is suitable to be a native 
model [7] for service composition. That means, the unified 
model is intended to be used as internal processing model in 
engines. The relation between the unified model and typical 
specification languages for service compositions is similar to 
the relation between assembler and high programming 
languages. Furthermore, the approach especially aims for the 
unification of different modeling paradigms and allows to 
improve the scalability of engines.  

II. UNIFIED MODEL 
A formal grammar G=(V, Σ, P, S) is a specialized rewrite 

system (V∪Σ, P) separating the symbols of a rewrite system 
into non-terminals and terminals, providing a specific start 
symbol, and restricting the structure of production rules by 
requiring at least one non-terminal on the lhs of each rule. The 
service grammars introduced in this section specialize formal 
grammars by further separation of non-terminals and further 
restrictions to the production rule structure. Additionally, 



BPEL 

BPEL Engine 

Grammar 

Automaton 

BPMN 

BMPM 
Engine 

Java 

Java Virtual 
Machine 

Buildtime 
Runtime 

Figure 1: Grammars and automata for unification  

<nonTerminal>  <name> H </name>  </nonTerminal> 
<nonTerminal>  <name> A </name>   
   <type> Service A Operation A1 </type> 
   <input>   <reference>Y </reference>  </input>  
   <output>   <reference>Z </reference>  </output>  
</nonTerminal>    
<nonTerminalType   name=”Service A Operation A1”> 
   <wsa:EndpointReference>  <wsa:Address>   
           http://localhost:9763/services/ServiceA  
   <wsa:Address>  </wsa:EndpointReference>   
…<operation> A1 </operation>  
</nonTerminalType>   
<nonTerminal>  <name> C </name> 
   <type> XPathSolver </type> 
   <input>  <reference>Z </reference> 
                  <value> Z>0 </value>  </input> 
    <relations> 
       <relation>  <outputValue> True </outputValue> 
                 <nonTerminalREF> T </nonTerminalREF> 
       </relation> 
       <relation>   <outputValue> False </outputValue> 
                   <nonTerminalREF> F </nonTerminalREF> 
       </relation> 
    </relations> 
</nonTerminal> 
<nonTerminalType   name=”XPathSolver”> 
   <wsa:EndpointReference>  <wsa:Address> 
       http://localhost:8080/services/XPathSolver 
      </wsa:Address></wsa:EndpointReference> 
…<operation> evaluate </operation> 
</nonTerminalType> 

Figure 3: A one-dimensional non-terminal H, a two-dimensional 
non-terminal A, and a three-dimensional non-terminal C 

 

Figure 2: Example 

production rules of service grammars are specifically 
interpreted, i.e. the order of symbols is abstracted.  
Definition 1: A service grammar GS=(V, Σ, P, S) is a formal 
grammar G=(V,Σ, P, S) where: 
• V is a set of complex non-terminals 
• P is a set of c-interpreted production rules with: 

P⊆Σ*VΣ*×(V∪Σ)* 

Complexity of Non-Terminals 
In service grammars non-terminals can have multiple 

dimensions. Conventional non-terminals are 1-dimensional 
symbols exclusively specifying the name of the symbol. The 1-
dimensional non-terminals are helper symbols in service 
compositions that are required for example for the 
synchronization of parallel control flow (cf. non-terminal H in 
Figure 2 and Figure 3). For enabling service-oriented computing 
2-dimensional non-terminals are associated with service 
operations by a non-terminal type (cf. non-terminal A in Figure 
2 and Figure 3). Additionally, the second dimension of non-
terminals covers input and output parameters if necessary. 
Hence, data is given by an absolute term or handled by 
reference, i.e. input and output data of a service call is typically 
stored in an external database (cf. section IV). The correlation 
of non-terminals and service operations allows a classification 
of non-terminals, i.e. different non-terminals of the same type 
represent calls of the same service operation. However, input 
and output parameters are specific to a service call, i.e. non-
terminal. For example, two different conditions create two 
different non-terminals sharing the same type (e.g. 
XPathSolver) but specifying different input parameters, i.e. 
conditions. Finally, the third dimension of non-terminals 
covers the feedback of a service call if the service operation 
result represents required information for the execution of a 
service composition. In detail, the third dimension specifies a 
mapping of service operation return values and 1-dimensional 
non-terminals (cf. non-terminal C in Figure 2 and Figure 3). 

C-Interpretation of Production Rules 
Production rules in formal grammars handle words, i.e. 

cover the concurrent existence as well as the order of symbols. 
For example, the production rule abX→abC requires the 
terminal a to be placed immediately left to the terminal b. In 
contrast, the c-interpretation of production rules covers the 
concurrent existence of symbols but ignore the order of 
symbols. That means, c-interpreted production rules handle 
multisets instead of words. Furthermore, c-interpreted 
production rules cover a set of conventionally interpreted 
production rules. For example, the c-interpreted production rule 
abX→abC collects a set of conventionally interpreted 
production rules αxβyγzδ→αx’βy’γz’δ with x,y,z∈{a,b,X}, 
x’,y’,z’∈{a,b,C}, x≠y≠z, x’≠y’≠z’, and α,β,γ,δ∈(V∪Σ)*. 
Definition 2: The multiset-interpretation of a word 
w=(x1,x2,…,xn) over an alphabet Σ is defined by a multiset 
M:Σ→IN0 with:   multiset(w)= [x1, x2, …, xn]  
where a multiset is notated by square brackets, e.g. [a,a,b,c]. 
Definition 3: The c-interpretation of a production rule p=(α,β) 
results in a c-interpreted production rule with the function ic: 

ic(p)=(multiset(α), multiset(β)) 

Considering the language the c-interpretation of production 
rules creates another language covering the commutative 

closure of single words of the actual conventional language. [8] 
discusses the commutativity of symbols in words and 
languages in detail. Hence, dependencies are introduced 
restricting the commutativity of symbol pairs. In contrast, the 
approach at hand allows commutativity for all symbols at all 
time. However, the approach in [8] is suitable to define the 
language corresponding to a c-interpretation of a grammar.  

Context Types 
As mentioned before, formal grammars require at least one 

non-terminal on the lhs of production rules. The approach at 
hand calls this non-terminal the processing symbol of the 
particular rule that is not necessarily uniquely determined. 
Context-sensitive and higher classes of grammars allow 
additional symbols next to the processing symbol on the lhs of 
production rules, i.e. context symbols. The following context 
types create sub-classes of context-sensitive grammars based 



on the structure of production rules: 
Definition 4: Assuming a formal grammar (V, Σ, P, S) context 
types are defined as follows: 
Terminal-based Context: Production rules are restricted to 
specify exactly one non-terminal on the lhs but are allowed to 
specify multiple terminals on the lhs.  

P⊆Σ*VΣ* × (V∪Σ)* 
Non-Terminal-based Context: Production rules are allowed 
to specify multiple non-terminals and terminals on the lhs.  

P⊆(V∪Σ)*V(V∪Σ)* × (V∪Σ)* 
Invariant Context: Context symbols that are specified on the 
lhs are not allowed to be changed, i.e. need to be specified on 
the lhs as well as on the rhs.  

∀(α,β)∈P ∃x,y: α=xMy ∧ β=xNy ∧ M∈V ∧ N∈(V∪Σ)* 
with x,y∈Σ* for terminal-based context and 
        x,y∈(V∪Σ)* for non-terminal-based context. 
Variant Context: Context symbols that are specified on the lhs 
are allowed to be changed, i.e. are not required to be specified 
on the rhs.  

P⊆Σ*VΣ* × (V∪Σ)* for terminal-based context and 
P⊆(V∪Σ)*V(V∪Σ)* × (V∪Σ)* for non-terminal-based context 

Table 1: Combining context types 
 Invariant Context Variant Context 
Terminal-
based 
Context 

Unique processing symbol 
Terminals are not allowed 
to be deleted after their 
creation 

Unique processing symbol 
Terminals are allowed to be 
deleted after their creation 

Non-
Terminal-
based 
Context 

Unique Processing symbol 
Terminals are not allowed 
to be deleted after their 
creation 

Multiple processing symbols 
Terminals are allowed to be 
deleted after their creation 

 
Table 1 summarizes the effects of combining the context 

types introduced in Definition 4. The symbol kind creating the 
context (i.e. terminal- or non-terminal-based context) impacts 
on the uniqueness of the processing symbol. A non-terminal-
based context allows to uniquely determine the processing 
symbol only if the context is invariant where the single non-
terminal that is allowed to be changed (i.e. exists on the lhs but 
not on the rhs) represents the processing symbol. The variance 
of context impacts on the ability to delete symbols after their 
creation. Non-terminals basically have the ability to be deleted 
by the ability to be a processing symbol. However, terminals 
are only allowed to be deleted as context symbols if they are 
not intended to be really terminal. Note that the ability to delete 
terminals after their creation has no impact on the 
corresponding language. Assuming a fixed language there 
always exists another grammar that doesn’t require the deletion 
of terminals after their creation. For example, the following 
grammars specify the same language but provide different 
kinds of context.  

G1:  S  → BA 
  B  → v  |  x 
 vA → ab 
 xA → ba 

G2:  S  → BA 
  B  → a  |  b 
 aA → ab 
 bA → ba 

G3:  S  → BA 
  B  → V  |  X 
 VA → Vb 
 XA → Xa 
  V  → a 
  X  → b 

Language theory considers the above grammars to be 
equivalent as they cover the same language. In contrast, the 
approach at hand considers the grammars to be different as 
they specify different instructions to create the same words. In 
service grammars, a non-terminal occurring at a specific time is 

of high importance whereas the resulting word is of low 
interest. That means, the approach at hand focuses on the 
grammar but neglects the corresponding language. 
Furthermore, the grammars G1, G2, and G3 are considered to be 
not equivalent as they show different runtime behavior that 
needs to be reflected by corresponding automata (cf. section 
III.A). 

Transformations 
This section outlines transformations of existing 

specification languages for service compositions to service 
grammars. For a detailed description of the presented 
transformation please see [9]. The grammars generated by the 
presented transformation cover words representing traces of 
service calls and scope states. Data is mainly handled by 
reference. That means, data is mostly not specified by explicit 
symbols in the grammar but an external database is responsible 
for storing the data. Consequently, data assignment is 
represented by a simple service invocation.  

BPEL [10] is an imperative, i.e. flow-based language that is 
highly developed for the specification of service compositions. 
A BPEL sequence activity containing the service calls D and E 
is represented by simple production rules creating one 2-
dimensional non-terminal on the rhs in maximum (cf. rule (8) 
in Figure 2). In contrast, parallel control flow requires to create 
multiple non-terminals in one production rule representing the 
activation of multiple service calls at the same time (cf. rule (1) 
in Figure 2). That means, in contrast to sequential control flow 
that is satisfied by regular grammars parallel control flow 
requires at least context-free grammars. If synchronization is 
required for parallel control flow paths the grammar even 
needs to be context-sensitive (cf. rule (4) in Figure 2). BPEL 
Scopes are specified by one 1-dimensional non-terminal in 
combination with one terminal and require context-sensitive 
production rules. The non-terminal of a scope indicates the 
activation, i.e. the non-terminal is created/deleted when the 
scope is activated/finished. The terminal of a scope indicates 
the regular or the fault mode of an activated scope. If the scope 
is already finished the terminal indicates the finishing mode of 
the scope (e.g. successfully finished or compensated). After the 
finishing of a scope the terminal needs to exist until the end of 
the processing as the ability to compensate the scope possibly 
needs to be decided by context-sensitive rules. Service 
compositions require grammars to specify variant context as 
the deletion of multiple symbols in one production rule is 
required (e.g. for scope finishing)1. The variant context needs 
to be terminal-based to optimize the corresponding runtime 
effort in service compositions, i.e. terminal-based context 
ensures the simplest automaton for variant context. 

ConDec [11] is a declarative language that is used for the 
specification of constraint-based service compositions. Hence, 
constraints specify dependencies between service calls, i.e. 
activities. Typically, multiple activities are allowed to be 
executed at a specific point in time and a (human) user is 
expected to select a specific activity for execution. After the 
execution of the selected activity a new set of activities that are 
allowed to be executed next needs to be calculated based on all 

                                                           
1 Scope finishing requires even more general grammars 

(type0) as the non-terminal is deleted without substitution. 



given constraints. Figure 5 shows the production rules for a 
service composition specifying three service calls A, B, and C 
as well as two constraints. The constraint response(A,B) 
specifies that the call B must be executed in future when A is 
executed at least once. The constraint precedence(A,B) 
specifies that the call A needs to be executed when B begins to 
execute. In between all other service calls C are allowed to be 
executed. At the very beginning the start symbol S1 allows the 
activation of the service calls A and C additionally to the 
symbol ε indicating the finishing of the service composition. 
The index for the start symbol needs to be introduced for 
covering different sets of service calls that are allowed to be 
executed at the same point in time. The index for service calls 
A, B, and C is introduced to cover different effects of service 
call executions at different points in time. Obviously, 
declarative service compositions create grammars with a lot of 
non-deterministic alternatives. The non-determinism reflects 
the fact, that a user is expected to be responsible for selecting a 
specific activity, i.e. service call for execution at runtime. 
Service grammars are allowed to specify non-determinism 
exclusively for covering dynamic information that can be 
provided by an external component (i.e. oracle) at runtime.  

III. UNIFIED ENGINE 
Service compositions create breadth-first grammars, i.e. the 

least recently produced non-terminal must be processed first 
ensuring the processing of parallel control flow paths nearly at 
the same time. In contrast, a depth-first search on service 
composition grammars would process parallel paths 
successively. Grammars with breadth-first semantics are 
typically covered by queued automata [12]. Queued automata 
are equivalent to Turing machines, i.e. suitable to cover service 
grammars. In contrast to Turing machines queued automata 
provide the separation of the tape and the working storage (i.e. 
the queue) allowing a classification of automata based on 
access types to different storages corresponding to different 
context types.  

 
Figure 4: Configurations of a queued automaton 

Generating queued automata require to delay the processing 
of symbols. Figure 4 shows some example configurations of an 
accepting queued automaton. The first terminal a in the queue 
is allowed to be accepted from the tape in step (2) but the 
second terminal a in the queue needs to be delayed until step 
(7). In accepting automata the input word is be used for the 
decision about the accepting or the delay of a terminal. In 

generating automata no input word exists that contributes in 
deciding about the handling of terminals. Instead, a special 
symbol # needs to be introduced ensuring the right order of 
terminals that are generated to the tape: Terminals immediately 
following the symbol # are allowed to be generated. After the 
first non-terminals following terminals need to be delayed until 
the symbol # is processed again. 

A. Hierarchy for Queued Automata 
This section presents a hierarchy for queued automata 

enabling the measuring of runtime efforts for service 
compositions. Hence, the separation of tape and working 
storage (i.e. queue) is an important issue for the classification. 
The tape is considered to store exclusively terminals whereas 
the working storage is considered to primarily store non-
terminals. The terminals occurring in the workings storage are 
considered to be immediately processed, i.e. 
accepted/generated from/to the tape. The introduced hierarchy 
characterizes automata classes by storage access types in 
addition to storage types that are already covered by the 
Chomsky hierarchy. For the tape an automaton can provide 
reading access with and without deletion as well as writing 
access. For the working storage an automaton can provide 
simple or complex access indicating the number of symbols 
that need to be processed in the context of the a single 
production rule. 

Service grammars require at most automata of class 4. 

1. Automata for regular grammars 
• Simple tape access (e.g. reading with deletion for accepting 

words) 
• Simple working storage access (i.e. exactly one symbol in 

the working storage is processed) 
• Working storage size = 2 
2. Automata for context-free grammars 
• Simple tape access 
• Simple working storage access  
• Working storage size > 1 
3. Automata for context-sensitive grammars with invariant 
and terminal-based context 
• Moderate tape access (e.g. reading with and without 

deletion for accepting a word) 
• Simple working storage access  
• Working storage size > 1 
4. Automata for context-sensitive grammars with variant 
and terminal-based context 
• Complex tape access (i.e. reading and writing access) 
• Simple working storage access 
• Working storage size > 1 
5. Automata for context-sensitive grammars with invariant 
and non-terminal-based context 
• Moderate tape access 
• Complex working storage access (i.e. more than one 

symbol in the working storage needs to be processed) 
• Working storage size > 1 
6. Automata for context-sensitive grammars with variant 
and non-terminal-based context 
• Complex tape access 
• Complex working storage access 
• Working storage size > 1 

Figure 5: A declarative service composition 
 

(1-3)     S1 → A1  |  C1  |  ε  (10) B2 → b S3 
(4)      A1 → a S2   (11) C2 → c S2 
(5)     C1 → c S1       (16) A3 → a S2 
(6-8)     S2 → A2  |  B2  |  C2  (17) B3 → b S3 
(9)     A2 → a S2   (18) C3 → c S3 
(12-15)  S3 → A3  |  B3  |  C3  |  ε 



B. Generating Automata 
Service Grammars specify how to create valid runs of 

service compositions. An automaton for the execution of 
grammar-based service composition is required to generate a 
valid run. That means, service compositions require generating 
automata instead of accepting automata. Existing generating 
automata, i.e. transducer (cf. Moore machine, Mealy machine) 
generate output words but also operate on input words. The 
input words are required for determinism while processing but 
represent static information. The approach at hand uses 
generating automata covering output words but no input words. 
The input that is required for determinism is provided by an 
oracle at runtime.  

Accepting and generating automata have some fundamental 
differences. At first, accepting a word is satisfied by restricting 
to one derivation as only one derivation needs to exist in order 
to prove the membership of a word to a language. For example, 
a pushdown automaton is restricted to the left-most derivation. 
Generating automata are required to support all derivations of a 
word specified by a grammar if the grammar is focused instead 
of the language. Therefore, automata corresponding to 
grammar-based service compositions are required to support all 
alternatives for creating a word as all execution paths specified 
in a service composition need to be covered. Queued automata 
implementing a breath-first search in combination with the 
ability to delay symbols for later processing allow the support 
of all possible derivations. 

Secondly, a given input word in accepting automata 
impacts on the determinism whereas generating automata 
cannot use this information as the word doesn’t exist yet. For 
example, the accepting automaton in Figure 6(a) is deterministic 
although the corresponding grammar is static non-
deterministic. The generating automaton in Figure 6(b) 
illustrates the same grammar without further information, i.e. 
the automaton is non-deterministic as the following state to 
state “a” cannot be uniquely determined. 
Remark 1: A service grammar is deterministic at buildtime, 
i.e. static deterministic iff the lhs of contained production rules 
are pairwise distinct: ∀x,y∈P , x≠y , x=(α1,β1) , y=(α2,β2) : α1 ≠ α2 
Remark 2: A service grammar is deterministic at runtime, i.e. 
dynamic deterministic iff a single rule is deterministically 
selected out of production rules specifying the same lhs based 
on dynamic information at runtime. 

Service grammars need to be dynamic deterministic for 
enabling alternative runs. Figure 2 shows a dynamic 
deterministic grammar, i.e. the dynamic information Z is 
needed to evaluate the condition. Statically, the grammar 
allows both alternative control flow paths by the rules (5) and 
(6). At runtime only one rule is selected based on the 
evaluation of the condition Z>0. For providing dynamic 
deterministic grammars corresponding automata need to be 
extended by oracles. An oracle machine [13] is an automaton 
that uses an additional component (i.e. oracle) implementing a 
particular function. Hence, the automaton doesn’t need to 
implement the function itself. Instead the oracle provides the 
function value to the automaton. Therefore, an oracle is 
suitable to provide dynamic information to an automaton at 
runtime. The approach at hand implements the required oracle 
by a service in the presented prototype. A call of the oracle is 

implemented by a 3-dimensional non-terminal. Production 
rules in service grammars with the same lhs are allowed to 
exclusively specify 3-dimensional non-terminals on the lhs for 
ensuring dynamic determinism. 

 
Figure 6: Accepting and generating automaton for the grammar 

G=({A,B},{a,b,c},{(A,aB),(B,bA),(B,c)},A) 
 

Finally, a given word impacts on the finishing requirement 
of accepting automata but generating automaton requires to 
cover other factors. Accepting automata successfully finish iff 
no terminal is left on the tape that is required to be accepted 
(additional a final state needs to be reached if final states are 
specified by the corresponding automaton). A generating 
automaton cannot decide finishing based on terminals but uses 
non-terminals. 
Definition 5: Generating automata successfully finish iff there 
exists no non-terminal anymore.  

In summary, the automaton that is used for the execution of 
service compositions is required to be a (1) queued automaton 
with at most complex tape access and simple working storage 
access, (2) generating automaton providing a set of oracles for 
dynamic determinism. 
Definition 6: A generating queued automaton M for service 
compositions is a 5-tuple (Σ, Γ, δ, S, O) where  
Σ is a (finite) set of symbols (i.e. the tape alphabet) 
Γ is a (finite) set of symbols (i.e. the queue alphabet) 
δ is a transition mapping with δ:Σ*×Γ→Σ*×Γ* 
S is the start symbol for the queue 
O is an oracle 
Definition 7: A configuration of a generating queued 
automaton is a tuple (w,γ) where w represents the content of 
the tape and γ represents the content of the queue.  
Definition 8: Let G=(V,Σ,P,S) be a dynamic deterministic 
service grammar with an oracle O. The generating queued 
automaton for the service grammar is defined by 
M=(Σ,V∪Σ,δ,S,O) with: ∀(αXβ,γ)∈P, X∈V ∃ δ(αβ,X)=(ε,γ) 

              ∀ X∈V ∃ δ(ε,X)=(ε,X) 
              ∀ y∈Σ ∃ δ(ε,y)= (y,ε) 

Property 1: A service grammar is deterministic with a queued 
automaton if the grammar is static or dynamic deterministic 
and provides dynamic exclusive context, i.e. for each pair 
(p1,p2) of context-sensitive production rules with the same 
processing symbol exist context symbols t1∈p1, t2∈p2 that are 
mutually exclusive at runtime. 

IV. PROTOTYPE 
This section introduces a prototype for the grammar-based 

execution of service composition. Figure 7 shows the 
architecture of the prototype. A formal queued automaton is a 
generic component that is used for the execution of a service 
composition instance. A service grammar specifies the model 
of the service composition and multiple instances of the model 
are provided by multiple automata covering the same grammar. 
The formal automaton needs to be extended by a component 
implementing the service invocation. If the automaton 

(a) (b) 



processes a 2- or 3-dimensional non-terminal the service 
invocation component is responsible for executing the service 
calls. Hence, the service invocation component uses a 
parameter resolution component for determining the concrete 
input and output parameters of service calls. As data is handled 
by reference a reference resolution system [14] is responsible 
for storing data and managing references to data. The reference 
resolution system is not part of the service composition 
instance but is provided by a service that is invoked at runtime 
similar to the composed services. In detail, the automaton 
interacts with the reference resolution system for parameter 
resolution. The parameter resolution component manages the 
internal reference names specified in non-terminals and 
correlates these names with reference identifiers assigned by 
the reference resolution system. Therefore, multiple automata, 
i.e. service composition instances are allowed to use the same 
reference resolution system service for storing data. Similar to 
the reference resolution system the presented prototype 
provides an expression evaluation service, i.e. an XPath solver 
for XPath expressions. The expression evaluation service 
implements the oracle in the automaton that is required if 
decisions about control flow alternatives need to be taken (cf. 
non-terminal C in Figure 2). Finally, the prototype implements a 
management component that is responsible for the 
transformation of a service composition model to a grammar-
based specification as well as the creation and deployment of a 
service composition instance. Hence, a dynamic distribution 
algorithm [15] is used to determine the best location for the 
service composition instance at runtime. 

 
Figure 7: Architecture  

V. CONCLUSION 
The presented approach uses formal grammars and 

automata for the modeling and execution of service 
composition. Used formal grammars and automata need to be 
adapted: Complex non-terminals need to be provided covering 
the relation to services. Furthermore, production rules are 
allowed to ignore the order of symbols while focusing on the 
concurrent existence of symbols. Automata that are used for 
the execution of service compositions need to be extended by 
service invocation and need have generating character 
supporting all derivations of a word. A formal automaton 
represents a generic and simple implementation component in 
comparison to conventional service composition engines. 
Hence, the approach allows to easily measure the runtime 
effort of a service composition by the particular automaton 
class. For example, “simple” parallel execution paths require 
context-free production rules whereas parallel paths with the 
need for synchronization require context-sensitive production 
rules. In particular, different kinds of production rules (i.e. 
service composition logic) require different automaton classes 
for the processing. Furthermore, the approach improves the 
flexibility of service composition execution by using a simple 
and generic automaton covering exactly one service 

composition instance. In particular, different instances can be 
easily deployed on different nodes in a distributed runtime 
environment in contrast to managing all instances in one 
engine running on one node (cf. [15]). Formal grammars are 
well suited for service composition models as service 
compositions are associated with the concept programming in 
the large. In particular, service compositions are “only” 
considered to coordinate services. In contrast, programming in 
the small covers information on a more detailed level that is 
typically specified by high programming languages (e.g. Java). 
The approach at hand uses formal grammars exclusively for the 
programming in the large concepts. That means, concrete data 
as well as operations on data are not necessarily covered by the 
grammar but by external services. In summary, formal 
grammars are suitable to cover service compositions as data is 
mostly required to be transferred from service to service 
whereas only a few concrete data values are required for the 
execution of service composition (cf. control flow alternatives). 
Furthermore, grammars already compose symbols emphasizing 
the ability to compose services. Introducing service invocation 
and dynamic data in formal grammars is similar to the 
extension of automata by oracles that can be properly 
implemented by services. 
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