
Institute of Architecture of Application Systems

Unified Execution of Service Compositions

1Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{goerlach, leymann}@iaas.uni-stuttgart.de

2I i f F l M h d i C S i

Katharina Görlach1 and Frank Leymann1 and Volker Claus2

2Institute for Formal Methods in Computer Science,
University of Stuttgart, Germany

claus@informatik.uni-stuttgart.de

@inproceedings{GLC13,
author = {Katharina Görlach and Frank Leymann and Volker Claus},
title = {Unified Execution of Service Compositions},
booktitle = {Proceedings of the 6th IEEE International

Conference on Service Oriented Computing &
Applications, SOCA 2013,
16 18 D b 2013 K l H ii USA}

:

16‐18 December 2013, Koloa, Hawaii, USA},
year = {2013},
pages = {162‐‐167},
publisher = {IEEE Computer Society}

}

© 2013 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted, y py g
component of this work in other works must be obtained from the IEEE.

Unified Execution of Service Compositions

Katharina Görlach
Institute of Architecture of

Application Systems
University of Stuttgart

goerlach@iaas.uni-stuttgart.de

Frank Leymann
Institute of Architecture of

Application Systems
University of Stuttgart

leymann@iaas.uni-stuttgart.de

Volker Claus
Institute for Formal Methods in

Computer Science
University of Stuttgart

claus@informatik.uni-stuttgart.de

Abstract—This paper discusses the unification of service
composition based on formal specifications. The approach aims
for a unified execution of service compositions that can be
modeled by various specification languages covering different
modeling paradigms. The unification of service composition
models is realized based on formal grammars whereas the
unification of service composition execution is realized based on
formal queued automata. The approach introduces a
classification of context-sensitive grammars for determining an
optimized automaton class for the execution of service
compositions. Finally, a prototype providing transformations of
various modeling languages to formal grammars as well as the
grammar-based execution of service compositions is presented.

Keywords—Web Service, Service Composition, Unification,
Formal Grammars, Formal Automata

I. INTRODUCTION
For the modeling of service compositions various

specification languages exist, e.g. BPEL, BPMN, ConDec,
UML Activity Diagrams. Furthermore, various engines for
service compositions exist supporting one or more
specification languages. For the processing each engine uses its
own internal model covering the service composition logic [7].
That means, there exists no common reference model for
processing service compositions. The approach at hand aims at
a unified execution of service compositions that are allowed to
be modeled by different specification languages. Therefore, the
approach introduces a unified model that is suitable to be an
internal model as well as an engine for processing the unified
model. The introduced unified model covers different modeling
paradigms, e.g. imperative and declarative languages.
However, the unified model is intended to be an internal
model, i.e. it is the target of transformations and human
modelers are not expected to directly specify the unified model.

Figure 1 illustrates the idea of the approach: Each
specification language requires an engine that implements the
operational semantics of the language. Analogously, formal
grammars and automata are correlated in language theory. The
approach at hand proposes formal grammars for the unified
model of service compositions and formal automata for the
unified execution of service compositions. In general, a formal
grammar coordinates symbols (non-terminals and terminals)
whereas a service composition coordinates service calls. That
means, formal grammars are suitable to cover service

compositions by correlating the symbols of a grammar with
service calls in a service composition. In detail, a service call is
represented by a non-terminal (possibly in combination with a
terminal). The creation of the non-terminal (e.g. A in Figure 2)
represents the activation of the service call. The processing of a
production rule specifying the particular non-terminal on the
left hand side (lhs) represents the execution of a service call
(e.g. rule A→a in Figure 2). The right hand side (rhs) of this
production rule may specify a terminal representing lasting
information about the finishing of the service call.

Various approaches covering a unified model for service
compositions already exist with different purpose. For
example, [1] aims for a unified modeling in UML and a
transformation to executables languages like BPEL. A formal
unified model is introduced in [2] with intent to analyze
semantic properties, e.g. behavioral equivalence of service
compositions. Other approaches aim for defining a unified
model to be a reference model for service compositions. For
example, [3] introduces workflow patterns allowing the
unification of service composition models based on a set of
generic constructs. More accurate, [4] and [5] introduce unified
meta-models by ontologies for the domain service composition.
Similarly, [6] introduces an interchange format representing a
unified model supporting all the information that is typically
covered in existing specification languages. The approach at
hand introduces a unified model that is suitable to be a native
model [7] for service composition. That means, the unified
model is intended to be used as internal processing model in
engines. The relation between the unified model and typical
specification languages for service compositions is similar to
the relation between assembler and high programming
languages. Furthermore, the approach especially aims for the
unification of different modeling paradigms and allows to
improve the scalability of engines.

II. UNIFIED MODEL
A formal grammar G=(V, Σ, P, S) is a specialized rewrite

system (V∪Σ, P) separating the symbols of a rewrite system
into non-terminals and terminals, providing a specific start
symbol, and restricting the structure of production rules by
requiring at least one non-terminal on the lhs of each rule. The
service grammars introduced in this section specialize formal
grammars by further separation of non-terminals and further
restrictions to the production rule structure. Additionally,

BPEL

BPEL Engine

Grammar

Automaton

BPMN

BMPM
Engine

Java

Java Virtual
Machine

Buildtime
Runtime

Figure 1: Grammars and automata for unification

<nonTerminal> <name> H </name> </nonTerminal>
<nonTerminal> <name> A </name>
 <type> Service A Operation A1 </type>
 <input> <reference>Y </reference> </input>
 <output> <reference>Z </reference> </output>
</nonTerminal>
<nonTerminalType name=”Service A Operation A1”>
 <wsa:EndpointReference> <wsa:Address>
 http://localhost:9763/services/ServiceA
 <wsa:Address> </wsa:EndpointReference>
…<operation> A1 </operation>
</nonTerminalType>
<nonTerminal> <name> C </name>
 <type> XPathSolver </type>
 <input> <reference>Z </reference>
 <value> Z>0 </value> </input>
 <relations>
 <relation> <outputValue> True </outputValue>
 <nonTerminalREF> T </nonTerminalREF>
 </relation>
 <relation> <outputValue> False </outputValue>
 <nonTerminalREF> F </nonTerminalREF>
 </relation>
 </relations>
</nonTerminal>
<nonTerminalType name=”XPathSolver”>
 <wsa:EndpointReference> <wsa:Address>
 http://localhost:8080/services/XPathSolver
 </wsa:Address></wsa:EndpointReference>
…<operation> evaluate </operation>
</nonTerminalType>

Figure 3: A one-dimensional non-terminal H, a two-dimensional
non-terminal A, and a three-dimensional non-terminal C

Figure 2: Example

production rules of service grammars are specifically
interpreted, i.e. the order of symbols is abstracted.
Definition 1: A service grammar GS=(V, Σ, P, S) is a formal
grammar G=(V,Σ, P, S) where:
• V is a set of complex non-terminals
• P is a set of c-interpreted production rules with:

P⊆Σ*VΣ*×(V∪Σ)*

Complexity of Non-Terminals
In service grammars non-terminals can have multiple

dimensions. Conventional non-terminals are 1-dimensional
symbols exclusively specifying the name of the symbol. The 1-
dimensional non-terminals are helper symbols in service
compositions that are required for example for the
synchronization of parallel control flow (cf. non-terminal H in
Figure 2 and Figure 3). For enabling service-oriented computing
2-dimensional non-terminals are associated with service
operations by a non-terminal type (cf. non-terminal A in Figure
2 and Figure 3). Additionally, the second dimension of non-
terminals covers input and output parameters if necessary.
Hence, data is given by an absolute term or handled by
reference, i.e. input and output data of a service call is typically
stored in an external database (cf. section IV). The correlation
of non-terminals and service operations allows a classification
of non-terminals, i.e. different non-terminals of the same type
represent calls of the same service operation. However, input
and output parameters are specific to a service call, i.e. non-
terminal. For example, two different conditions create two
different non-terminals sharing the same type (e.g.
XPathSolver) but specifying different input parameters, i.e.
conditions. Finally, the third dimension of non-terminals
covers the feedback of a service call if the service operation
result represents required information for the execution of a
service composition. In detail, the third dimension specifies a
mapping of service operation return values and 1-dimensional
non-terminals (cf. non-terminal C in Figure 2 and Figure 3).

C-Interpretation of Production Rules
Production rules in formal grammars handle words, i.e.

cover the concurrent existence as well as the order of symbols.
For example, the production rule abX→abC requires the
terminal a to be placed immediately left to the terminal b. In
contrast, the c-interpretation of production rules covers the
concurrent existence of symbols but ignore the order of
symbols. That means, c-interpreted production rules handle
multisets instead of words. Furthermore, c-interpreted
production rules cover a set of conventionally interpreted
production rules. For example, the c-interpreted production rule
abX→abC collects a set of conventionally interpreted
production rules αxβyγzδ→αx’βy’γz’δ with x,y,z∈{a,b,X},
x’,y’,z’∈{a,b,C}, x≠y≠z, x’≠y’≠z’, and α,β,γ,δ∈(V∪Σ)*.
Definition 2: The multiset-interpretation of a word
w=(x1,x2,…,xn) over an alphabet Σ is defined by a multiset
M:Σ→IN0 with: multiset(w)= [x1, x2, …, xn]
where a multiset is notated by square brackets, e.g. [a,a,b,c].
Definition 3: The c-interpretation of a production rule p=(α,β)
results in a c-interpreted production rule with the function ic:

ic(p)=(multiset(α), multiset(β))

Considering the language the c-interpretation of production
rules creates another language covering the commutative

closure of single words of the actual conventional language. [8]
discusses the commutativity of symbols in words and
languages in detail. Hence, dependencies are introduced
restricting the commutativity of symbol pairs. In contrast, the
approach at hand allows commutativity for all symbols at all
time. However, the approach in [8] is suitable to define the
language corresponding to a c-interpretation of a grammar.

Context Types
As mentioned before, formal grammars require at least one

non-terminal on the lhs of production rules. The approach at
hand calls this non-terminal the processing symbol of the
particular rule that is not necessarily uniquely determined.
Context-sensitive and higher classes of grammars allow
additional symbols next to the processing symbol on the lhs of
production rules, i.e. context symbols. The following context
types create sub-classes of context-sensitive grammars based

on the structure of production rules:
Definition 4: Assuming a formal grammar (V, Σ, P, S) context
types are defined as follows:
Terminal-based Context: Production rules are restricted to
specify exactly one non-terminal on the lhs but are allowed to
specify multiple terminals on the lhs.

P⊆Σ*VΣ* × (V∪Σ)*
Non-Terminal-based Context: Production rules are allowed
to specify multiple non-terminals and terminals on the lhs.

P⊆(V∪Σ)*V(V∪Σ)* × (V∪Σ)*
Invariant Context: Context symbols that are specified on the
lhs are not allowed to be changed, i.e. need to be specified on
the lhs as well as on the rhs.

∀(α,β)∈P ∃x,y: α=xMy ∧ β=xNy ∧ M∈V ∧ N∈(V∪Σ)*
with x,y∈Σ* for terminal-based context and
 x,y∈(V∪Σ)* for non-terminal-based context.
Variant Context: Context symbols that are specified on the lhs
are allowed to be changed, i.e. are not required to be specified
on the rhs.

P⊆Σ*VΣ* × (V∪Σ)* for terminal-based context and
P⊆(V∪Σ)*V(V∪Σ)* × (V∪Σ)* for non-terminal-based context

Table 1: Combining context types
 Invariant Context Variant Context
Terminal-
based
Context

Unique processing symbol
Terminals are not allowed
to be deleted after their
creation

Unique processing symbol
Terminals are allowed to be
deleted after their creation

Non-
Terminal-
based
Context

Unique Processing symbol
Terminals are not allowed
to be deleted after their
creation

Multiple processing symbols
Terminals are allowed to be
deleted after their creation

Table 1 summarizes the effects of combining the context

types introduced in Definition 4. The symbol kind creating the
context (i.e. terminal- or non-terminal-based context) impacts
on the uniqueness of the processing symbol. A non-terminal-
based context allows to uniquely determine the processing
symbol only if the context is invariant where the single non-
terminal that is allowed to be changed (i.e. exists on the lhs but
not on the rhs) represents the processing symbol. The variance
of context impacts on the ability to delete symbols after their
creation. Non-terminals basically have the ability to be deleted
by the ability to be a processing symbol. However, terminals
are only allowed to be deleted as context symbols if they are
not intended to be really terminal. Note that the ability to delete
terminals after their creation has no impact on the
corresponding language. Assuming a fixed language there
always exists another grammar that doesn’t require the deletion
of terminals after their creation. For example, the following
grammars specify the same language but provide different
kinds of context.

G1: S → BA
 B → v | x
 vA → ab
 xA → ba

G2: S → BA
 B → a | b
 aA → ab
 bA → ba

G3: S → BA
 B → V | X
 VA → Vb
 XA → Xa
 V → a
 X → b

Language theory considers the above grammars to be
equivalent as they cover the same language. In contrast, the
approach at hand considers the grammars to be different as
they specify different instructions to create the same words. In
service grammars, a non-terminal occurring at a specific time is

of high importance whereas the resulting word is of low
interest. That means, the approach at hand focuses on the
grammar but neglects the corresponding language.
Furthermore, the grammars G1, G2, and G3 are considered to be
not equivalent as they show different runtime behavior that
needs to be reflected by corresponding automata (cf. section
III.A).

Transformations
This section outlines transformations of existing

specification languages for service compositions to service
grammars. For a detailed description of the presented
transformation please see [9]. The grammars generated by the
presented transformation cover words representing traces of
service calls and scope states. Data is mainly handled by
reference. That means, data is mostly not specified by explicit
symbols in the grammar but an external database is responsible
for storing the data. Consequently, data assignment is
represented by a simple service invocation.

BPEL [10] is an imperative, i.e. flow-based language that is
highly developed for the specification of service compositions.
A BPEL sequence activity containing the service calls D and E
is represented by simple production rules creating one 2-
dimensional non-terminal on the rhs in maximum (cf. rule (8)
in Figure 2). In contrast, parallel control flow requires to create
multiple non-terminals in one production rule representing the
activation of multiple service calls at the same time (cf. rule (1)
in Figure 2). That means, in contrast to sequential control flow
that is satisfied by regular grammars parallel control flow
requires at least context-free grammars. If synchronization is
required for parallel control flow paths the grammar even
needs to be context-sensitive (cf. rule (4) in Figure 2). BPEL
Scopes are specified by one 1-dimensional non-terminal in
combination with one terminal and require context-sensitive
production rules. The non-terminal of a scope indicates the
activation, i.e. the non-terminal is created/deleted when the
scope is activated/finished. The terminal of a scope indicates
the regular or the fault mode of an activated scope. If the scope
is already finished the terminal indicates the finishing mode of
the scope (e.g. successfully finished or compensated). After the
finishing of a scope the terminal needs to exist until the end of
the processing as the ability to compensate the scope possibly
needs to be decided by context-sensitive rules. Service
compositions require grammars to specify variant context as
the deletion of multiple symbols in one production rule is
required (e.g. for scope finishing)1. The variant context needs
to be terminal-based to optimize the corresponding runtime
effort in service compositions, i.e. terminal-based context
ensures the simplest automaton for variant context.

ConDec [11] is a declarative language that is used for the
specification of constraint-based service compositions. Hence,
constraints specify dependencies between service calls, i.e.
activities. Typically, multiple activities are allowed to be
executed at a specific point in time and a (human) user is
expected to select a specific activity for execution. After the
execution of the selected activity a new set of activities that are
allowed to be executed next needs to be calculated based on all

1 Scope finishing requires even more general grammars

(type0) as the non-terminal is deleted without substitution.

given constraints. Figure 5 shows the production rules for a
service composition specifying three service calls A, B, and C
as well as two constraints. The constraint response(A,B)
specifies that the call B must be executed in future when A is
executed at least once. The constraint precedence(A,B)
specifies that the call A needs to be executed when B begins to
execute. In between all other service calls C are allowed to be
executed. At the very beginning the start symbol S1 allows the
activation of the service calls A and C additionally to the
symbol ε indicating the finishing of the service composition.
The index for the start symbol needs to be introduced for
covering different sets of service calls that are allowed to be
executed at the same point in time. The index for service calls
A, B, and C is introduced to cover different effects of service
call executions at different points in time. Obviously,
declarative service compositions create grammars with a lot of
non-deterministic alternatives. The non-determinism reflects
the fact, that a user is expected to be responsible for selecting a
specific activity, i.e. service call for execution at runtime.
Service grammars are allowed to specify non-determinism
exclusively for covering dynamic information that can be
provided by an external component (i.e. oracle) at runtime.

III. UNIFIED ENGINE
Service compositions create breadth-first grammars, i.e. the

least recently produced non-terminal must be processed first
ensuring the processing of parallel control flow paths nearly at
the same time. In contrast, a depth-first search on service
composition grammars would process parallel paths
successively. Grammars with breadth-first semantics are
typically covered by queued automata [12]. Queued automata
are equivalent to Turing machines, i.e. suitable to cover service
grammars. In contrast to Turing machines queued automata
provide the separation of the tape and the working storage (i.e.
the queue) allowing a classification of automata based on
access types to different storages corresponding to different
context types.

Figure 4: Configurations of a queued automaton

Generating queued automata require to delay the processing
of symbols. Figure 4 shows some example configurations of an
accepting queued automaton. The first terminal a in the queue
is allowed to be accepted from the tape in step (2) but the
second terminal a in the queue needs to be delayed until step
(7). In accepting automata the input word is be used for the
decision about the accepting or the delay of a terminal. In

generating automata no input word exists that contributes in
deciding about the handling of terminals. Instead, a special
symbol # needs to be introduced ensuring the right order of
terminals that are generated to the tape: Terminals immediately
following the symbol # are allowed to be generated. After the
first non-terminals following terminals need to be delayed until
the symbol # is processed again.

A. Hierarchy for Queued Automata
This section presents a hierarchy for queued automata

enabling the measuring of runtime efforts for service
compositions. Hence, the separation of tape and working
storage (i.e. queue) is an important issue for the classification.
The tape is considered to store exclusively terminals whereas
the working storage is considered to primarily store non-
terminals. The terminals occurring in the workings storage are
considered to be immediately processed, i.e.
accepted/generated from/to the tape. The introduced hierarchy
characterizes automata classes by storage access types in
addition to storage types that are already covered by the
Chomsky hierarchy. For the tape an automaton can provide
reading access with and without deletion as well as writing
access. For the working storage an automaton can provide
simple or complex access indicating the number of symbols
that need to be processed in the context of the a single
production rule.

Service grammars require at most automata of class 4.

1. Automata for regular grammars
• Simple tape access (e.g. reading with deletion for accepting

words)
• Simple working storage access (i.e. exactly one symbol in

the working storage is processed)
• Working storage size = 2
2. Automata for context-free grammars
• Simple tape access
• Simple working storage access
• Working storage size > 1
3. Automata for context-sensitive grammars with invariant
and terminal-based context
• Moderate tape access (e.g. reading with and without

deletion for accepting a word)
• Simple working storage access
• Working storage size > 1
4. Automata for context-sensitive grammars with variant
and terminal-based context
• Complex tape access (i.e. reading and writing access)
• Simple working storage access
• Working storage size > 1
5. Automata for context-sensitive grammars with invariant
and non-terminal-based context
• Moderate tape access
• Complex working storage access (i.e. more than one

symbol in the working storage needs to be processed)
• Working storage size > 1
6. Automata for context-sensitive grammars with variant
and non-terminal-based context
• Complex tape access
• Complex working storage access
• Working storage size > 1

Figure 5: A declarative service composition

(1-3) S1 → A1 | C1 | ε (10) B2 → b S3
(4) A1 → a S2 (11) C2 → c S2
(5) C1 → c S1 (16) A3 → a S2
(6-8) S2 → A2 | B2 | C2 (17) B3 → b S3
(9) A2 → a S2 (18) C3 → c S3
(12-15) S3 → A3 | B3 | C3 | ε

B. Generating Automata
Service Grammars specify how to create valid runs of

service compositions. An automaton for the execution of
grammar-based service composition is required to generate a
valid run. That means, service compositions require generating
automata instead of accepting automata. Existing generating
automata, i.e. transducer (cf. Moore machine, Mealy machine)
generate output words but also operate on input words. The
input words are required for determinism while processing but
represent static information. The approach at hand uses
generating automata covering output words but no input words.
The input that is required for determinism is provided by an
oracle at runtime.

Accepting and generating automata have some fundamental
differences. At first, accepting a word is satisfied by restricting
to one derivation as only one derivation needs to exist in order
to prove the membership of a word to a language. For example,
a pushdown automaton is restricted to the left-most derivation.
Generating automata are required to support all derivations of a
word specified by a grammar if the grammar is focused instead
of the language. Therefore, automata corresponding to
grammar-based service compositions are required to support all
alternatives for creating a word as all execution paths specified
in a service composition need to be covered. Queued automata
implementing a breath-first search in combination with the
ability to delay symbols for later processing allow the support
of all possible derivations.

Secondly, a given input word in accepting automata
impacts on the determinism whereas generating automata
cannot use this information as the word doesn’t exist yet. For
example, the accepting automaton in Figure 6(a) is deterministic
although the corresponding grammar is static non-
deterministic. The generating automaton in Figure 6(b)
illustrates the same grammar without further information, i.e.
the automaton is non-deterministic as the following state to
state “a” cannot be uniquely determined.
Remark 1: A service grammar is deterministic at buildtime,
i.e. static deterministic iff the lhs of contained production rules
are pairwise distinct: ∀x,y∈P , x≠y , x=(α1,β1) , y=(α2,β2) : α1 ≠ α2
Remark 2: A service grammar is deterministic at runtime, i.e.
dynamic deterministic iff a single rule is deterministically
selected out of production rules specifying the same lhs based
on dynamic information at runtime.

Service grammars need to be dynamic deterministic for
enabling alternative runs. Figure 2 shows a dynamic
deterministic grammar, i.e. the dynamic information Z is
needed to evaluate the condition. Statically, the grammar
allows both alternative control flow paths by the rules (5) and
(6). At runtime only one rule is selected based on the
evaluation of the condition Z>0. For providing dynamic
deterministic grammars corresponding automata need to be
extended by oracles. An oracle machine [13] is an automaton
that uses an additional component (i.e. oracle) implementing a
particular function. Hence, the automaton doesn’t need to
implement the function itself. Instead the oracle provides the
function value to the automaton. Therefore, an oracle is
suitable to provide dynamic information to an automaton at
runtime. The approach at hand implements the required oracle
by a service in the presented prototype. A call of the oracle is

implemented by a 3-dimensional non-terminal. Production
rules in service grammars with the same lhs are allowed to
exclusively specify 3-dimensional non-terminals on the lhs for
ensuring dynamic determinism.

Figure 6: Accepting and generating automaton for the grammar

G=({A,B},{a,b,c},{(A,aB),(B,bA),(B,c)},A)

Finally, a given word impacts on the finishing requirement
of accepting automata but generating automaton requires to
cover other factors. Accepting automata successfully finish iff
no terminal is left on the tape that is required to be accepted
(additional a final state needs to be reached if final states are
specified by the corresponding automaton). A generating
automaton cannot decide finishing based on terminals but uses
non-terminals.
Definition 5: Generating automata successfully finish iff there
exists no non-terminal anymore.

In summary, the automaton that is used for the execution of
service compositions is required to be a (1) queued automaton
with at most complex tape access and simple working storage
access, (2) generating automaton providing a set of oracles for
dynamic determinism.
Definition 6: A generating queued automaton M for service
compositions is a 5-tuple (Σ, Γ, δ, S, O) where
Σ is a (finite) set of symbols (i.e. the tape alphabet)
Γ is a (finite) set of symbols (i.e. the queue alphabet)
δ is a transition mapping with δ:Σ*×Γ→Σ*×Γ*
S is the start symbol for the queue
O is an oracle
Definition 7: A configuration of a generating queued
automaton is a tuple (w,γ) where w represents the content of
the tape and γ represents the content of the queue.
Definition 8: Let G=(V,Σ,P,S) be a dynamic deterministic
service grammar with an oracle O. The generating queued
automaton for the service grammar is defined by
M=(Σ,V∪Σ,δ,S,O) with: ∀(αXβ,γ)∈P, X∈V ∃ δ(αβ,X)=(ε,γ)

 ∀ X∈V ∃ δ(ε,X)=(ε,X)
 ∀ y∈Σ ∃ δ(ε,y)= (y,ε)

Property 1: A service grammar is deterministic with a queued
automaton if the grammar is static or dynamic deterministic
and provides dynamic exclusive context, i.e. for each pair
(p1,p2) of context-sensitive production rules with the same
processing symbol exist context symbols t1∈p1, t2∈p2 that are
mutually exclusive at runtime.

IV. PROTOTYPE
This section introduces a prototype for the grammar-based

execution of service composition. Figure 7 shows the
architecture of the prototype. A formal queued automaton is a
generic component that is used for the execution of a service
composition instance. A service grammar specifies the model
of the service composition and multiple instances of the model
are provided by multiple automata covering the same grammar.
The formal automaton needs to be extended by a component
implementing the service invocation. If the automaton

(a) (b)

processes a 2- or 3-dimensional non-terminal the service
invocation component is responsible for executing the service
calls. Hence, the service invocation component uses a
parameter resolution component for determining the concrete
input and output parameters of service calls. As data is handled
by reference a reference resolution system [14] is responsible
for storing data and managing references to data. The reference
resolution system is not part of the service composition
instance but is provided by a service that is invoked at runtime
similar to the composed services. In detail, the automaton
interacts with the reference resolution system for parameter
resolution. The parameter resolution component manages the
internal reference names specified in non-terminals and
correlates these names with reference identifiers assigned by
the reference resolution system. Therefore, multiple automata,
i.e. service composition instances are allowed to use the same
reference resolution system service for storing data. Similar to
the reference resolution system the presented prototype
provides an expression evaluation service, i.e. an XPath solver
for XPath expressions. The expression evaluation service
implements the oracle in the automaton that is required if
decisions about control flow alternatives need to be taken (cf.
non-terminal C in Figure 2). Finally, the prototype implements a
management component that is responsible for the
transformation of a service composition model to a grammar-
based specification as well as the creation and deployment of a
service composition instance. Hence, a dynamic distribution
algorithm [15] is used to determine the best location for the
service composition instance at runtime.

Figure 7: Architecture

V. CONCLUSION
The presented approach uses formal grammars and

automata for the modeling and execution of service
composition. Used formal grammars and automata need to be
adapted: Complex non-terminals need to be provided covering
the relation to services. Furthermore, production rules are
allowed to ignore the order of symbols while focusing on the
concurrent existence of symbols. Automata that are used for
the execution of service compositions need to be extended by
service invocation and need have generating character
supporting all derivations of a word. A formal automaton
represents a generic and simple implementation component in
comparison to conventional service composition engines.
Hence, the approach allows to easily measure the runtime
effort of a service composition by the particular automaton
class. For example, “simple” parallel execution paths require
context-free production rules whereas parallel paths with the
need for synchronization require context-sensitive production
rules. In particular, different kinds of production rules (i.e.
service composition logic) require different automaton classes
for the processing. Furthermore, the approach improves the
flexibility of service composition execution by using a simple
and generic automaton covering exactly one service

composition instance. In particular, different instances can be
easily deployed on different nodes in a distributed runtime
environment in contrast to managing all instances in one
engine running on one node (cf. [15]). Formal grammars are
well suited for service composition models as service
compositions are associated with the concept programming in
the large. In particular, service compositions are “only”
considered to coordinate services. In contrast, programming in
the small covers information on a more detailed level that is
typically specified by high programming languages (e.g. Java).
The approach at hand uses formal grammars exclusively for the
programming in the large concepts. That means, concrete data
as well as operations on data are not necessarily covered by the
grammar but by external services. In summary, formal
grammars are suitable to cover service compositions as data is
mostly required to be transferred from service to service
whereas only a few concrete data values are required for the
execution of service composition (cf. control flow alternatives).
Furthermore, grammars already compose symbols emphasizing
the ability to compose services. Introducing service invocation
and dynamic data in formal grammars is similar to the
extension of automata by oracles that can be properly
implemented by services.

REFERENCES
[1] D. Skogan, R. Grønmo, I. Solheim: „Web service Composition in UML“

Proceedings of the EDOC 2004
[2] M Mazzara, I. Lanese: “Towards a Unifying Theory for Web Services

Composition” Web Services and Formal Methods, LNCS Vol. 4182,
2006, pp 257-272

[3] W. van der Aalst, A. Barros, A. Hofstede, B. Kiepuszewski: „Advanced
Workflow patterns“ Cooperative Information Systems. Springer Berlin
Heidelberg, 2000.

[4] F. Heidari, P. Loucopoulos, F.Brazier, J. Barjis: “A Meta-Meta-Model
For Seven Business Process Modeling Languages” CBI 2013

[5] R. Hull “Towards a Unified Model for Web Service Composition”
Advances in Computer Science–ASIAN 2005. Data Management on the
Web. Springer Berlin Heidelberg, 2005. 1-10

[6] J. Mendling, G. Neumann, and M. Nüttgens. "A comparison of XML
interchange formats for business process modelling." Workflow
handbook (2005): 185-198.

[7] F. Leymann. "BPEL vs. BPMN 2.0: Should You Care?" Business
Process Modeling Notation. Springer Berlin Heidelberg, 2011. 8-13.

[8] V. Diekert, G. Rozenberg "The Book of traces. " World Scientific, 1995.
[9] K.Görlach: “A Generic Transformation of Existing Service Composition

Models to a Unified Model” University of Stuttgart, Technical Report
2013/01 ftp://ftp.informatik.uni-
stuttgart.de/pub/library/ncstrl.ustuttgart_fi/TR-2013-01/TR-2013-01.pdf

[10] Web Services Business Process Execution Language Version 2.0,
OASIS Standard, 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
specification-draft.html (August 6, 2013)

[11] M Pesic: “Constraint-Based Workflow Management Systems: Shifting
Control to Users” PhD thesis, Technische Universiteit Eindhoven, 2008

[12] E. Allevi, A. Cherubini, S. Crespi Reghizzi. "Breadth-first phrase
structure grammars and queue automata." Mathematical Foundations of
Computer Science 1988. Springer Berlin Heidelberg, 1988.

[13] D. van Melkebeek. “Randomness and completeness in computational
complexity” ACM Doctoral Dissertation Award Series. LNCS 1950,
Springer 2000

[14] M. Wieland, K. Görlach, D.Schumm, F. Leymann. „Towards reference
passing in web service and workflow-based applications” Proceedings of
the EDOC 2009

[15] K. Görlach, F. Leymann: “Dynamic Service Provisioning for the
Cloud.” Proceedings of the SCC 2012

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-32&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-32&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-32&mod=0&engl=0&inst=IAAS

