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Abstract Technological advances and the low cost of sensors enable the de-
ployment of large-scale camera networks in airports and metropolises. A well-
known technique, called spatio-temporal analysis, enables detecting anoma-
lies such as an individual entering into a restricted area without permission.
Spatio-temporal analysis requires a large amount of system resources to infer
locations of occupants in real-time. In particular, state update becomes a
bottleneck due to computation and communication overhead to update pos-
sibly large application state. In this paper we propose a system design and
mechanisms for scalable spatio-temporal analysis. We present a distributed
system architecture including smart cameras and distributed worker nodes
in the cloud to enable real-time spatio-temporal analysis on large-scale cam-
era networks. Furthermore we propose and implement a couple of selective
update mechanisms to further improve scalability of our system by reducing
the communication cost for state update.

1 Introduction

As sensors for recognizing humans, such as cameras and voice recognition
sensors are becoming more capable and widely deployed, new application
scenarios arise, requiring an automated processing of the continuous stream
data to identify and track human beings in real-time. Airports, as an exam-
ple, currently have more than 1,000 cameras in place and plan to increase
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that number [I]. Video streams can be automatically analyzed by situation
awareness applications [6] to detect security violations, such as unauthorized
personnel entering a restricted area.

Situation awareness applications often rely on a technique called spatio-
temporal analysis to answer queries on occupants such as “When did person
O leave zone Z?”. Recently, Menon et al. [5] showed the feasibility of spatio-
temporal analysis using a global application state, which comprises the in-
formation for each occupant that she is with a certain probability in a zone.
Sensor-streams, stemming from cameras or other modalities (such as audio
and biometrics), detect occupants in the observed system and the application
state is updated regarding these observations.

However, keeping a global application state at a central server in large-scale
camera networks imposes a significant performance bottleneck. Thousands
of cameras constantly send updates to that server, drastically increasing the
communication costs, and the server has to potentially perform a vast number
of computations to process all the updates.

Our contribution in this paper are therefore, i) the distributed design of
a system for spatio-temporal analysis, ii) identifying the performance bot-
tleneck of spatio-temporal analysis on large-scale camera networks, and iii)
scalable mechanisms to maintain a distributed application state.

The paper is structured as follows: Section [2| explains details of spatio-
temporal analysis on camera networks and identifies the sources of perfor-
mance bottlenecks in large scale camera networks. Section [3] describes the
key problem in terms of system scalability. Section [4 provides our solution,
namely, scalable state update to overcome the performance bottleneck. Sec-
tion [f] presents our evaluation results. Section [6] presents other work related
to our project. Section [7] presents concluding remarks and future work.

2 Spatio-temporal Analysis

In this section, we discuss the common steps in spatio-temporal analysis and
propose a distributed system model for large-scale spatio-temporal analysis.

Spatio-temporal analysis is an inference technique that generates proba-
bilistic locations of occupants at a given time using sensor streams. Figure
shows an example of spatio-temporal analysis. In the example, the face of a
person (signature) is captured by a camera, from which an event is generated.
The event is a vector of probabilities representing how closely this signature
matches identities pre-registered in the system. The event causes a transition
of an application’s global state to represent up-to-date location of individual
occupants. Before making a transition, the previous state is recorded with a
timestamp to answering time-dependent questions in the future.

The probabilistic locations captured by a global state is a key to answer-
ing various queries referring to location-, occupancy-, and time-dependent
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Fig. 1 Example of spatio-temporal analysis on camera networks

questions. Each row in the global state, called an occupant state, represents
probabilistic location of a specific occupant that allows to answer a location
query such as “where is occupant O17”. Each column is called a zone state,
representing the probabilistic occupancy of a zone that allows to answer oc-
cupancy query such as “who are presently in zone z17”. A sequence of global
states tagged by timestamp allows temporal query such as “When did per-
son B leave zone X7”. By combining the location, occupancy, and temporal
queries, application can infer various situations:

“Where did person A and B meet for the last time?”
“How many times did person A move from zone X to zone Y?”
“How many people access zone X today?”

Maintaining the global state involves three steps of processing. The first
step, signature detection, involves video analytics to detect signatures such as
faces. For example, when a person enters Zone 2 in Figure|l] a face detection
algorithm reports the person’s face by analyzing video frames from a camera
observing the zone. The second step, event generation, generates a vector of
probabilistic estimates about the identity of the detected signature, called
an event. Depending on the application, different algorithms can be used
in this step to generate the vector. For example, various face recognition
algorithms [I0] or human gait recognition [8] may be used to generate an
event, which includes similarities between the detected signature and known
signatures. The final step, state update, uses the generated event to update
the global state of an application. This modifies the location information of
occupants represented in the event. For example, Figure [l shows that an
occupant O2 was in zone Z2 with probability 0.05 before the state update,
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but the probability is increased to 0.8 after making a transition based on an
event from Z2 with a high probability for O2 being in that zone. E|

3 Problem Description

In large-scale spatio-temporal analysis, each processing step involves signif-
icant amount of computation and communication that require distributed
computing resources to provide real-time situation awareness. The workload
of signature detection and event generation are massively parallel, since each
signature and the associated event can both be independently computed on
distributed nodes including smart cameras and cloud computing resources.
This makes the two steps linearly scalable with the amount of distributed
computing resources. However, unlike the previous two steps, state update
requires sequential processing of events due to the inherent nature of main-
taining a single global application state. Due to the probabilistic nature of the
global application state, an event update potentially affects the probabilities
of every occupant in all the zones. Therefore, to allow the temporal evolution
of the global application state, each event has to be applied sequentially in
temporal order to the current global state. In a large-scale situation awareness
application, a centralized approach that maintains the global state at a single
node will be overloaded due to the computation and communication overhead
of state update. If many events are generated at the same time, a single node
cannot receive and process all events in real-time and therefore the latency
for situation awareness will increase. In the following sections, we describe
our scalable state update solution to solve this performance bottleneck.

4 Scalable State Update

In order to ensure the scalability of spatio-temporal analysis, both computa-
tion and communication overhead of state update should be addressed. To
address computation overhead, we propose a distributed state update using
partitioned application state across multiple state worker nodes where state
update is performed on the partial application states at each node. Figure
shows our distributed state update using multiple occupant state workers
(OW) and zone state workers (ZW). Each state worker maintains a set of oc-
cupant states and zone states to answer queries regarding specific occupants
and zones. For example, occupant state worker OW1 maintains the occupant
state of Ol to answer location queries on the occupant, while a zone state

! The concrete formulas to calculate the probability are presented in [5].
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Fig. 2 Distributed state update: For each event, occupant states are updated in parallel
at distributed occupant state workers (Phase 1). Once all occupant states are updated,
occupant state workers transmit the elements of occupant states to zone state workers
(Phase 2). Thin gray lines indicates the communication path for naive state update while
thick black lines show communication path for selective update.

worker ZW1 maintains the zone state of Z1 to answer occupancy queries for
the zone.

When a new event is generated, each probability for different occupants
in the event are delivered to different occupant state workers commensurate
with the occupant states that each is responsible for. Upon the arrival of
each event element, state update is performed on each occupant state at
different occupant state workers (phase 1). Once the occupant states are
updated, each occupant state worker transmits elements of occupant states
to zone state workers (phase 2). As shown in the figure, the real work of
computing the new probabilities for each occupant in every zone is carried
out by the occupant state workers in phase 1. Phase 2 is a simple data copy
of the computed probabilities in phase 1 and involves no new computation.
Since no computation happens at zone state workers, phase 2 may seem to
be optional. However, the zone state workers are crucial to handle occupancy
queries efficiently because a user has to broadcast a zone-related occupancy
query to all occupant state workers if there are no zone state workers.

Although computation overhead is distributed over multiple nodes, com-
munication overhead of state update is still a significant bottleneck. As Fig-
ure [2|indicates, each element of an event has to be transmitted to all occupant
state workers, which increases the number of messages when more occupant
state workers are used. Furthermore, each occupant state worker has to com-
municate to all zone state workers to update the zone states in phase 2. The
total communication cost in terms of bytes transferred linearly depends on
the number of occupants and zones in a system:

Costeomm = (Noccupants + Noccupants X Nzones) X Sizeof(dOUble) (1)
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For example, assuming thousand occupants and thousand zones, and 8
bytes double-precision floating-point representation for event probabilities,
each event represents a communication payload of eight megabytes for state
update. Assuming hundred signatures are captured from distributed cameras
every second, state update would incur a communication cost of eight hundred
megabytes per second.

To solve the communication overhead, we propose selective update mech-
anisms for state update. In a realistic application scenario, the event gener-
ation algorithm (e.g., face recognition) may generate an event that has only
a few significant probabilities. If an event generation algorithm is highly ac-
curate, i.e., giving high probability for the ground truth identity and very
small probability for other identities, a threshold can be applied to use only
meaningful event elements for updating specific occupant states. Similarly,
another threshold can be applied to occupant states to allow occupant state
workers to transmit only significant changes in occupant states to zone state
workers. Highlighted elements and arrows in Figure [2] show an example of
selective state update. In the example, our system selects only one event ele-
ment for O2 with significant probability, which is used for state update. After
updating an occupant state of O2, only two significant changes for zone Z2
and Z3 are selected and transmitted to corresponding zone state workers.
As shown in the figure, the communication cost of state update depends on
selected occupants in each event and selected zones from each occupant state
rather than the total number of occupants and zones in the system.

To allow such selective state update, our system provides two parameters
to users: occupant selectivity and zone selectivity. Occupant selectivity allows
a user to specify the number of occupants to be selected from each event,
while zone selectivity specifies the number of zones to be selected from each
occupant state. When an event is generated, our system finds occupants with
top N probabilities pertaining to the occupant selectivity. Similarly, when
an occupant state is updated, our system calculates the difference between
the current state and previous state to selects zones with top N changes.
Our system supports automatic tuning of an occupant selectivity or a zone
selectivity, which makes sure that the total communication cost is bounded
by a user-provided threshold. To use the automatic tuning, a user specifies
one selectivity (either occupant or zone selectivity) and the maximum com-
munication cost. Using Equation [I] our system automatically infers the right
value for an unspecified selectivity to make sure the total communication
cost stays below the given maximum communication cost. While event rate
changes over time, our system adaptively changes the unspecified selectivity
to help system running in real-time in the presence of highly varying event
rates from the real world.
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Fig. 3 Average latency for state update with different number of occupants and zones.
(a) 1000 zones are used where different number of occupants are selected (b) 425 occu-
pants are used where different number of zones are selected

5 Evaluation

5.1 Scalability of State Update

To measure the performance based on a realistic workload, we performed
the state update algorithm reported by Menon et al. [5] on eight distributed
worker nodes in Amazon Elastic Compute Cloud (EC2) where each node is
an ml.medium class.

Figure shows average latency of state update per event with different
selectivity of occupants, while varying the scale of the system in terms of the
number of occupants in the system. For example, select-1 indicates select-
ing only a single occupant from each event while probabilities for all other
occupants are ignored. Similarly, select-all indicates that probabilities for all
occupants are used for state update. As shown in the figure, the naive state
update selecting all event elements (select-all) scales poorly, as the system is
overloaded when there are more than 500 occupants in the system. Until 500
occupants, latency for state update increases depends on the total number
of occupants in the system. Other selective mechanisms show good scalabil-
ity, where the average latency depends on the number of selected occupants
rather than the total number of occupants in the system.

Similarly, Figure shows the poor scalability of naive state update and
improved scalability and latencies with selective zones for state update. With
more than 1200 zones, the naive state update becomes overloaded and cannot
handle incoming events in real-time. Other selective state update mechanisms
scale well, while the latency for state update depends on the number of zones
selected from occupant states. Because we used virtual machines in EC2,
available bandwidth and communication latency between distributed state
workers vary over time, which results in slightly nonlinear latencies in figures.
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Fig. 4 Accuracy of query results and communication cost when selective state update
is used

5.2 Impact of Selective Update on Spatio-temporal
queries

In this experiment, we show the impact of selective state update on spatio-
temporal queries using simulated events that are generated from simulation of
moving occupants in camera network El Since selective update ignores small
probabilities in events and negligible changes in occupant states, resulting
application state can differ from the application state computed by the naive
state update. Although the naive state update does not always guarantee
correct answers due to its inherently probabilistic nature, we use the naive
state update as a baseline to compare with our approximated application
state resulting from selective state update.

In this experiment, we used two different types of queries. First type of
query, called location query, asks whereabouts of a particular occupant. For
instance, an application may ask top three most likely places for an occupant
in order to select potential video streams to track the occupant. Another
type of query, called occupancy query asks the occupants who are likely (with
higher than 0.5 probability) to be in a specific zone. Using the two types of
queries, we compare an approximate application state calculated by selective
state update to an application state calculated by the naive state update.
For each state update, we issue location queries and occupancy queries for
all occupants and zones on the original application state and the approximate
application state. If results for the same query differ between the original and
approximate states, we count it as an error. Finally, we calculate the ratio of
errors over all the query results.

2 We simulated randomly moving occupants in a camera network with a grid topology
while events pertain higher probability for a ground truth occupant and lower random
probabilities for others.
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Figure shows the impact of selective update on the result of location
queries. This experiment includes four different types of location queries ask-
ing different number of probable locations, which can be used for different
application scenarios. For instance, top-1 asks the most likely location for
an occupant while top-10 asks ten probable locations for an occupant to in-
crease the chance to find the occupant. Over all types of location queries,
the error ratio reduces when more occupants are selected for state update.
However, the communication cost also increases due to the increased number
of messages transmitted from an event queue to the occupant state workers.
When more probable locations are asked, the error ratio is higher since there
is a higher chance of disparity between query results from an approximate
state and the original state.

Figure shows the error ratio for occupancy queries that ask proba-
ble occupants in a specific zone. For occupancy queries, we use a different
threshold to answer probable occupancy, ranging from 0.2 to 0.8. Similar to
the previous experiment, error ratio reduces when more number of zones are
selected for state update while communication cost linearly increases.

Our experimental results shown in Figure [4] indicate that using a small
number of occupants and zones for selective state update can significantly
reduce the communication overhead without significantly affecting the ac-
curacy as measured by the error rates for the approximate state compared
to the original state. For instance, if an application is interested in only the
most probable location for each occupant, using only ten occupants for the
selective update is sufficient to achieve the same accuracy as compared to the
naive state update

6 Related Work

There are many distributed systems that help developing large-scale applica-
tions for camera networks. IBM S3 [2] provides a middleware for video-based
smart surveillance system including video analytics and storage modules.
Target Container [3] provides a parallel programming model and runtime
system to help domain experts to develop large-scale surveillance applica-
tion on distributed smart cameras. Above systems focused on processing raw
video streams on distributed nodes, which is complementary to our system
since we focus on collective inference on events that are generated from video
streams.

Moving object databases [9] allow for spatio-temporal analysis by keeping
track of mobile devices, like vehicles, and their location. Like our system,
they allow for queries on uncertain data [4, [7], typically the GPS location.
However, unlike situational information drawn from video data, the uncer-
tainty is locally confined and thus does not require to update a global state
which causes performance bottlenecks.
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7 Conclusion

In this paper we addressed the scalability problems of situation-awareness
applications using spatio-temporal analysis on large-scale camera networks.
Due to the probabilistic nature of event generation and state update, an ap-
plication has to keep a global application state that keeps track of known
occupants in the observed area. We identify state update as the real per-
formance bottleneck of spatio-temporal analysis, and presented solutions to
address the bottleneck. To address the computation overhead of state update,
we have presented a distributed state udpate with a partitioned application
state over distributed nodes. To reduce the comomunication overhead of state
update, we have proposed selective state update mechanisms. Our experimen-
tal results show that we can effectively remove the performance bottleneck of
spatio-temporal analysis by applying selective state update while maintaining
similar level of accuracy with the original application states.
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