Towards Virtualization Concepts for Novel
Automotive HMI Systems

Simon Gansel', Stephan Schnitzer?, Frank Diirr?, Kurt Rothermel?, and
Christian Maihofer!

1 System Architecture and Platforms Department
Daimler AG, Boblingen, Germany
firstname.lastname <at> daimler.com
2 Institute of Parallel and Distributed Systems
University of Stuttgart, Germany
lastname <at> ipvs.uni-stuttgart.de

Abstract. Many innovations in the automotive industry are based on
electronics and software, which has led to a steady increase of electronic
control units (ECU) in cars. This brought up serious scalability and
complexity issues in terms of cost, installation space, and energy con-
sumption. In order to tackle these problems, there is a strong interest
to consolidate ECUs using virtualization technologies. However, current
efforts largely neglect legal constraints and certification issues and the
resulting technical requirements.

In this paper, we focus on the consolidation of graphics hardware through
virtualization, which received a lot of interest in the car industry due to
the growing relevance of HMI systems such as head unit and instrument
cluster in modern cars. First, we investigate relevant ISO standards and
legal requirements and derive seven technical requirements for a virtual-
ized automotive HMI system. Based on these requirements, we present
the concept for a Virtualized Automotive Graphics System (VAGS) that
allows for the consolidation of mixed-criticality graphics ECUs.

1 Introduction

Over the years, the automotive industry, which was mainly driven by hardware
and mechanics in the past, has changed to an industry where about 90 % of
all innovations are driven by electronics and software [3]. In current high-end
cars, the IT hardware and software architecture is represented by more than 70
physically separated electronic control units (ECU), which are partitioned into
different domains and connected via a network of different communication bus
systems. To deploy new functionalities, the OEMs often add further ECUs to the
vehicle. This trend of “new function, new ECU” has lead to serious scalability
issues in terms of cost, installation space, and energy consumption. In order to
deal with these problems and to stop this trend of adding further ECUs, there
is a strong interest in the car industry to consolidate ECUs using virtualization
technologies to share the same hardware between different components.

Published in Embedded Systems: Design, Analysis and Verification, IFIP Advances
in Information and Communication Technology, pp. 193-204, 2013.

© Springer-Verlag 2013

The original publication is available at link.springer.com:
http://dx.doi.org/10.1007/978-3-642-38853-8_18



Administrator
Textfeld
Published in Embedded Systems: Design, Analysis and Verification, IFIP Advances in Information and Communication Technology, pp. 193-204, 2013.
© Springer-Verlag 2013
The original publication is available at link.springer.com: 
http://dx.doi.org/10.1007/978-3-642-38853-8_18



2 S. Gansel, S. Schnitzer, F. Diirr, K. Rothermel, C. Maihofer

In this paper, we focus on the consolidation of graphics hardware since it is
of high relevance in modern cars. An increasing number of automotive function-
alities and applications require highly sophisticated graphical representations in
2D or 3D based on hardware acceleration. For instance, the Head Unit (HU)
uses displays integrated into the backside of the front seats and center console
to display multimedia content; and displays connected to the Instrument Clus-
ter (IC) show car specific information like current vehicle speed or warnings.
Therefore, HU and IC are good candidates for hardware consolidation. Each vir-
tualized ECU runs in a dedicated virtual machine (VM), and a virtual machine
monitor (VMM) acts as middleware between VMs and hardware. Besides the
already mentioned general benefits, the virtualization of IC and HU provides
advantages such as the flexible placement of graphical output on previously sep-
arated displays, which is a matter of software implementation only. Moreover,
virtualization enables OEMs to deploy custom applications inside a dedicated
VM that is isolated from HU and IC.

This paper makes the following two contributions to enable the consolidation
of graphics hardware in vehicular systems. First, we thoroughly analyze relevant
IS0 standards and legal requirements and derive seven technical requirements
for a virtualized automotive HMI system. Such requirements have been largely
neglected by current virtualization efforts, which did not target automotive sys-
tems with their specific requirements, in particular, with respect to safety. For
OEMs, the certifiability of automotive system functionalities is highly relevant.
According to [16, ISO 26262], for each functionality safety-criticality shall be
identified and mapped to criticality-classes®. To fulfill the criticality-level, the
severity and likelihood of failures must be determined using, for instance, failure
mode and effects analysis (FMEA) [25]. Moreover, certifiability also applies to
custom third-party applications. For instance, [12, ISO 15005] prohibits display-
ing movies to the driver while the vehicle is in motion. These specific regulations
impose challenging technical requirements to virtualization.

As second contribution, we present a concept for a Virtualized Automotive
Graphics System (VAGS). We elaborate on the challenges that are due to the
identified requirements to consolidate mixed-criticality graphics ECUs as used,
in particular, by the HU and IC. Although virtualization is a mature technology
for general resources like CPU or main memory, existing concepts do neither pro-
vide sufficient isolation for accessing shared graphics hardware (GPU) and input
devices (e.g., steering wheel buttons), nor do they provide sufficient isolation for
implementing the flexible presentation of application windows. Our proposed
architecture can be used as starting point for the future implementation of the
specified components.

The rest of this paper is structured as follows. In the next section, we ana-
lyze automotive standards and guidelines and derive technical requirements. In
Section 3, we present the concept for a VAGS. In Section 4, we briefly describe a

3 [16, ISO 26262] specifies five safety requirement levels: Four ASIL (Automotive Safety
Integrity Level) ranging from ASIL-A (low criticality) to ASIL-D (high criticality),
and one no-criticality level QM (Quality Management)



Towards Virtualization Concepts for Novel Automotive HMI Systems 3

first proof-of-concept implementation of our concepts. Finally, we discuss related
work in Section 5 and conclude this paper with a summary and outlook onto
future work in Section 6.

2 Requirements

In this section, we discuss requirements that are relevant for automotive HMI
systems. Automotive application development is constrained by ISO standards,
automotive design guidelines, legal requirements, and OEM specific demands.
The design guidelines (e.g., [1, AAM 2006], [5, ESoP 2008], [18, JAMA 2004])
in the automotive domain are almost completely derived from the following ISO
standards.

— [11, ISO 11428] Ergonomic requirements for the perception of visual danger

signals.

[12, ISO 15005] Requirements to prevent impairment of the safe and effective

operation of the moving vehicle.

[14, ISO 16951] Priority-based presentation of messages.

[15, ISO 2575] Symbols for controls and indicators.

[13, ISO 15408-2] Security in IT systems.

— [16, ISO 26262] Risk-based assessment of potentially hazardous operational
situations and of safety measures.

In the following, we propose seven technical requirements for automotive HMI
system. For each of them we added references to relevant sections of the men-
tioned ISO standards.

R1 — Input Event Handling

R1.1 — Restricted Access Control: For user input events access control is
required and it shall not violate any of the following constraints [12, ISO
15005]. Applications using dialogues shall not require to use input devices
in a way that demands removal of both hands from the steering wheel
while driving (5.2.2.2.2). Additionally, exiting a dialog or an application
shall always be possible (5.3.3.2.1) unless legally required or traffic-situation-
relevant (5.3.3.2.3).

R1.2 — Restricted Processing Time: A mazimum processing time for input
event handling shall be met. For instance, response to tactile user inputs shall
not exceed 250 ms (5.2.4.2.3).

R2 — Restricted Window Creation and Positioning

R2.1 — Restricted Visibility of Windows: Usually, graphical applications
use API functions to change the visibility of windows, e.g., to create, hide, or
position them. This functionality must be restricted, and functions not in-
tended to be used by the driver must be inaccessible for him [12, ISO 15005
(5.2.2.2.4).



4 S. Gansel, S. Schnitzer, F. Diirr, K. Rothermel, C. Maihofer

R2.2 — Priority-based Displaying of Windows: If multiple windows shall
be displayed, the importance of each of them must be defined. Importance
is represented by priorities, which can depend on safety requirements and
software ergonomic aspects (5.2.4.2.4) that must be met by the system
(5.2.4.3.3). Moreover, they can depend on urgency and criticality which
have to be defined [14, ISO 16951] (3.5). Additionally, appropriate reac-
tions (e.g., behavior in case of conflicts) shall be enforced [14, ISO 16951]
(Annex B). Furthermore, country-specific legal requirements constrain the
definition of the priorities, e.g., German law requires the constant visibility
of the speedometer while the vehicle is in motion (StVZO §57 [19]). Addi-
tionally, visual information must be presented in a consistent way [12, ISO
15005] (5.3.2.2.1).

R2.3 — Timing Constraints: An automotive HMI system shall enable appli-
cations to provide important information to the driver within given time
constraints. This means that windows showing information shall be visible
within given time constraints [12, ISO 15005] (5.2.4.3.4). If applications re-
quire user interaction, e.g., if a user selects a radio channel, the flow of infor-
mation must not adversely affect driving (5.2.4.2.1). Concretely, according
to [1, AAM 2006] Section 2.1, each glance shall not exceed 2 seconds. Hence,
any kind of animation shall not run longer than 2 seconds.

R3 — Trusted Channel

R3.1 — Integrity and Confidentiality: In environments where applications
run inside VMs, communication is inevitable. This holds for communication
that previously used dedicated communication hardware and is now replaced
by software-based inter-VM communication. According to [13, ISO 15408-2],
communication between applications and hardware must provide integrity
and confidentiality, for both user data (14.5.8.2) and software components
providing relevant functionality (17.1.5.3). All applications that need trusted
communication shall be able to use it (17.1.5.2).

R3.2 — Authentication and Non-Repudiation: Identification shall be as-
sured even between distinct systems (17.1.5.1), which also applies to inter-
VM communication. A trusted channel also requires non-repudiation of ori-
gin (8.1.1 and 8.1.6.1-3) and receipt (8.2.1 and 8.2.6.1-3). This requires au-
thentication and may also involve cryptographic key management (9.1.1)
and key access (9.1.7.1).

R4 — Virtualized Graphics Rendering In our system, multiple VMs have
shared access to a single GPU, and therefore the VMM has to provide isolation.
That is, unintended interference between applications must not occur.

R4.1 — Priority Handling: Application windows must be assigned a prior-
ity which determines how GPU commands are processed [12, ISO 15005]
(5.2.4.2.4 and 5.2.4.3.3), [13, ISO 15408-2] (15.2.5.1-2 and 15.2.6.1-2).



Towards Virtualization Concepts for Novel Automotive HMI Systems 5

R4.2 — Rendering Time Constraints: Not only comparative requirements
(like priorities) but also absolute timing requirements have to be fulfilled. A
response to a drivers tactile input shall not exceed 250 ms [12, ISO 15005]
(5.2.4.2.3). Similarly, emergency signals may require constant redraw rates
to represent flashing lights [11, ISO 11428] (4.2.2). This requires appropri-
ate CPU and GPU resources and imposes a minimum frame rate since the
delay between two consecutive frames is constraint by an upper bound. The
upper bound must be known to determine the effectiveness of safety-critical
messages [14, ISO 16951] (Annex F) and also to allow for the definition of
delays after which messages are displayed (Annex B).

R4.3 — GPU Resource Isolation: The GPU is a controlled resource accord-
ing to [13, ISO 15408-2]. To prevent unintended interference, it must be
possible to provide guarantees to certain applications that they are pro-
vided sufficient GPU resources such as processing time. Therefore, it must
be possible to control which GPU resources individual windows, graphical
applications, or VMs are allowed to use (15.3.6.1 and 15.3.7.1-2).

R5 — Reconfiguration of Policies A set of permissions that apply to user
input events, application windows, and the related scheduling and isolation is
called a policy. At each point in time, exactly one policy is active, though policies
are dynamically switched during runtime depending on the system state.

R5.1 — Dynamic State Changes: In accordance to [12, ISO 15005], a state
change happens either on user request or automatically by system-defined
rules. A state can depend on a current vehicle condition like “vehicle is in
motion” which could require the deactivation of applications that are not
intended to be used by the driver while the vehicle is in motion (5.2.2.2.4).
Otherwise, an automotive HMI system shall provide sufficient information
and warnings to provide the driver with the intended purpose in a current
state. For every state change, specified deadlines apply to determine a con-
sistent and accurate transition between different states. The definition of
states and system behavior is explained in more detail in [14, ISO 16951]
(3.3 and Annex E).

R5.2 — Dynamic Policy Changes: Authorized software components shall be
able to apply changes to policies during runtime. This includes granting
and revoking permissions on both, currently active and currently inactive
policies. As for R5.1, deadlines apply to dynamic policy changes. Where
applicable and allowed, the driver shall be able to change the active policy
to manipulate the flow of information (5.3.3.2.3).

R5.3 — Presentation Enforcement: The system-defined rules shall enforce
the presentation of legally required messages and traffic-situation-relevant
messages. Presentation requires that those messages are visible and perceiv-
able, in particular, if state changes require driver attention [12, ISO 15005]
(5.3.2.2.2). Furthermore, state-related information shall be displayed either
continuously or upon request by the driver.



6 S. Gansel, S. Schnitzer, F. Diirr, K. Rothermel, C. Maihofer

R6 — Certifiability For an OEM, certifiability is an essential part of the soft-
ware development process, e.g., by using methods like FMEA [25]. The devel-
opment process for certified software, in particular, for high criticality levels, is
quite complex and expensive. A key indicator for complexity is the number of
function points that correlates with the approximated number of software de-
fects [3]. Hence, a system shall be developed with respect to an easy certification
according to [16, ISO 26262].

R7 — System Monitoring System Monitoring puts the focus on logging,
detecting, and reacting to events that possibly are relevant to provide safety.

R7.1 — Secure Boot: Derived from [13, ISO 15408-2], the system shall provide
secure boot to ensure the integrity of the system. Compromising the system
(14.6.9.1) or system devices or elements (14.6.9.2) by physical tampering
shall be unambiguously detected.

R7.2 — Auditing: The auditing of all safety-critical related events shall be
guaranteed to ensure traceability of system activities in an automotive HMI
system that potentially violate safety or security. Therefore, direct hardware
access must not be permitted to ensure that auditing cannot be bypassed.
For a potential violation analysis, a fixed set of rules shall be defined for a
basic threshold detection, [13, ISO 15408-2] (7.3.2). To indicate any potential
violation of the system-defined rules, the monitoring of audited events shall
also be based on a set of rules (7.3.8.1) that must be enforced by the system
either as an accumulation or a combination of a subset of defined auditable
events which are known to threat the system security (7.3.8.2). Similarly, all
changes to policies initiated by applications shall be monitored and verified.

R7.3 — Supervision of Timing Requirements: It is a requirement to regu-
late the flow of information to ensure short and concise groups such that the
driver can easily perceive the information with minimal distraction [12, ISO
15005] (5.2.4.2.1). Therefore, specified time restrictions need to be verified.
This also includes the auditing of driver tactile input and system response
time which shall not exceed 250 ms (5.2.4.2.3).

R7.4 — Detection of DoS Attacks: The occurrence of any event represent-
ing a significant threat such as a DoS attack shall be detectable by the
system in real-time or during a post-collection batch-mode analysis [13, ISO
15408-2] (7.3.2).

R7.5 — Perception of Visual Signals: For the perception of visual danger
signals, visibility properties like fractions of luminances [11, ISO 11428]
(4.2.1.2) and colors of signal lights (4.3.2) have to be monitored. Monitoring
is also required for certain safety-critical symbols defined in [15, ISO 2575].

R7.6 — Software Fault Tolerance: [13, ISO 15408-2] requires the detection
of defined failures or service discontinuities and a recovery to return to a con-
sistent and secure state (14.7.8.1) by using automated procedures (14.7.9.2).
A list of potential failures and service discontinuities have to be supervised
by a watchdog to detect entering of failure states. Furthermore, for a de-



Towards Virtualization Concepts for Novel Automotive HMI Systems 7

fined subset of functions that are required to complete successfully, failure
scenarios shall be specified that ensure recovery (14.7.11.1).

R7.7 — System Integrity: In case of unrecoverable failures, the system shall
be able to switch to degraded operation mode to preserve system integrity. A
list of failure types shall be defined for which no disturbance of the operation
of the system can take place [13, ISO 15408-2] (15.1.7.1). Moreover, the
system shall ensure the operation of a set of capabilities for predefined failure
types (15.1.6.1). This includes the handling of DoS attacks and detection of
illegitimate policy changes. Some events have to be maintained in an internal
representation to indicate if any violations take or took place. This includes
the behavior of system activities for the identification of potential violations
(7.3.10.2-3) like state changes (7.3.10.1).

3 Architecture

In this section, we briefly describe the architecture of a Virtualized Automotive
Graphics System (VAGS) (cf. Fig. 1) that addresses the identified requirements.
Certifiability (R6) applies to the complete development process, all other
requirements are represented by the functionalities of the components of our ar-
chitecture. With respect to certifiability, we follow the approach of a microkernel-
based VMM where drivers run in user space rather than kernel space. There-
fore, the kernel code size is very small and easier to certify [3]. If driver code
crashes, this does not affect the VMM. The Virtualization Manager runs in a
dedicated VM and exclusively manages shared resources. It contains relevant
drivers, e.g., for GPU and input devices. This ensures that access to all shared
resources is controlled by a single trustworthy VM. Indirect hardware access
by VMs facilitates Virtualized Graphics Rendering (R4) and System Monitor-
ing (R7). Additionally, the Virtualization Manager contains multiple software
components ensuring that every hardware access by VMs is in compliance with
our requirements. Note that our architecture only shows four exemplarily VMs.
However, we do not restrict the number of VMs. Therefore, it is possible to
deploy additional VMs if needed. In order to access hardware, the HU and 1C
VMs communicate with the Virtualization Manager VM. For this bidirectional
communication, a Trusted Channel (R3) is required to support secure communi-
cation between the different virtual machines. A trusted channel is provided by
the cooperation of the Isolated Communication Channel and the Authentication
Manager. The Isolated Communication Channel provides integrity and isolation
for communication (R3.1) between applications and the Virtualization Manager.
To initiate a connection, applications first have to provide valid credentials to
the Authentication Manager, to guarantee non-repudiation of origin and receipt
(R3.2). In particular, this is required for the communication between the graph-
ical applications located on HU or IC and the virtualization manager, which
needs to be trustworthy to ensure that the active policy is never violated.
Permission and Policy Management (R5) ensures that applications are get-
ting their defined permissions to use functionalities or resources provided by



8 S. Gansel, S. Schnitzer, F. Diirr, K. Rothermel, C. Maihofer

Window Manager
Input GPU System
Manager || Scheduler Monitor
Permission and Policy
Management Watchdog

Speedo- | Tacho- Navi- :
[Authentication Manager|[  Auditing][|[ meter meter gation Med|a| | App 1 || App 2 |
[ 0s 11[ 0S 11[ 0S 1] 0S |
VM (Virtualization Manager) VM (Instrument Cluster) VM (Head Unit) VM (custom apps)

Isolated Communication Channel

| Microkernel-based VMM |

||Input Devices| [Display 1] [Display 2] ... Hardware |

Fig. 1. Architecture

the Input Manager, Window Manager, or GPU Scheduler. Permissions are rep-
resented by the active policy, which depends on the current state (R5.1), e.g.,
“vehicle is parking” or “vehicle is in motion”. The policy management is config-
ured by rules that define transitions between policies performed whenever state
changes (R5.2) in defined time constraints (R5.3).

The Input Manager performs Input Event Handling (R1) and is responsible
for dispatching user input events to the intended applications (R1.1). Since the
processing of user input is subject to time restrictions, a minimal delivery time
for input events to the applications must be ensured (R1.2).

The GPU Scheduler is responsible for Virtualized Graphics Rendering (R4)
according to drawing requirements and permissions of graphical applications. To
this end, applications are assigned priorities that define the amount of dedicated
GPU resources (R4.1). Besides priorities, according to (R4.2), deadlines apply
to the graphical rendering of certain applications like the tachometer. The GPU
scheduler, therefore, has to sequence graphics commands, schedule application
requests and provide isolation between different contexts (R4.3).

The Window Manager provides the functionality for creating, positioning,
and displaying windows of graphical applications. This represents a paradigm
shift from fully user-defined window management to restricted window creation
and positioning (R2). Applications with sufficient permissions interact with the
Window Manager to create windows and to modify properties like size and po-
sition (R2.1). Moreover the Window Manager is responsible for correct window
stacking (R2.2) and meeting rendering time requirements (R2.3).

In order to guarantee Secure Boot (R7.1), the integrity of code that is loaded
must be verified, using, for instance, approaches described in [8]. The Audit-
ing component (R7.2) traces all relevant system activities and interactions. The
gathered traces can be used by the Watchdog and System Monitor components
to detect inconsistencies (for R7.3 to R7.7). The Watchdog supervises relevant
system functionalities and emits signals in case of system malfunctioning as re-
quired for R7.3 to R7.6. The System Monitor receives signals of detected system
malfunctions from the Watchdog. Rules are used to configure its reaction on
these signals.



Towards Virtualization Concepts for Novel Automotive HMI Systems 9

4 Implementation

We have created a proof-of-concept implementation for the main parts of our
proposed VAGS architecture. The implementation consists of a Window Man-
ager using an hierarchical access control management for display areas and input
events. It supports permission negotiation between different virtual machines and
applications. The applications create, destroy and move their windows using a
dedicated Window Manager API. Based on their permissions, applications are
allowed to display their windows in dedicated display areas. Furthermore, each
display area is mapped to a depth level representing the priority of the appli-
cation. This prevents that application windows are overlapped by windows of
applications with lower priority. The Window Manager has a dedicated com-
positing backend which is currently (as an intermediate step) based on X11
compositing.

Linux was used as operating system for the Virtualization Manager and the
graphical applications. As a first step we used an x86 standard PC platform
and created a set of automotive applications like speedometer and navigation
software to demonstrate the feasibility of the concept.

For communication between applications located on different VMs, a trans-
port layer has been implemented. The channels use a custom ring buffer imple-
mentation and shared memory to establish data transfer channels. These chan-
nels are used for forwarding graphics data like EGL, OpenGL ES 2.0, and API
commands of the Window Manager, from the graphics applications to the Vir-
tualization Manager. The management of shared memory is performed by a
dedicated component in the Virtualization Manager. To allow applications on
different VMs for initiating new connections, in each VM a management process
performs the mapping of shared memory segments to applications. The Virtual-
ization Manager performs simple scheduling using synchronization mechanisms
of OpenGL ES 2.0.

5 Related Work

The concept of microkernel-based VMMs in virtualization is well known for many
years. The focus on safety increased during the last few years, e.g., the NOVA
microkernel [26]. Moreover, certifiability became more important, at least in case
of the VMM [22].

A large number of work related to virtualization and graphics applications
has been described in the literature. Due to space constraints, we only focus on
windowing systems, GPU scheduling, and graphics forwarding in the following.
According to [17], the X11 Windowing System does not provide security. Trusted
X [4] has been proposed to provide security for the X Windowing System tar-
geting the requirements in TCSEC B3 (superseded by [13, ISO 15408-2]) but
has not been certified. To provide isolation, an untrusted X server and a window
manager is deployed for each security level which impacts scalability. Therefore,
mutual isolation of applications is practically impossible due to scalability is-
sues. Nitpicker [7] is a GUI server with security mechanisms and protocols to



10 S. Gansel, S. Schnitzer, F. Diirr, K. Rothermel, C. Maihofer

provide secure and isolated user interaction using different operating systems.
To achieve isolation between these OSes, Nitpicker uses the VMM L4 /Fiasco
[10]. The EROS Window System (EWS) [24] targets the protection of sensi-
tive information and the enforcement of security policies by providing access
control mechanisms and enforcing the user volition. A common denominator of
Trusted X, Nitpicker, and EWS is that they only focus on security and thus do
not comply with Input Event Handling (R1), Restricted Window Creation and
Positioning (R2), and System Monitoring (R5). DOpE [6] is a window server
that assures redrawing rates windows of real-time applications and provides a
best-effort service for non-real-time applications. DOpE is based on L4/Fiasco
[10] for isolation and IPC. However, policies are not enforced. Common to all
these windowing systems is the fact that they do not support graphics hard-
ware acceleration and do not provide any timing guarantees for rendering and
displaying.

GERM [2] provides GPU resource management targeting fairness without ad-
dressing isolation or prioritization. Timegraph [21] enhances these concepts and
provides priority-based scheduling of GPU command groups for DRI2. However,
for the execution time of an GPU command group no upper bound can be guar-
anteed and the performance is heavily degraded. Additionally, due to latency
induced by synchronous GPU operations, applications using the X Server and
double buffering encounter additional problems addressed in [20]. However, the
X Server itself does not provide sufficient isolation mechanisms and therefore
cannot be used for an automotive HMI system.

VMGL [23] is an approach to transfer OpenGL commands from an OpenGL
client to an OpenGL server using a TCP/IP connection. However, using TCP /IP
causes significant latency and overhead. Blink [9] is a display system which fo-
cuses on the safe multiplexing of OpenGL programs in different VMs. Blink
uses an OpenGL Client/Server to transmit the OpenGL commands and data
via shared memory to a “Driver VM”. The “Driver VM” is responsible for the
execution of the OpenGL commands on the GPU. Blink proposes “BlinkGL”
which increases performance, but requires applications to be modified.

6 Summary and Future Work

In this paper, we presented requirements for novel automotive HMI systems.
From relevant ISO standards, we derived seven technical requirements for the
physical consolidation of mixed-criticality graphical ECUs such as head unit and
instrument cluster. Additionally we presented VAGS (Virtualized Automotive
Graphics System), a novel automotive HMI concept which provides isolation be-
tween custom graphics applications running in dedicated VMs. Although these
applications are not certified, a VAGS can guarantee that no unintended inter-
ference with certified OEM software can take place. We presented a suitable
architecture and created a proof-of-concept implementation.

In future work we are going to improve graphics scheduling by using execution
time prediction of graphics commands and by using a more suitable scheduling



Towards Virtualization Concepts for Novel Automotive HMI Systems 11

algorithm. Furthermore, we implement system monitoring, auditing, a watch-
dog, and integrate authentication concepts. Since the current implementation is
based on X11, which has a couple of drawbacks, we plan to switch to a native
implementation tailored to embedded hardware. Finally, we evaluate and opti-
mize the performance of our implementation depending on different application
scenarios.

Acknowledgement

This paper has been supported in part by the ARAMIS (Automotive, Railway
and Avionics Multicore Systems) project of the German Federal Ministry for
Education and Research (BMBF) with funding ID 01IS11035.

References

[1] AAM: Statement of Principles, Criteria and Verification Procedures on
Driver Interactions with Advanced In-Vehicle Information and Communi-
cation Systems. Alliance of Automotive Manufacturers (July 2006)

[2] Bautin, M., Dwarakinath, A., Chiueh, T.: Graphic engine resource manage-
ment (2008)

[3] Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Com-
puter 42(4), 42 52 (April 2009)

[4] Epstein, J., McHugh, J., Pascale, R., Orman, H., Benson, G., Martin, C.,
Marmor-Squires, A., Danner, B., Branstad, M.: A prototype b3 trusted
x window system. In: Proceedings of the 7th Annual Computer Security
Applications Conference. pp. 44-55 (Dec 1991)

[5] ESOP: On safe and efficient in-vehicle information and communication sys-
tems: update of the European Statement of Principles on human-machine
interface. Commission of the European Communities (2008)

[6] Feske, N., Hartig, H.: Dope — a window server for real-time and embedded
systems. In: Proceedings of the 24th IEEE Real-Time Systems Symposium.
pp. 74-77 (Dec 2003)

[7] Feske, N., Helmuth, C.: A nitpicker’s guide to a minimal-complexity secure
gui. In: Proceedings of the 21st Computer Security Applications Conference.
pp. 85-94 (Dec 2005)

[8] Gallery, E., Mitchell, C.J.: Trusted computing: Security and applications
(May 2008)

[9] Hansen, J.G.: Blink: Advanced Display Multiplexing for Virtualized Appli-
cations. In: Proceedings of the 17th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV).
pp. 15-20 (2007)

[10] Hohmuth, M.: The Fiasco kernel: System Architecure. Technical report:
TUD-FI02-06-Juli-2002 (2002)

[11] ISO 11428: Ergonomics — Visual danger signals — General requirements,
design and testing. ISO, Geneva, Switzerland (Dec 1996)



12

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

S. Gansel, S. Schnitzer, F. Diirr, K. Rothermel, C. Maihofer

ISO 15005: Road vehicles — Ergonomic aspects of transport information and
control systems — Dialogue management principles and compliance procec-
dures. ISO, Geneva, Switzerland (July 2002)

ISO 15408-2: Information technology — Security techniques — Evaluation
criteria for IT security — Part 2: Security functional components. ISO,
Geneva, Switzerland (Aug 2008)

ISO 16951: Road vehicles — Ergonomic aspects of transport information and
control systems (TICS) — Procedures for determining priority of on-board
messages presented to drivers. ISO, Geneva, Switzerland (2004)

ISO 2575: Road vehicles — Symbols for controls, indicators and tell-tales.
ISO, Geneva, Switzerland (July 2010)

ISO 26262: Road vehicles — Functional Safety. ISO, Geneva, Switzerland
(Nov 2011)

J Epstein, J.P.: Trusting x: Issues in building trusted x window systems
— or — what’s not trusted about x. In: Proceedings of the 14th National
Computer Security Conference. vol. 1. National Institute of Standards and
Technology, National Computer Security Center (Oct 1991)

JAMA: Guideline for In-vehicle Display Systems — Version 3.0. Japan Au-
tomobile Manufacturers Association (Aug 2004)

Janker, H.: Stralenverkehrsrecht: StVG, StVO, StVZO, Fahrzeug-Zulas-
sungsVO, Fahrerlaubnis-VO, Verkehrszeichen, Bufigeldkatalog. C.H. Beck
2011

%(ato,)s.7 Lakshmanan, K., Ishikawa, Y., Rajkumar, R.: Resource sharing
in gpu-accelerated windowing systems. In: Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2011 17th IEEE. pp. 191-200
(April 2011)

Kato, S., Lakshmanan, K., Rajkumar, R., Ishikawa, Y.: Timegraph: Gpu
scheduling for real-time multi-tasking environments. In: Proceedings of
USENIX Annual Technical Conference. USENIX Association, Berkeley, CA,
USA (2011)

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch,
H., Winwood, S.: seL.4: Formal verification of an OS kernel. Communications
of the ACM 53(6), 107115 (June 2010)

Lagar-Cavilla, H.A., Tolia, N., Satyanarayanan, M., de Lara, E.: VMM-
independent graphics acceleration. In: Proceedings of the 3rd international
conference on Virtual execution environments. pp. 33—43. ACM, New York,
NY, USA (2007)

Shapiro, J.S., Vanderburgh, J., Northup, E., Chizmadia, D.: Design of the
eros trusted window system. In: Proceedings of the 13th conference on
USENIX Security Symposium — Volume 13. USENIX Association, Berkeley,
CA, USA (2004)

Stamatis, D.: Failure Mode and Effect Analysis: FMEA from Theory to
Execution. ASQ Quality Press (2003)

Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualiza-
tion architecture. In: Proceedings of the 5th European conference on Com-
puter systems. pp. 209-222. EuroSys 10, ACM, New York, NY, USA (2010)





