
Bandwidth-Minimized Distribution of
Measurements

in Global Sensor Networks

Andreas Benzing, Boris Koldehofe, and Kurt Rothermel

Institute of Parallel and Distributed Systems, 70569 Stuttgart, Germany,
firstname.lastname@ipvs.uni-stuttgart.de,

WWW home page: http://www.ipvs.uni-stuttgart.de/abteilungen/vs

Abstract Global sensor networks (GSN) allow applications to integrate
huge amounts of data using real-time streams from virtually anywhere.
Queries to a GSN offer many degrees of freedom, e.g. the resolution and
the geographic origin of data, and scaling optimization of data streams to
many applications is highly challenging. Existing solutions hence either
limit the flexibility with additional constraints or ignore the characteris-
tics of sensor streams where data points are produced synchronously.
In this paper, we present a new approach to bandwidth-minimized dis-
tribution of real-time sensor streams in a GSN. Using a distributed index
structure, we partition queries for bandwidth management and quickly
identify overlapping queries. Based on this information, our relay strat-
egy determines an optimized distribution structure which minimizes traf-
fic while being adaptive to changing conditions. Simulations show that
total traffic and user perceived delay can be reduced by more than 50%.

Keywords: Data Streams, Global Sensor Networks, Optimization

1 Introduction

The deployment of wired and wireless sensor networks is making rapid progress
all around the globe. Sensors are installed in virtually all areas of everyday life
and a huge amount of real-time data has become available. For example, the
CeNSE project by HP [12] envisions one trillion sensors to enervate the entire
Earth. To globally enable scalable access to this data, broker networks providing
high bandwidth data streams need to be established and managed using appro-
priate middleware solutions. Previous approaches focused on extending methods
from local to global sensor networks [2, 13]. By utilizing in-network aggregation
or lossy compression, a significant reduction of sensor data can be achieved. How-
ever, the gain of these methods comes at the cost of reduced precision to which
many critical applications are highly sensitive. For example, the simulations for
the dispersion of pollutants require precise wind data. Numerical errors due to
compression artifacts can lead to highly disturbed results.

A promising alternative to reducing precision is to avoid sending information
multiple times over a physical network link. The main problem then is to find an

Published in Distributed Applications and Interoperable Systems (DAIS)
LNCS 8460, pp. 156-170, 2014.
© Springer-Verlag 2014
The original publication is available at link.springer.com:
http://link.springer.com/chapter/10.1007/978-3-662-43352-2_13

optimized and dynamically adapting dissemination structure for a large number
of requests in the complex Internet. Group communication middleware such as
application layer multicast [24] or publish/subscribe [9] tackle the complexity of
the problem by reducing the number of requests which need to be served by a
broker. In multicast, communication is limited to a fixed number of channels,
prohibitively restricting the expressiveness of queries. Publish/subscribe offers
high expressiveness for queries and scalability is achieved by merging similar sub-
scriptions from different subscribers to avoid redundant transmissions. However,
since the bandwidth requirements of an individual subscription are unknown,
this solution misses optimization potential for high-bandwidth sensor streams.

Contrary, for global sensor streams, measurements are generated for every
point at discrete time steps. Knowledge on the spatial and temporal resolution –
as specified, for example, in scientific simulations – allows for exact determination
of the data to expect from any given query. This poses a great so far unused
potential to minimize bandwidth usage of a global sensing system.

Towards this end, we present the Global Sensor Grid Middleware (GSGM).
The GSGM provides a new method to precisely query and scalably deliver real-
time sensor data streams. The query interface allows for a flexible specification
of geographic regions and resolutions of data of interest. Our main contribution
is a new underlay-adaptive stream management algorithm to minimize traffic by
exploiting the predictable network load of each query. Redundant parts of queries
are quickly identified using a distributed index structure. Identical portions of
data streams are merged and sent to dynamically established relay points where
the data is distributed towards client nodes based on local knowledge.

The paper is structured as follows: Section 2 introduces the system model
followed by a problem formalization in Section 3. The detailed description of our
approach is provided in Section 4. Evaluation results are presented in Section 5.
Related work is provided in Section 6 and Section 7 concludes the paper.

2 System Model

System Components The GSG is built up of brokers, which gather data from
sensor networks, and clients. The sensor networks expose coordinates of their
nodes and send raw sensor measurements to brokers where they are pre-processed
and distributed to interested clients as shown in Figure 1. In doing so clients can
pose a query to a broker, identifying the type of sensor, the spatial region, and
spatial as well as temporal resolution. The brokers in turn identify the relevant
data and establish a continuous sensor stream to the clients. In order to access
the sensor data provided by a sensor network, we assume the sensor networks
provide specific interfaces to the GSGM. These interfaces allow querying sensor
data at varying temporal dimensions as well as coordinates in a global coordinate
system. Note, however, that the GSGM is not concerned with managing the
internals of the sensor network and how the sensor network is established.

To uniformly manage the sensors and sensor networks connected to the bro-
kers, the GSGM manages a global coordinate system which comprises the world

Broker

Broker

Gateway Broker

U
nd

er
la

y
N

et
w

or
k

St
ru

ct
ur

e
Cl

ie
nt

s

Two separate data streams
from gateway to clients

Figure 1. Naive operation of the GSG with a separate data stream per client.

of all possible sensor coordinates. This world is partitioned into disjoint geo-
graphic regions, each managed by a single broker denoted the gateway of said
region. This way each sensor is associated with exactly one region. However, a
broker may serve as gateway for multiple regions. The gateways perform pre-
processing of the raw sensor data to integrate sensor data into the global coor-
dinate system and being able to offer sensor data at full resolution (cf. [3]).

Additional brokers in the GSG support the distribution of sensor streams. We
refer to brokers that forward sensor data on behalf of gateways as relays. Note
that also gateways may serve as relays on behalf of other gateways. Gateways or
relays, which send data to a client, form the end of a data stream inside the GSG
and hence called target brokers of that client. The number of brokers as well as
the assignment of gateways to regions is manually fixed by the operator of the
Global Sensor Grid. This choice determines the number of queries as well as the
performance characteristics that can be supported by the GSGM. However, the
brokers will autonomously optimize the network resources used depending on
the client requests for sensor data.

Query Model Building on our previous work [4] we introduce the query model
for the GSGM. A query to the GSGM is bound to one data type and includes
the region of the data requested. Optionally, clients can specify the time of the
beginning and duration of the data stream. Each query q is therefore given by a
tuple q = (Rq, tq, dq) where Rq specifies the geographical extent and resolution
of the query. tq and dq denote the optional start time and duration of the query.
If the latter two are not specified, the resulting data stream will start as soon as
possible and run until the client fails or cancels the query.

Besides the geographical area of interest, the query region contains the re-
quested resolution. This way, clients can directly query a grid of data points as
required for the simulation at hand. The region of query q is represented by

Rq = (xmin, xmax, ymin, ymax, resx, resy, rest),

where xmin and xmax describe the lower and upper bound of the latitude. ymin

and ymax limit the longitude correspondingly. Note that the system is not limited
to geographic coordinates but can process any 2D coordinates. The last three
values resx, resy, and rest specify the spatial and temporal resolution of the
query as a fraction of the maximum available data. A value of resx = 0.3 there-
fore returns 3 out of 10 data points equally distributed over the corresponding
axis. Similarly, only a subset of updates is transmitted for each data point if
resy < 1 or rest < 1.

Cost Model The primary goal of the GSGM is to minimize the bandwidth used
for distributing data. The bandwidth used by each data stream is proportional
to the amount of data per update and the update frequency. On the one hand,
the amount of data is given by the geographical extent of the area and the
spatial resolution. On the other hand, the frequency depends on the temporal
resolution. For a data stream serving a query q the corresponding total size |q|
is therefore given by:

|q| = (xmax − xmin)× (ymax − ymin)× resx × resy × rest

While the size of a query determines the bandwidth required to send the
data from a broker, the load on the network depends on how data is distributed
in the network. To serve a query q, the corresponding data stream sq uses a set
Lsq of underlay links, which depends on the chosen path in the network. The
number of underlay links for this path is consequently denoted by |Lsq |. The
overall cost c(sq) can now be calculated as the product of the number of links
and the bandwidth which is identical for each link: |Lsq | × |q|. Note that the
delay of a link is not taken into account as it does not affect the load.

3 Sensor Stream Distribution Problem

Recall that the bandwidth usage of the GSGM is driven by the overall number
of underlay hops over which a given sensor datum is forwarded. To achieve
minimal bandwidth usage it is therefore important to i) exploit the overlap
between distinct sensor streams to reduce the amount of sensor data which is
forwarded, ii) carefully choose the brokers which contribute in relaying to ensure
short underlay paths. These goals conflict in general since longer underlay paths
are required to share an underlay link between multiple streams.

We focus on two interconnected sub-problems to find a distribution structure
with minimized bandwidth usage. The first sub-problem is to efficiently identify
intersections between distinct queries. For each intersection, the data covered
by the overlapping region must be sent to multiple clients. Solving the problem
allows us to identify a set of k non-overlapping sensor streams from a single gate-
way to possibly multiple clients. The second task, and main problem addressed
in this paper, is to reduce the bandwidth required for each stream by finding a
minimal cost distribution graph. Clearly, both problems are in general hard to
solve: First, the amount of possible intersections grows quickly with the number

of queries in the system. Second, the path distribution problem can be reduced
to the Minimal-Steiner-Tree-Problem (MST) [8] which is known to be NP-hard.

Proof. We can formulate this optimization problem similar to the MST w.r.t.
each intersection. In the generic version of the problem, we are given a graph
G = (V,E), one source node s ∈ V , and a set R ⊆ V of required nodes. The
sought-after Steiner Tree is the graph which connects s to all nodes in R using
nodes in V \R as Steiner Points, i.e. relays, with minimal sum of edge weights.

To formulate our stream distribution problem for a single intersection, let
V = {bi}i∈{1,...,n} be the set of brokers, bs be the source broker which provides
the data, and R be the target brokers to which the clients are connected. Since a
direct connection between any broker bi ∈ V can be established using IP-routing,
The solution to this problem is the desired tree which provides the connectivity
at minimal cost.

Even though multiple approaches to the MST exist, finding the exact so-
lution to the presented problem is infeasible in a real-world GSG for multiple
reasons. First of all, the MST is an NP-hard problem and has to be solved for
a very large graph, i.e. the Internet with all its links. A restriction to all direct
connections between brokers still involves a an extremely large graph. Second, a
solution is needed for every intersection, resulting in numerous instances of the
problem. Finally, the topology of the Internet is not known. This knowledge gap
is broadened by the continuously changing network conditions caused by other
applications using the Internet. In the remainder of this paper, we therefore
present a new approach to solving the sensor stream distribution problem.

4 Sensor Stream Organization

In this section, we describe our new approach to approximate a solution to the
sensor stream distribution problem and show how data streams in the GSG are
organized to minimize bandwidth consumption. An example is given in Figure 2
The approach is divided into four main parts: query processing, management of
network information, relay selection algorithm, and merging algorithm.

Query Processing The query processing framework builds on our previous
work [4] and provides three functions: i) find the gateway for a given query, ii)
identify the overlap of distinct queries, and iii) determine which queries to serve
with incoming or locally generated data. We use the GBD-Tree [16] which is
able to index very large, high dimensional spatial data sets. In our case, each
broker maintains a GBD-tree to store queries according to their regions as well
as gateways by the regions they serve. This way, a broker can determine which
parts of a query can be served locally and where to forward other parts.

Each region in the GBD-Tree is labeled by a binary string called a DZ ex-
pression as illustrated in Figure 3. The DZ expression exposes two important
properties: First, the shorter a DZ expression, the larger is the extent of the

Target Broker

Relay Broker

Gateway Broker

Cl
ie

nt
s

U
nd

er
la

y
N

et
w

or
k

St
ru

ct
ur

e

Single data stream
from gateway to relay

Individual data streams
only from target to clients

Single data stream
from relay to target

Figure 2. Merged data streams using a relay broker in the network. A single data
stream is sent over the relay to the target broker which then serves both clients.

region. In particular, the empty DZ expression ε corresponds to the entire coor-
dinate space of the GSGM. Second, if the DZ expression of region r is the prefix
of another region r′ then r′ is fully contained in r. For example, regions 010 and
011 both reside completely inside region 01. The mapping of DZ expressions to
a region can be efficiently achieved by means of recursive spatial decomposition.

Figure 3. Example for DZ expressions generated by spatial indexing.

To determine the gateways for a query, the region of a query is converted
to a set of DZ expressions according to the illustrated spatial decomposition
scheme. As the tree is traversed top-down, the nodes will eventually contain
information about the gateway on which the sensor data for the corresponding
region is located. Similarly, for locally generated data or an incoming stream,
the queries which are served by that stream can be found. By traversing the tree

in a bottom-up fashion, we can aggregate information about overlapping queries
as detailed in Section 2. Note that we only used two-dimensions in the example
for clarity. The scheme supports various spatial and temporal dimensions. As
queries are dynamically relayed to remote brokers, additional state is maintained
by the GSGM. For each incoming relay stream, the path from the corresponding
gateway to the local broker is stored in the index structure to prevent circular
relaying. Each query is additionally annotated with the corresponding target
broker to allow for efficient processing on the relay broker.

Neighborhood Maintenance Direct connections, i.e. IP routing without any
relay points in between, provide fast routing of queries and low delay in re-
sponses. However, for increasing load, multiple streams might carry redundant
data over the same underlay link. These similar data streams are therefore
merged and only a single stream will be forwarded to a selected relay point.
As described in Section 3, selecting a relay point requires information about the
underlying network.

Each broker maintains a local view on the network, to infer the structure of
the underlying topology. This view contains a limited number of topographically
close brokers, called local neighborhood and additional information about each of
these brokers. Initially, all the brokers from the information about the region as-
signment are added to the neighborhood. The neighborhood is then continuously
updated with new candidates during query routing and neighborhood mainte-
nance itself. When a broker learns about another, from the region assignment or
through an update, the remote broker is added to the neighborhood and delay
measurements to the new broker are initiated. The delay is used to estimate the
topological distance to each of the remote brokers which a broker uses to decide
which remote brokers to keep in the neighborhood. Close brokers are kept in the
neighborhood while brokers with higher delay are removed from the neighbor-
hood and measurements to them are stopped. However, to adapt to changing
network conditions, the brokers which are currently not in the neighborhood
are periodically measured. No additional topology information, e.g. data from
network oracles, is used by the middleware.

To assess the network location of a remote broker, the local view contains
additional information. After a broker is added to the local neighborhood, the
neighborhood of that new broker is requested together with the respective mea-
surements. This way, each broker can check the network from the point of view
of any of the brokers in its neighborhood, resulting in a two-hop view. Brokers
in the remote neighborhood that were previously unknown are considered for
the local neighborhood as previously described.

Relay Selection In this section, we describe our approach to relay selection
which serves as the basis for merging data streams. Relay selection is executed
locally on each broker to determine where to send relay data streams and which
clients to serve directly. In the following, we first introduce our notion of data

stream similarity to provide an intuitive optimization goal. We then work to-
wards our strategy for selecting relay candidates accordingly.

Basic Principles Merging overlapping data streams will only reduce the band-
width consumption if they share at least part of an underlay path. Although
the query index allows us to efficiently identify overlapping queries, we do not
yet know whether the corresponding streams share any links in the underlay
path. We approach this problem by introducing a similarity metric to provide
an intuition about the problem at hand and a qualitative measure whether or
not it is worth merging two streams.

For the GSGM, the similarity of two overlapping data streams is determined
by the fraction of underlay links which they have in common in relation to the
total path length. Formally, given two data streams s1 and s2 which carry the
same data on paths p1 and p2 respectively, where |pi| denotes the length of path
i and li,j denotes the jth link on path i, the similarity is given by:

sim(p1, p2) =
∑

l1,k=l2,l

2

(|p1|+ |p2|)

If the paths are identical, |p1| = |p2| links will be summed up, resulting in a
similarity of one. If the paths have no links in common, the similarity is zero.

Note that calculating the exact value of similarity requires knowledge of the
entire underlay network. However, as described previously, the network graph
is neither known, nor can it be measured exactly. Instead of first calculating
the similarity, we therefore directly approach the relay selection problem in the
GSGM. Relay selection is executed locally for each known target broker since
their number is small compared to the large count of intersections. A solution
to the problem ensures two properties: a) the network stretch is minimized, i.e.
the path including the relay is as short as possible, while b) the probability of
selecting the same relay for similar streams is maximized. The path segment
from the originating broker to the selected relay can then be merged, i.e. served
by a single stream, to reduce the load on the network.

Analysis of Simple Relay Strategies The simplest relay strategy is to forward
data streams directly to a client’s target broker. We refer to this as direct relay
strategy. Since the target broker is chosen by location close to the client in our
setup, the introduction of the relay will result in a small network stretch. At
the same time the strategy allows to remove all redundant transmissions with
respect to clients which have overlapping queries and the same target broker.

Clearly, selecting additional relays between a gateway and the target brokers
will increase the chance of multiple overlapping streams on the same relay link.
At the same time, however, additional relays increase network stretch resulting in
additionally used underlay links and higher overall bandwidth usage. In general,
relying on the local neighborhood allows us to limit the stretch introduced by
each additional relay. Furthermore, limiting the set of relay candidates increases
the chance to find a common relay point for overlapping data streams.

This basic reasoning results in a simple greedy strategy, closest to destination.
To establish the relay path, the gateway will initially identify the relay which is
topologically closest to the client. Each established relay broker, will then do the
same until the target broker has been reached and the data is forwarded to the
clients. While this greedy approach achieves low network stretch, its drawback
is the large number of different relays chosen. As a result, the merging algorithm
can only join streams which already have a very high similarity and the traffic
reduction properties of this approach are sub-optimal.

To exploit lower similarity of data streams by having more relays, the closest
to source strategy selects the relay based on the distance to the originating
broker. First, the neighbors are sorted by increasing distance to the originating
broker. Then, the first candidate which is closer to the target broker is chosen
as relay. Note that this strategy is very fast, independent of the size of the
neighborhood. As a result, the data streams are routed over a relatively large
number of hops. While this provides the possibility to merge small common path
segments, the network stretch grows very quickly.

Data: dst: Destination Broker, neighbors: Neighbors Sorted by Distance
Result: relay: Relay Broker
oldDist = MAX DIST ;
relay = dst;
for n ∈ neighbors do

if getDelay(n, dst) > getDelay(this, dst) then
continue;

end
newDist = getDelay(n, dst)+ getDelay(this, n);
if newDist < oldDist then

oldDist = newDist;
relay = n;

end

end
Algorithm 1: Closest to Path Relay Selection

Combined Strategy for Minimized Usage We conclude the previous analysis with
the relay selection strategy used in the GSGM. Rather than selecting a position
relative to the source or target of a data stream, the relay is chosen closest to the
path between the two. The pseudo code for the strategy is given in Algorithm 1.
Before the relay selection is started, the brokers in the neighborhood are sorted
with increasing distance to the source broker. For each candidate we first check
whether it is closer to the target broker than the direct connection to avoid
detours. Then we estimate the network stretch each suitable relay candidate.
The broker with the least estimated distance to the direct path is kept as the
result of the relay selection. If no suitable relay broker is found in the local
neighborhood, the target broker is selected as relay.

We gain in two aspects towards our goal. First, the distance to the next relay
is limited not only by the neighborhood but by selecting closer brokers with
higher priority. This allows for an increased number of relays compared to the
greedy closest to destination strategy. Since we ensure that relays are located in
the direction to the respective targets, similar streams will be merged with high
probability. Second, the network stretch is limited as the relay nodes lie close to
the direct path towards the target brokers. By selecting the relays with possibly
low network stretch, we limit the number of underlay links used in the path.
Data is therefore delivered with low delay and bandwidth usage is reduced.

Merging Algorithm The relay selection provides a relay for each target broker
and therefore for each data stream. Based on the selection, each broker has to
locally select which streams to merge towards each relay. The goal of the merging
operation is to find possibly large intersections for relaying to merge as many
streams as possible. A basic approach for this operation is to find large queries
which carry a superset of data of smaller queries. The query index provides the
foundation for quickly identifying this containment of distinct queries. Our novel
merging algorithm furthermore exploits the structure to split queries in order to
increase the overlap and therefore increase efficiency and flexibility. A parameter
thereby limits extreme fragmentation to ensure a low overhead.

The selection and adaption of regions works in two main steps. First, addi-
tional information in the index is gathered. A query q is contained in the sub-tree
marked by node n if the region assigned to n covers the region of q denoted by
Rq ≤ Rn. In addition, we use the result of the relay selection to group queries
by their relay candidate. For a target broker tq of query q the relay is given
by relay(tq) = r. The set of queries for a node n and relay r is now given by
Qn,r = {q : Rq ≤ Rn ∧ relay(tq) = r}. The total size of queries per node n and
relay broker r can then be described by the total size of queries in Qn,r:

size(n, r) =
∑

q∈Qn,r

|q|

Recall that the size of queries is proportional to the bandwidth required by
them. By calculating size(n, r) for all nodes and relay candidates, we annotate
the index with the size of queries per relay candidate in each node. Note that
this operation can be computed very efficiently as query sizes can be aggregated
by a bottom-up traversal of the index.

In the second step, the query index is traversed top-down for nodes contain-
ing at least one query by recursively calling mergeStreams as described in Algo-
rithm 2. If a node contains more than one query which can be relayed by the same
broker, a new relay is established, the corresponding region is added to R. All
matching queries in the sub-tree, including any existing relay streams, are merged
into that relay, i.e. added to the set Q of queries to forward. If there is only a
single query for the currently considered relay and size(n, relay) > Rn + Δ,
the query is split and the two parts are added to the two corresponding child

Data: n: Index Node, relay: Relay Broker
Result: Q: Set of Queries to Forward, R: Set of Regions to Stream to Relay
if getQueries(n, relay) == 0 ∧ size(n, relay) > 2Δ then

for child ∈ getChildren(n) do
mergeStreams(child, relay);

end

end
if getQueries(n, relay) >= 2 then

Q = Q ∪ getUnassigned(n, relay);
R = R ∪ getRegion(n);

else
if size(n, relay) > Rn +Δ then

pushToChildren(getQueries(n, relay));
for child ∈ getChildren(n) do

mergeStreams(child, relay);
end

end

end
Algorithm 2: Stream Merging Algorithm

nodes; the process then continues on each of the two child nodes. Δ is a system
parameter which controls how small queries are split to limit fragmentation.

To establish the relay data stream, all affected queries are forwarded to the
relay. A copy of the queries is kept locally for future merging attempts. Once all
queries have been sent to the relay broker, the source broker signals the relay
broker the end of the relay step. The single data stream containing the requested
region is then sent to the relay broker and the relay broker starts relaying queries.

5 Evaluation

The GSGM has been implemented using the OMNeT++ network simulator [23]
with the inet framework for IP-traffic simulation. A realistic topology was gen-
erated using the tools of ReaSE [10]. The topology consists of seven autonomous
systems, two of which are set up as transit domains. The AS themselves have a
hierarchical structure, based on up to three core routers on the top level which
are fully connected. The second level consists of up to three gateway routers per
core which are connected to the edge routers on the third level. Client nodes
are connected to the edge routers using asymmetric DSL. Brokers are placed de-
pending on the scenario. The network setup included 577 clients and an average
of 48 brokers where the brokers where directly connected to routers on different
levels. Clients generated queries in uniformly distributed time intervals between
30s and 300s. Each query lasted between 60s and 250s. The total simulated time
span was 20 minutes. The queried regions were distributed around a single point
with exponentially decreasing probability of larger distance to simulate peak
load on a region. Since the location of brokers in the networks is crucial for the

performance of the overall system we varied the broker placement. For the core
placement, Brokers are either placed in data centers at the core of the network
and connected to gateway and core routers or placed at the edge to simulate
sensor gateways executing the GSGM. The full placement comprises brokers
distributed randomly among all routers. We measured the data transmitted by
core and gateway routers only since the links to brokers are dedicated to the
GSG and the links to clients cannot be optimized.

All evaluations include the native operation (OFF). As benchmark setups,
we chose to add the simple strategies presented in Section 4, including DIRECT
relay only, closest to destination (CTD), and closest to source (CTS). In the
farthest from source (FFS) strategy a relay is selected farthest from the source
broker. By prioritizing the distance to source, the strategies result in higher
network stretch and therefore diversity in paths for load balancing. Our newly
developed closest to path strategy is abbreviated CTP. The numbers attached to
the label show the corresponding neighborhood size, where applicable. Overall,
all relay selection strategies perform well considering the total traffic used by the
system. Note that by selecting a relay closest to the path (CTP) and restricting
the neighborhood, the data transmission is reduced most in all runs.

Figure 4. Average user perceived delay for core placed brokers.

The reduced bandwidth usage of our system has a positive effect on the qual-
ity of service. In a high bandwidth streaming system, the user perceived delay is
significantly caused by queuing. By distributing fewer data on a single broker and
leveraging more relay nodes, a larger neighborhood is beneficial for reducing the
client perceived delay. However, the additional processing and propagation delay
leads to increased client perceived delay for many overlay hops. For direct relay-
ing, the many outgoing data streams on the gateway broker lead to increased
queuing delay, while the prohibitively large network stretch of the farthest from
source strategy increases propagation delay even for small neighborhood sizes.
The trade-off can be seen in Figure 4 which also shows that closest to path
(CTP) also performs best for this metric.

Figure 5. Client perceived delay with increased load over time for core placed brokers.

To investigate capacity improvement, queries were added to the system for a
single gateway broker distributed over five minutes. We measured the degrada-
tion in QoS over time to show the gain in overall scalability. As Figure 5 shows,
the system is able to serve all queries with stream merging enabled whereas
without the delay quickly becomes prohibitively high. Note that the size of client
queries is limited in all cases by the bandwidth of links to the client to avoid
any effects from queuing delay and packet drops on the last mile.

6 Related Work

From an architectural point of view, the GSGM is related to the OGC sensor
web enablement (SWE) framework [18]. However, the main goal of the SWE
is to contact single sensors rather than providing data streams for scientific
simulations. While DataCutter [5] provides an interface similar to the GSGM
and extended filter functionality, it is not optimized for real-time data.

In the field of data reduction in networks, three categories have been ad-
dressed so far: The first category, application layer multicast [15, 24] has been
proposed to handle redundant queries for identical data. These systems are tai-
lored for channel-based communication, where a limited number of channels
needs to be served to a high number of clients. Consequently, they rely on the ex-
pensive detailed generation of a distribution tree. However, the content of sensor
data streams is determined by individual queries rather than channels. Although
extensions have been proposed to map queries to channels [7], the resulting false
positives incur prohibitively high load on the network. Content-based pub/sub
systems [9] as the second category aim to establish a containment relationship
between the data sources and sinks, i.e. sensors and clients. They provide a flexi-
ble subscription interface which is capable of handling arbitrary queries. Pub/sub
systems typically use clustering [21] or merging [6,14] of subscriptions to reduce
the processing overhead at the cost of increased bandwidth usage. Recent ap-
proaches also consider the physical structure of the network [22]. However, events
occur rarely compared to sensor data which is sent out in high volume for all

queried regions. Therefore, these approaches are not suitable to serve arbitrar-
ily intersecting queries for sensor data and their resulting high bandwidth data
streams. A third related category, stream processing systems [1, 11, 17, 19, 20],
move processing tasks to optimize application performance and minimize net-
work usage. Based on the underlying assumption that some of the processing
tasks which can be moved reduce the bandwidth, these tasks are placed closer
to the data sources. The remaining tasks are placed in a way to minimize the
amount of data that is currently in transit on the network. However, the goal of
these systems is to optimize latency in presence of complex interaction graphs
rather than to minimize total bandwidth usage.

7 Conclusion

In this paper we presented our approach to minimize bandwidth usage for mea-
surement distribution in a Global Sensor Grid. Using a distributed index, we
partitioned queries for bandwidth management and could efficiently identify in-
tersections between queries. Based on this knowledge, our relay strategy built
an optimized distribution structure for data streams. Redundant streams are
thereby joined by our new merging algorithm. The approach has been evaluated
on an Internet like network topology. The results show that our optimized relay
strategy yields at least 33% reduction in overall traffic. Furthermore, our ap-
proach can fully exploit brokers placed in the core of the network, achieving a
total reduction of traffic of over 50%. The evaluations also show the positive ef-
fects on user perceived delay. In the future, we aim to combine the relay strategy
with a clustering algorithm to better control the distribution structure.

Acknowledgments The authors A.B. and K.R. would like to thank the Ger-
man Research Foundation (DFG) for financial support of the project within the
Cluster of Excellence in Simulation Technology (EXC 310/1) at the University
of Stuttgart.

References

1. Abadi, D., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.,
Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the borealis
stream processing engine. In: CIDR ’05 (Jan 2005)

2. Ahmad, Y., Nath, S.: Colr-tree: Communication-efficient spatio-temporal indexing
for a sensor data web portal. In: ICDE ’08. pp. 784–793 (Apr 2008)

3. Balazinska, M., Deshpande, A., Franklin, M., Gibbons, P., Gray, J., Nath, S.,
Hansen, M., Liebhold, M., Szalay, A., Tao, V.: Data management in the worldwide
sensor web. Pervasive Computing, IEEE 6(2), 30–40 (Apr 2007)

4. Benzing, A., Koldehofe, B., Rothermel, K.: Efficient support for multi-resolution
queries in global sensor networks. In: Proc. of the 5th International Conference on
Communication System Software and Middleware. pp. 11:1–11:12. COMSWARE
’11, ACM, New York, NY, USA (2011)

5. Beynon, M.D., Kurc, T., Catalyurek, U., Chang, C., Sussman, A., Saltz, J.: Dis-
tributed processing of very large datasets with datacutter. Parallel Computing
27(11), 1457–1478 (2001)

6. Bianchi, S., Felber, P., Gradinariu, M.: Euro-Par ’07, chap. Content-Based Pub-
lish/Subscribe Using Distributed R-Trees, pp. 537–548. Springer (2007)

7. Boukerche, A., Roy, A., Thomas, N.: Dynamic grid-based multicast group assign-
ment in data distribution management. In: DS-RT ’00: Proceedings of the Fourth
IEEE International Workshop on Distributed Simulation and Real-Time Applica-
tions. pp. 47–54 (2000)

8. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–
207 (1971)

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

10. Gamer, T., Scharf, M.: Realistic simulation environments for IP-based networks.
In: Simutools ’08. pp. 83:1–83:7. ICST (2008)

11. Gibbons, P., Karp, B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for a
worldwide sensor web. IEEE Pervasive Computing 2(4), 22–33 (2003)

12. Hartwell, P.: Cense: A central nervous system for the earth. In: 2011 IEEE Tech-
nology Time Machine Symposium on Technologies Beyond 2020. pp. 1–1 (2011)

13. Iwanicki, K., van Steen, M.: Using area hierarchy for multi-resolution storage and
search in large wireless sensor networks. In: ICC ’09. pp. 1–6 (14-18 2009)

14. Jayaram, K., Jayalath, C., Eugster, P.: Parametric subscriptions for content-based
publish/subscribe networks. In: Gupta, I., Mascolo, C. (eds.) Middleware ’10,
LNCS, vol. 6452, pp. 128–147. Springer (2010)

15. Kurian, J., Sarac, K.: A survey on the design, applications, and enhancements
of application-layer overlay networks. ACM Comput. Surv. 43(1), 5:1–5:34 (Dec
2010)

16. Ohsawa, Y., Sakauchi, M.: A new tree type data structure with homogeneous nodes
suitable for a very large spatial database. In: ICDE ’90. pp. 296–303 (5-9 1990)

17. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: ICDE ’06.
p. 49. IEEE (2006)

18. Reed, C., Botts, M., Davidson, J., Percivall, G.: OGC R© sensor web enablement:
Overview and high level achhitecture. In: Autotestcon, 2007 IEEE. pp. 372–380
(2007)

19. Rizou, S., Dürr, F., Rothermel, K.: Fulfilling end-to-end latency constraints in
large-scale streaming environments. In: IPCCC ’11. pp. 1–8 (Nov 2011)

20. Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network
stream query processing. In: PODS ’05. pp. 250–258. ACM (2005)

21. Tariq, M.A., Koldehofe, B., Koch, G.G., Rothermel, K.: Distributed spectral cluster
management: a method for building dynamic publish/subscribe systems. In: DEBS
’12: Proceedings of the 6th ACM International Conference on Distributed Event-
Based Systems. pp. 213–224. ACM (2012)

22. Tariq, M.A., Koldehofe, B., Rothermel, K.: Efficient content-based routing with
network topology inference. In: DEBS ’13: Proceedings of the 7th ACM Inter-
national Conference on Distributed Event-based Systems. pp. 51–62. DEBS ’13,
ACM, New York, NY, USA (2013)

23. Varga, A.: Omnet++. In: Wehrle, K., Güneş, M., Gross, J. (eds.) Modeling and
Tools for Network Simulation, pp. 35–59. Springer (2010)

24. Yeo, C., Lee, B., Er, M.: A survey of application level multicast techniques. Comp.
Comm. 27(15), 1547–1568 (2004)

