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Abstract—Workflows have gained enormous importance to
organize and manage business processes. With the recent advent
of smartphones and mobile applications, traditional business
process management is shifting. Now, long-running business pro-
cesses (workflows) have to be executed in large-scale distributed
and pervasive environments. Due to the heterogeneity and high
dynamicity of such environments, they are vulnerable to frequent
communication and device failures and, thus, impose new require-
ments on the execution of workflows. To increase the availability,
we concurrently executed restructured replicas of workflows on
multiple nodes. We developed techniques to generate differently
structured replicas and propose a metric that identifies the set
of replicas that ensures the highest availability during execution.
Finally, we presented a distributed algorithm to coordinate and
synchronize the concurrent execution of the identified replicas
while maintaining the original workflow semantics. Our methods
approximately double the availability during execution, while our
generation techniques produce almost optimal replicas over a
hundred times faster.

I. INTRODUCTION

Workflows are the de facto standard to create, organize
and maintain automated business processes [1]. The modular
structure of workflows allows to refine and optimize complex
business processes in a simple and flexible manner. Hence,
workflows are widely used in many areas, such as healthcare [2],
logistic [3], manufacturing and urban mobility [4]. Workflows
model a process as a set of interrelated activities, where
each activity may trigger applications or services over time.
Thus, a workflow explicitly defines the temporal structure
of a complex (possibly long-running) process. The recent
advances in pervasive computing tremendously influence the
way traditional businesses are operated. New trends such as
customer tailored value added services and bring your own
device are becoming popular. The business processes that were
previously running in isolation in back-end computer systems
now need to interact with processes (or services) on mobile
devices located virtually anywhere. This arises the need to
execute business workflows in heterogeneous, distributed, and
highly dynamic environments. Workflows provide a flexible,
powerful, and platform independent programming-in-the-large
paradigm to handle the complexity in such environments [4].
Workflows can be manipulated and adjusted to the dynamic
changes in the environment (e.g., changing user behavior, lack
of required resources, etc.) making them ideally suited for
pervasive applications.

Clearly, pervasive environments raise some new require-
ments on the execution of workflows. Due to varying network
coverage, high bit error rates, power constraint mobile nodes,
unreliable services and frequent disconnections, pervasive and

mobile applications are prone to failures. Workflows need
to be executed such that they can survive the failures of
computing nodes, networks, services, service providers and
other resources. Existing approaches usually focus on increasing
the availability of workflow executions by incorporating fault
handling and recovery mechanisms into the workflow model [5].
These mechanisms, however, do not consider faults of the
infrastructure (such as failure of computing nodes, networks,
etc.). Instead, they assume the presence of a separate layer
which is capable of dealing with such failures. The approaches
that explicitly consider infrastructure failures to increase the
availability of workflow executions mostly employ replication
strategies. Following the primary-backup strategy, only one
replica is executing the workflow at any time and the execution
state is transferred to all other replicas [6], [7]. However, this
can only provide availability against the failures of computing
nodes. In addition to that, active replication strategies [8], [9]
can mask failures of the network because they allow the concur-
rent execution of activities (or processing operators) on more
than one replica. Active replication, however, lacks appropriate
mechanisms to safeguard that the replicated execution has
the same effect as the non-replicated execution. In a nutshell,
executing workflows such that they provide availability in a
pervasive and mobile environment is still an open challenge.

This paper presents a novel approach to ensure availability
by concurrently executing workflow replicas with differently
ordered and alternative activities, i.e., concurrently executing
structurally different replicas. To ensure that all these struc-
turally different replicas provide the same functionality, we
use a workflow specification which has to be satisfied by all
replicas. These replicas can be obtained by manipulating the
set of interrelated activities and the temporal structure of the
workflow. Executing structurally different replicas of a workflow
increases the availability because the replicas may differ in
the services or resources they use, the set of activities they
execute, and the execution order of the activities they have in
common. For instance, the dependency on the availability of
services will significantly decrease if the intersection of the
services, used by two functionally equivalent replicas, is small
or even empty. However, even if two replicas use the same set
of services, letting them access these services in a different
order will substantially reduce their vulnerability, in particular,
if executions are long-lived.

The main contributions of this paper can be summarized
as follows. 1) We propose an availability metric that analyzes
the degree of availability of concurrently executing a set of
replicas. 2) We developed algorithms to create structurally
different but functionally equivalent replicas, which guarantee
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high availability during execution. 3) We present a distributed
algorithm to coordinate the concurrent execution of workflow
replicas. The coordination algorithm ensures that the replicated
execution has the same effect as the non-replicated execution.
4) Through extensive evaluations, we show the benefits of
our proposed approach in terms of availability, timeliness, and
scalability.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The workflows are modeled in a declarative workflow
language based on linear temporal logic (LTL), such as
Declare [10]. The declarative workflow language allows us
to constrain the order in which the activities of a workflow
are allowed to execute by constructing LTL formulas (on the
activities) from a defined set of linear time operators [11]. All
other activity-sequences, which are not explicitly forbidden
by the LTL formula, are allowed. In the following, the term
workflow specification is used for the LTL formula that specifies
a workflow.

To clarify our contributions, we constructed a scenario in
the context of drone package delivery services, which have
gained an enormous attention lately. DHL already successfully
tested a drone delivery and companies like Amazon have
shown great interest in the technology1. The package delivery
companies usually compete for delivery times. Drones are
especially interesting to these companies because drones are
not hindered by traffic jams and can deliver packages around the
clock without much human involvement. In particular, drones
can be used to pickup (one or more) packages from customers
and deliver them to the nearest post office (or warehouse) and
vice versa. However, between post offices (or warehouses) it
will still be much more efficient to use large trucks because of
the amount of packages to be transported. The whole package
delivery process chain can be automated and modeled as a
workflow. Fig. 1 shows an exemplary workflow for picking
up one package. To keep delivery times low, the execution
of the workflow should be finished latest when the drone
reaches the post office. The LTL formulas in Fig. 1 depict
that all activities in the workflow specification need to be
executed. This is specified by the � (finally) operator. For
example, �A specifies that A has to hold finally, i.e., it needs
to be executed at least once. Also, D can only be executed
after A has finished, because a picture can only be analyzed
after it has been taken. The respective LTL formula ¬DUA
specifies that D must not execute until A was executed and
that A finally has to be executed. With these LTL constraints,
the workflow specification of Fig. 1 can be constructed.

Activity G should be executed only once because otherwise
the system assigns one package multiple times. This leads to
trucks that reject other packages because the system falsely
assumes the capacity limit of the truck is already reached.
Hence, activity G is non-idempotent. In contrast, activity B,
checking the truck availability, can be executed arbitrarily often
without any harm. Thus, this is an idempotent activity. We
assume that the workflow designer defines a cardinality θ(X)
for every activity X that specifies how many times the activity
can be executed maximally. We consider the cardinality to be
part of the workflow specification because it can be specified

1http://www.cbsnews.com/news/dhl-testing-delivery-drones/
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Fig. 1. Workflow specification of a drone picking up one package. An arrow
means that the activity at the end of the arrow is only allowed to execute after
the activity at the root of the arrow has terminated (inspired by Declare [10]).
The boxes show the LTL formulas that model the specific behavior.

within LTL. Returning to our previous example, we specify
the cardinality of the non-idempotent activities F and G to
be θ(F ) = 1 and θ(G) = 1, whereas all other activities are
idempotent.

A workflow is executed by an execution engine (EE).
However, the EE needs a sequence of activities that it executes
step-by-step. This means that a sequence of activities that does
not violate the workflow specification needs to be generated
and given to the EE. For example, ABCDEFG is a valid
sequence of the workflow specification of Fig. 1. To execute an
activity, the EE calls a service that implements the functionality
required by the activity. The service can be either available
locally on the device running the EE or offered by a service
provider. For example, when executing activity D the EE calls
an image analysis and address validation service. This service
returns if the address is valid or not.

The EE can run on any computing node of the system, such
as a smartphone, a tablet, an embedded system of any type
or even on a virtual machine in the cloud. These computing
nodes may use different technologies to communicate with
each other or with the services provided by 3rd party service
providers. Pervasive and mobile environments are characterized
by high bit error rates and frequent disconnections due to
handover, fading and bandwidth shortages. This may result in
the failure of communication between computing nodes and
service providers. Consider that the drone flies over an area
with no reception. Then, it cannot execute the activities which
require services that are only available on the internet.

Moreover, any computing node or service provider can
experience temporal or permanent failure. For example, the
smartphone of the person that is contacted in the personalization
step (activity F ) might have ran out of battery. Any failure and
disconnection means at least a delay in workflow execution.
However, to ensure value added service to the customers (i.e.,
expedite shipment of packages) the workflow should be finished
in a timely fashion. For instance, in the drone delivery scenario,
the workflow that needs to be executed for every picked up



package should be finished before reaching the post office, so
that the packages can be dropped directly to their allocated
trucks and the shipment (of the packages to the next post office)
proceeds without delays.

Given a set of computing nodes and service providers in
a highly dynamic environment and a declarative workflow
specification in LTL, our objectives are

• to increase the availability of a workflow execution in the
presence of i) failures of execution engines, ii) failures
of services and service providers and iii) failures of the
communication, and

• at the same time to reduce the execution time of the
workflow.

III. APPROACH OVERVIEW

To increase the availability in our drone delivery scenario,
we could install redundant hardware on the drone and replicate
the execution engine (EE) there. In these EEs, we concurrently
execute activity-sequences that comply with the workflow
specification. In the following, we call these activity-sequences
replicas. If one of the EEs fails during the execution of its
replica, the redundant EE will still continue. Thus, the workflow
stays available even in the presence of node failures. However,
this does not ensure availability in case of failures of the
communication. For instance, if the drone has no reception,
all replicas cannot communicate with services hosted on the
internet. Thus, placing a replica on a server on the internet
improves the availability. If the replica on the drone fails during
execution because of no reception, a replica on the internet can
still continue execution.

Nevertheless, two structurally identical replicas (i.e., replicas
executing the same activity-sequences) may fail to execute
an activity if the required service is not accessible. For
example, in Fig. 2 both replicas re1 = ADFECBG and
re2 = ADFECBG will fail (irrespective whether they are
hosted on the drone or on the internet) if the service of activity
F is not available because the smartphone of the receiver (on
which the service is hosted) currently has no reception. To
overcome this limitation, we use different activity-sequences
in the replicas. The LTL specification allows us to reorder the
activity-sequences. The replica re3 = BACDEFG is such an
reordered replica. This replica will not fail because it executes
F when the receiver has entered an area with reception.

Reordering increases the availability in the presence of
transient failures. However, if the service is permanently not
available, both replicas (with reordered activities) will still fail.
Permanent failures of services can be masked by exploiting
the possibility of defining alternative activities in the workflow
specification (LTL). Consider that the activity D in Fig. 2
has the alternative to execute the activities H and I instead,
such that ¬IUH . Instead of using a service that directly
analyzes and validates the address (as required by activity D),
H analyzes the picture and I validates the address. Thus, these
activities rely on different services. If the service required for
the execution of activity D permanently fails, another replica
re4 = BACHIEFG can still execute. In conclusion, the
structure of replicas (in terms of activity-sequences and their
alternatives) has a significant influence on the availability of
a workflow execution. In Sec. IV, we address the problem

of efficiently creating k structurally different replicas, which
guarantee high availability during execution.
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Fig. 2. Showing the influence of the availability of the service that activity
F calls on the execution of three replicas.

In the presence of cardinality constrained activities (such
as non-idempotent activities), it is necessary to synchronize the
replicas to ensure that the replicated execution has the same
effects as a non-replicated execution. For instance, in Fig. 2
activities G and F should not be executed more than once, as
mentioned in Sec. II. Thus, the replicas need to synchronize
such that these activities are only executed by one of the EEs.
This means that in the case of structurally identical replicas
only one EE is making progress while the other replicas wait.
However, our approach of using structurally different replicas
speeds up the execution by avoiding these waiting times and
reusing the results of activities that were already executed by
other replicas. In Sec. V, we present an approach to coordinate
the concurrent execution of structurally different replicas, such
that the execution complies with the workflow specification.

IV. GERNERATION AND IDENTIFICATION OF HIGHLY

AVAILABLE REPLICAS

In this section, we present a metric that rates a set of
replicas depending on their structure to predict the availability
during concurrent execution. Then, we show how to generate
structurally different replicas from a workflow specification.
Afterwards, we analyze the complexity of the generation process
and present more efficient techniques.

A. Availability Metric

Our goal is to select a set of replicas that provides high
availability when executed concurrently on disjoint computing
nodes. We first define a metric that rates replica sets according
to their expected availability during concurrent execution. As
explained in Sec. III, a replica set provides higher availability
during execution, the more the replicas of the set structurally
differ. Therefore, the proposed availability metric rates replica
sets according to the requirements that 1) the time offset
between two executions of one activity in different replicas
should be as big as possible, 2) alternative activities should be
used as much as possible, and 3) replicas with few activities
should be preferred. In the following, we first define the
availability rating of a set of two replicas r1 and r2 denoted as
D(r1, r2). Let amax be the number of activities of a replica
with the longest possible activity-sequence that complies with
the workflow specification. Likewise, let amin be the number
of activities of the replica with the fewest activities.

To account for the above mentioned first requirement, we
calculate the time offset between the two executions of one
activity A in the two replicas r1 and r2. The time offset of



an activity A is denoted as O(A, r1, r2) and its calculation is
based on the position of the activity A in replica r1 and the
position in replica r2. To incorporate the second requirement,
we need to consider the cases where an activity A might not
occur in one of the replicas because of alternatives. For these
disjunct activities, O(A, r1, r2) returns the maximum possible
offset amax.

To calculate the rating, we add the time offsets of all
activities occurring in the two replicas. This gives a metric
on how much these two replicas differ. In general, the time
offset based rating increases with the number of activities
in a replica. However, if a replica has more activities, more
failures can occur. Therefore, to fulfill the third requirement,
the rating of replicas with many activities should be decreased.
Let function L(r1) calculate how many activities replica r1
has more than amin. The rating is reduced by amax for every
additional activity, i.e., it is reduced by L(r1) ·amax. Thus, the
availability rating D(r1, r2) is calculated by adding the offset
of all activities in the two replicas and then subtracting the
reduction for the additional activities (Eq. 1).

D(r1, r2) =

( ∑
A∈r1∪r2

O(A, r1, r2)

)

− (L(r1) + L(r2)) · amax

(1)

Now, we generalize Eq. 1 to rate a set S of k replicas. We
calculate the availability rating of all pairs of replicas and sum
up the results (Eq. 2).

R(S) =
∑

(ri∈S)

∑
(rj∈S\ri)

D(ri, rj) (2)

Note that we defined the time offsets based on the positions
of the activities in the replicas. This means that the avail-
ability metric is only accurate if all activities have the same
duration. In reality, the activities may have varying execution
times. However, in our evaluations, we show that even if we
vary activity execution times, the replica availability is not
effected (cf. Sec. VI).

B. Generation and Selection of Replicas

In this section, we first present a method to generate
differently structured replicas from a workflow specification.
Afterwards, we select the highest rated set of replicas w.r.t.
the availability metric. To generate the replicas, we use model
checking methods to translate the LTL specification into an
automaton by expanding the LTL formula step-by-step. The
automaton provides the information to deduce all possible
replicas that conform to the workflow specification. First, the
LTL formula is associated with the entry node of the automaton
(cf. Fig. 3 node X). Then, the automaton node is expanded
according to a set of rules [12], [13] to simplify the formula into
three parts (cf. Fig. 3): I) Activities that need to be executed
directly, II) promises (P) that need to be fulfilled eventually, and
III) a formula that defines what needs to hold after the activities
of part I) have been executed [13]. Part I) is associated with the
label of the edge to the next node, i.e., the activities need to be
executed to reach the next node (in Fig. 3: activity A to reach
automaton node Y from X). The part II) (i.e., the promises)
is used to check if the current activity-sequence fulfills the

LTL specification. If there are promises, then the workflow
specification is not yet fulfilled, i.e., the automaton node after
this transition needs to be expanded further. This information
is stored in the edge between the respective nodes. In Fig. 3,
there is the promise to eventually execute B, which means
that the next automaton node Y needs to be expanded further.
Finally, part III) is attached to the next node of the automaton
because it specifies what has to hold after the activities of the
part I) have been executed. In Fig. 3, the formula of part III)
is associated with node Y . Applying the tableau techniques
to this new automaton node, i.e., to the associated formula,
will expand this node to the following ones. This procedure
of expansion repeats until the formula is fully expanded to the
complete automaton. From the labels of the edges, all n replicas

X Y 

Applying tableau rules 

… 

Applying tableau rules 

…
 

III) I) II) . . 

Fig. 3. One step of an exemplary expansion of the LTL formula: �B ∧
¬BUA ∧ ¬ � (A ∧B). [13]

can be constructed by strategically going through the transitions
of the automaton. This solves the generation problem.

Out of all n generated replicas, we need to select the set of
size k that will achieve the highest availability during concurrent
execution. We solve this by rating all sets of size k using the
availability metric and select the one with the highest rating.

Complexity

The proposed generation technique has a high complexity. In
fact, LTL satisfiability is a PSPACE-complete problem [14] and,
therefore, finding satisfying traces, i.e., replicas, is a PSPACE-
complete problem. This means that the generation process
might result in a large number of replicas.

The generated replicas are the input of the selection problem,
which is to find the best rated set of size k from n replicas.
It can be mapped to the maximum edge-weighted clique
problem (MEWCP), which is NP-hard [15]. The MEWCP
is a generalization of the maximum clique problem [15]: Given
a graph G = (V,E, f), where f is a function that assigns a
weight to every edge, i.e., f : E → R, find the clique in which
the sum of all of its edges is maximal and the number of nodes
of the clique ≤ k|k ∈ N.

Lemma 1: Selecting the best rated set of k replicas out
of n replicas, can be mapped to the maximum edge-weighted
clique problem (MEWCP).

Proof sketch Given all n replicas, compute the availability
ratings for every pair of replicas and write them into a 2D-
matrix. Using this as an adjacency matrix, a complete graph
with n vertices (representing the replicas) can be created, where
the availability ratings are the edge weights. The problem of
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Fig. 4. This is an example that shows how pruning is applied while expanding the workflow specification of Fig. 1. After each iteration three replicas are
selected, i.e., fFlows = 3.

finding the best rated set of size k is equal to solving the
MEWCP with a clique of size k in the graph.

C. Refinements

In the following, we propose two techniques to tackle the
high run-time and memory complexity of the presented gener-
ation and selection approach. Our first technique significantly
reduces the run-time of the selection process. The second
technique omits the generation of all replicas and, thereby,
reduces the memory consumption of the generation problem.

Selection Problem: To solve the MEWCP, we used a binary
quadratic programming (BQP) formulation of the problem [15]:
Given a symmetric n×n-matrix Q composed of all availability
ratings (as presented above), find the vector v ∈ {0, 1}n, such
that the outcome of Eq. 3 is maximal, where the sum of all
elements of vector v must be k.

f(v) =
1

2
vTQv (3)

If the element i of vector v is equal to 1, the replica of column
i in the matrix is part of the set. If it is 0, it is not. To maximize
the outcome of Eq. 3, we apply simulated annealing (SA), as
it is an established strategy to produce almost optimal results
within a short amount of time for BQP problems [16], [17].

Generation Problem: Our evaluations show that SA dras-
tically reduces the run-time of the selection problem, while
producing almost optimal replicas (cf. Sec. VI). However, if the
workflow specification has many activities, the generation of all
replicas easily becomes infeasible due to run-time and memory
consumption. Thus, for formulas that lead to huge automata,
the full generation has to be omitted and a different strategy
has to be applied. To tackle this problem, we introduce the
availability prediction technique (APT). The idea is to prune
the automaton during expansion by only expanding those paths
of the automaton that might lead to replicas that are part of sets
with high availability ratings. The activity-sequences that are
created during the expansion and still have to fulfill promises
(cf. Sec. IV-B) are called intermediate replicas.

In the following, we describe how to perform pruning during
the expansion of the automaton. We expand all automaton nodes
that currently need further expansion. This step is referred to as
an iteration (cf. Fig. 4). After each iteration, all newly created
(intermediate) replicas, generated by the iteration, are rated
by the APT. The difference between APT and the availability
metric is twofold. Firstly, we do not know the replica with the
fewest/most activities during the expansion of the automaton.
Therefore, to determine the ratings (of the replicas), APT

calculates amax and amin based on the currently available
satisfying and intermediate activity-sequences. Secondly, to
omit the selection problem, APT only calculates the rating for
every pair of replicas (i.e., only sets of two replicas) and ranks
the replicas according to the pairwise ratings. Then, we select
the fFlows best rated replicas, where fFlows ≥ k|fFlows ∈ N.
For instance, in Fig. 4, the second iteration leads to eight
intermediate replicas. Three are selected, while the rest gets
pruned before the third iteration. The paths of the automaton that
produce the selected replicas are expanded further if the replicas
are intermediate (cf. Fig. 4). For fully expanded branches of the
automaton that do not satisfy the workflow specification, i.e.,
that are dead-ends, the expansion algorithm goes backwards
and selects a new branch to expand. For more details on the
generation and selection of replicas, we refer the reader to
our previous work [18]. In our evaluation, we show that the
pruning strategy significantly improves the run-time, however,
compared to SA, it produces results that have a lower, but
reasonable availability during execution (cf. Sec.VI).

V. REPLICA COORDINATION

In the previous sections, we presented methods to efficiently
generate and select a set of replicas that has a high availability
rating. This section addresses concurrent execution of these
replicas on different computing nodes such that the workflow
specification is preserved (i.e., the activities are executed
respecting their cardinality in the workflow specification).

Before the computing nodes begin to execute the replicas
(i.e., activity-sequences of a workflow) they elect a coordinator.
The election of a coordinator under dynamic conditions is a
well researched topic [19] and therefore, not addressed in this
paper. The coordinator maintains a data structure to annotate
i) a list of all activities of the workflow specification and their
cardinality constraints, ii) activities currently being executed
by the computing nodes, iii) the number of executions of each
activity along with the execution results. This data structure
is updated during the execution of replicas and is used for
coordinating the execution of cardinality constrained activities.
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Fig. 5. This figure shows the synchronization and coordination of activities.
To increase the clarity of this figure the coordinator is depicted separately.



Fig. 6. Comparing different generation and selection strategies, normalized to the run-time/availability of the optimal solution (a,b) or SA (c).

In general, all computing nodes execute the activity-
sequences of their individual replicas (cf. Fig. 5). When a node
has executed an activity X successfully, an update message
along with the execution results of that activity is sent to all
other nodes (cf. Fig. 5, message 1). On receiving an update
message for an activity X , each node that has not previously
executed X marks it as finished and stores the results. Likewise,
the data structure maintained by the coordinator is also modified
on receiving an update message. While idempotent activities
are executed without coordination, activities with cardinality
constraints need to be coordinated. For this purpose, a node
p requests execution permission from the coordinator before
executing a cardinality constrained activity Y (cf. Fig. 5,
message 2). Either the coordinator enables the node p to execute
the activity Y (cf. Fig. 5, message 3) or the node p waits until
it receives the results of Y in an update message from another
node. In the latter case, the node p skips the execution of the
activity Y , updates the state of the execution engine with the
result of activity Y , and then continues with the execution of
its replica.

To detect the failure of the coordinator and/or computing
nodes, a timeout based error detection strategy is used. In case
of a node failure, a new node is provisioned by the coordinator.
If the coordinator fails, a re-election is started.

VI. EVALUATIONS

In this section, we evaluate i) our replica generation
techniques (APT and SA) w.r.t. availability and generation-
time in comparison to the optimal solution, ii) our replica
coordination algorithm in terms of the influence of cardinality
constraints of activities on the (execution) speed-up and the
message overhead (scalability), and iii) the accuracy of our
availability metric to predict the availability of concurrently
executing a set of replicas.

To evaluate our replica generation techniques, we use the
SPOT library [13] for translating the LTL-based workflow
specifications into automata. From the automata, we derive
all replicas. We also integrated APT into SPOT. In the
following, we used workflow specifications with eight activities
by randomly combining LTL constraints [10] and selected sets
of size k = 3 (unless otherwise noted). For APT, there is an
additional parameter (fFlows, cf. Sec. IV-C), for which we
evaluated the range from k up to 22. Because of the high
complexity of the generation and selection, we only expand the
full automaton for workflow specifications that result in 1) 3
to 500 replicas (for the optimal solution) and 2) 500 to 2000
replicas (for SA) . The coordination algorithms are implemented
as a protocol in the peer to peer simulator, PeerSim [20],
where each peer (node) executes an individual workflow replica.

Because all failure types (cf. Sec. II) lead to failed executions
of activities, we modeled all failures as activity failures. Each
activity has a failure probability of 5%. For evaluation, we
generated failure traces, to expose the replicas, generated by
the different techniques, to the same failure patterns. We also
repeated all experiments with a varying execution speed of
the nodes (±10%) and discovered that such variances do not
influence the average availability.

A. Replica Generation

In this section, we compare the generation strategies
(optimal solution, APT and SA) in terms of run-time and
availability (w.r.t. the availability metric). Since the APT does
not generate all possible replicas, it approximates amin and
amax (cf. Sec. IV-C). To make the rating of the found replica
set of APT comparable to the optimal solution and SA, we
evaluated it with the correct values of amin and amax. Fig. 6
shows the run-time and availability of the different algorithms.
In the following, we grouped our measurements by the number
of replicas that were produced by the full generation of the
automata.

Formulas resulting in 3 to 500 replicas (cf. Fig. 6a): SA
on average needs 85% time compared to the optimal solution
algorithm. APT is very fast for small fFlows, however, always
selects sets with a lower availability rating. For fFlows < 4,
APT is even a bit faster than only expanding the full automaton
without starting any selection process. In contrast to that, for
fFlows ≥ 22, APT is even slower than generating the optimal
solution because of the overhead while deciding which branch
to follow after each iteration during automaton expansion. Thus,
APT is only suitable for small fFlows.

Formulas resulting in 200 to 500 replicas (cf. Fig. 6b): In
comparison to Fig. 6a), SA is significantly faster because we
have to choose from at least 200 replicas. SA finds replicas with
an availability rating of around 98% while taking only about
2% of the time of the optimal solution algorithm. In contrast
to that, APT only generates results with 80% availability when
following a large number of flows (fFlows ≥ 11). For small
fFlows the availability drops down to 38%. This is because
there are more replicas in general and percentually less of them
can be explored because of pruning. However, APT needs only
a fraction of computation time compared even to SA.

Formulas resulting in 500 to 2000 replicas (cf. Fig. 6c): For
more than 500 replicas, the full generation of the automaton is
not feasible. Thus, we use SA as a reference for normalization.
APT again only reaches an availability of 80% for fFlows > 10.
It, however, is clearly faster than only the full expansion of the
automaton without even starting SA. This is a great advantage



for large workflows and might even be the only feasible strategy
in these cases.

These measurements show that both SA and APT reduce
the run-time of the replica generation and selection procedure
significantly. Both strategies have trade-offs as they reduce the
availability. For large workflows, however, APT is the only
practical choice in terms of run-time.

B. Coordination Methods

Fig. 7. Execution of replica sets (k = 10) consisting of idempotent and
cardinality constrained activities using structurally different and identical
replicas.

In this section, we evaluate our coordination methods in
terms of the influence of cardinality constraints of activities
on the (execution) speed-up and the message overhead. Fig. 7
shows how the use of different replicas decreases the number of
idle replicas and the execution time. The amount of cardinality
constrained activities in general increases the execution time and
number of idle cycles. This is because cardinality constrained
activities can only be executed by a limited number of nodes,
while the others have to wait.

Fig. 8. Message overhead for 10 cardinality constraint replicas comparing
identical to structurally different replicas.

Fig. 8 shows the scalability of our coordination mechanism.
The diagrams depict that the number of messages grows
proportional to the number of executed activities. If struc-
turally different replicas are used, the number of coordination
messages (CM) decreases. Fig. 7 shows that less replicas are
idle when using structurally different replicas. Since we use a
timeout based error detection, a decreased number of idle repli-
cas also decreases the number of heartbeat messages (HBM).
When executing differently structured replicas, less HBMs are
needed because the controller receives state updates each time
a node finishes an activity. These state update messages (SUM)
are equivalent for structurally different and identical replicas
because the number of activities is same for both cases.

C. Replicated Execution

So far, we evaluated the methods to generate replicas and
to coordinate their execution. In this section, we verify that
the availability rating calculated by our availability metric is in
accordance with the availability during concurrent execution.
The availability is represented by the execution time because a
faster execution is congruent to a highly available execution
(i.e., if the execution is not available, it does not proceed). For
this evaluation, we use the replicas generated in Sec. VI-A.
We compared the execution time of these replica sets with the
concurrent execution of a set of identical replicas.

To simulate failures, we generated failure traces that specify
at which time an activity fails. We used a failure probability of
5% and evaluated every replica set against ten different failure
traces. When a failure occurs, the defective node is detected
by the coordinator and a new node is initialized with the state
of the failed node. This was modeled by a short delay. During
this time a replica is unavailable.

Fig. 9, shows the execution time of the replicas generated
in Sec.VI-A (cf. Fig. 6) for flows resulting in (a) 3 ≤ n ≤ 500
replicas and (b) 500 ≤ n ≤ 2000 replicas. It confirms that
the optimal solution results in the most available execution,
followed by SA, APT, and finally the set of identical replicas
(which is represented by 100%). This shows that the ratings of
our availability metric are correct. The graph also confirms that
increasing fFlows in the APT results in a higher availability. The
replicated execution of the optimal solution sets take around
55% of execution time compared to identical replicas. SA
results take around 56% of the time, followed by APT with
around 65% (fFlows = 5). When increasing fFlows, APT can
even reach 60% (which, however, increases the generation
time). This shows that APT is useful for efficiently generating
and selecting replicas, accepting a decreased availability. It,
however, should only be used with a small or minimal fFlows.
If availability is very critical, SA can be used, which, on the
downside, implies a higher generation overhead.

Fig. 9. Simulations comparing execution time of SA and APT, normalized
to the execution time of identical replicas.

In addition, we generated replicas using APT for large
workflows where SA is too time consuming due to the full
generation of the automaton. We generated replica sets of size
k = 5 for workflows with 15 different activities. The generation
of those replicas (with fFlows = 5) took an average time of
75s. The execution took around 83% of the execution time of
sets with identical replicas. This shows the benefits of APT for
cases where SA and the full generation is no longer practical.

VII. RELATED WORK

Since availability and robustness are important requirements
in mobile and pervasive applications, these problems were



already approached in many different ways. In the following,
we discuss such approaches and their shortcomings.

Checkpointing and logging are two approaches that are able
to mask node failures [21]. Checkpointing records the state of
a distributed system consisting of the state of all nodes and all
communication channels. In the case of a failure, the system can
rollback to the last checkpoint, and therefore, progress might
be lost [21]. Logging overcomes this problem by recording all
exchanged messages, so that they can be replayed to recreate the
system state before the failure [21]. This, however, introduces
an additional delay until the system is available again.

Another approach to mask node failures is the primary-
backup strategy. Following this strategy, a primary node
executes the workflow and transfers its state to all backups [6],
[7]. In case of a failure, it takes some time to detect the failure
and transform a backup into a primary copy during which the
execution cannot proceed. Moreover, this scheme cannot mask
service or communication failures.

A different area of research that addresses availability is
task allocation, where activities (tasks) are mapped to relatively
more reliable nodes [22], [8]. A probabilistic model predicts the
possibility of node and communication failures. Activities are
allocated such that the overall failure probability is minimized.
Task allocation, however, does not directly mask any failures. To
overcome this problem, some approaches incorporate replicated
execution of activities [8]. These, however, do not provide
methods to ensure that the replicated execution has the same
effects as a non-replicated execution (e.g., they do not consider
cardinality constrained activities).

Another replication approach to increase the availability
is to schedule several services in parallel for a single service
call of an activity [23], [6]. If none of the services responds,
a second set of services is started. These service scheduling
techniques are very capable of masking service failures, but do
not provide availability in case of failing execution nodes. They
also do not provide mechanisms to ensure that the replicated
execution has the same effects as a non-replicated execution.

VIII. CONCLUSION

Distributed and pervasive environments are prone to many
different kinds of failures. Thus, ensuring availability of
workflows executing in such environments is an important
issue. In this paper, we showed how to increase the availability
of a workflow by concurrently executing structurally different
replicas. We developed an availability metric that rates a set
of replicas w.r.t. their availability during concurrent execution.
Based on this, we defined methods to efficiently generate highly
rated sets of replicas from a formally defined workflow. To
execute such replicas sets, we created a distributed execution
environment that is capable of running and coordinating several
replicas in parallel without violating the original semantic of the
workflow. Finally, we showed that in the presence of failures
the coordinated execution of the generated replica sets take
only 55% of the time of executing a set of identical replicas.
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