RECEP: Selection-based Reuse for Distributed Complex
Event Processing

Beate Ottenwalder, Boris Koldehofe,
Kurt Rothermel
Institute of Parallel and Distributed Systems
University of Stuttgart, Stuttgart, Germany
{beate.ottenwaelder,boris.koldehofe,
kurt.rothermel}@ipvs.uni-stuttgart.de

ABSTRACT

An appealing use case of complex event processing (CEP)
systems is for mobile users to react in real-time to events
in their environment, e.g., to the occurrence of a dangerous
situation such as an accident. Maintaining mobile CEP sys-
tems is highly resource intensive since in many cases events
need to be detected in a consumer-centric manner to ensure
low latency event detection and high quality of results. In
this paper we propose the RECEP system to increase the
scalability of mobile CEP systems. In the presence of mo-
bile users with partially overlapping interest, the RECEP
system offers methods to efficiently reuse computations and
this way reduces the resource requirements of mobile CEP.
Since reuse of computations happens with respect to well
defined quality metrics, RECEP can be easily tailored to
specific mobile applications and maximize the resource sav-
ings for their desired quality in terms of precision and recall
of the processed events from the user’s environment.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems]: Distributed ap-
plications

Keywords

mobility; complex event processing; query optimization

1. INTRODUCTION

With the ubiquitous deployment of sensors and mobile de-
vices, highly popular applications are emerging that depend
on live information collected by these devices. For exam-
ple, a smart navigation system [18] uses location and speed
information of other vehicles on its consumer’s path to pro-
vide real-time traffic information. Similarly, a friend finder
application can process video streams of camera networks to
find friends close to a consumer. The common goal of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

DEBS’14, May 26-29, 2014, MUMBAL, India.

Copyright 2014 ACM 978-1-4503-2737-4/14/05 ... $15.00.
http://dx.doi.org/10.1145/2611286.2611297.

Kirak Hong, Umakishore Ramachandran

College of Computing
Georgia Institute of Technology,
Atlanta, GA, USA

hokira@gatech.edu,rama@cc.gatech.edu

applications, denoted situation awareness applications, is to
automatically process live streams from relevant devices and
provide meaningful situational information to consumers.

Complex Event Processing (CEP) systems [22, 16] offer
tremendous support for large-scale situation awareness ap-
plications by detecting meaningful events—often referred to
as complex event—from low level sensor or event streams.
Consumers can register a continuous query with the system
that describes the situational information of interest. The
CEP system will notify the consumers in return about any
detected event that matches the consumer’s query. The logic
to detect events is provided by the CEP system as computing
modules, called operators, which are executed on distributed
computing resources to process live streams.

By continuously adapting the placement of operators with
respect to a consumer’s location, previous work [25] has
shown that low latency detection of events can be achieved.
Especially, arising computing paradigms like fog comput-
ing [5] or cloudlets [29] allow the operators to be placed
flexibly in a mobile infrastructure that utilizes computing re-
sources at the edge and in the core of the network. This way
CEP systems can establish low latency paths between mo-
bile consumers and producers. However, supporting a large
number of consumers in a dynamic environment is highly
challenging. For each mobile consumer an individual set
of operators needs to be maintained and adapted to ensure
low latency paths. This requires a significant amount of re-
sources. Besides imposing a significant cost for a large-scale
deployment, resources that can be utilized at the edge of the
network will certainly be constraint in their number. There-
fore, a primary concern for the development of mobile CEP
systems is to increase the resource-efficiency in performing
consumer-centric CEP.

To address this problem, we propose the Reuse-Aware
CEP (RECEP) system, a scalable CEP system that re-
duces computational and communication load by reusing
computations and streams between operators. In particular,
our system exploits two inherent characteristics of situation
awareness applications. The first characteristic is that many
consumers have overlapping interests because consumers are
typically interested in the same or similar situational infor-
mation of their surrounding areas. More than an average of
70 cars per hour pass the same mile on an interstate [1] and,
according to recent surveys, up to 80% [2] of consumers can
have the same interest in information from a connected car.
When there are more consumers in a certain area, there will
also be more overlaps between the consumers, since their

ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version will be published in Proc. of 8th ACM
International Conference on Distributed Event Based Systems (DEBS 2014).
http://dx.doi.org/10.1145/2611286.2611297

focal point fg3 —

Query Q3 (L selection

—_— stream
(mobile)

—>
consumer . operator

event
operator graph
3

G@

sgeed patterns

lane switch
patterns

atomic

ol Q3
spatial interest [events

Figure 1: Example of operator graph: The most re-
cent, temporally ordered, atomic events ¢, through
er are streamed and processed by G%3.

locations are similar. Another important characteristic is
that most situation awareness applications do not require a
perfectly accurate set of input data to generate meaningful
situational information, since the location of the consumer
is often uncertain [21]. For example, the average speed on a
highway based on seven out of ten vehicles may still be mean-
ingful to infer that the traffic is slowing down. By reusing
approximate processing results based on slightly mismatch-
ing input streams, our system dramatically increases system
scalability in terms of consumer queries and input streams.

In this paper, we make the following contributions. First
of all, we provide system mechanisms for fine-grained reuse
of computations and streams between operators to support
scalable processing of consumer queries. Secondly, we present
methods to control the quality of the approximate results
and the associated overhead of the reuse mechanism. Lastly,
we provide evaluation results that show the benefits of the
proposed reuse approach in terms of system scalability and
resource utilization.

The rest of the paper is structured as follows: We present
the CEP and system model in Section 2. The problem is
discussed in Section 3. Our fine-grained reuse mechanism
is detailed in Section 4. In Section 5 we then evaluate our
system before we present the related work in Section 6. We
conclude in Section 7 with a short summary and outlook.

2. CEP AND SYSTEM MODEL

In this section we introduce the necessary premises for
our work, namely i) the query and operator graph model, ii)
assumptions about the operator execution, and iii) assump-
tions we make for the execution of mobile CEP operators.

2.1 Operator graph and Query model

To describe situational information we use an operator
graph model [18, 17] which comprises operators (vertices)
that perform the processing of events and the event streams
established between pairs of operators (edges). For instance
in Figure 1, three operators wi, w2, and ws are connected
to an operator graph. In our work the operator graph is
adapted to the changing interest of each individual con-
sumer, i.e., the operator graph always receives atomic event
streams (i.e., sensor data) from sensors close to the location

of a consumer [18]. Therefore, the RECEP system main-
tains for each query of a consumer a distinct operator graph.
FEach query @ comprises the operator graph G, an interest
in a spatial region I, and the focal point of a consumer f.
The spatial region I defines the region from which atomic
events are selected as input to the operator graph. Updates
to the focal point f, e.g., due to the mobility of the con-
sumer, trigger updates to the spatial interest I. To match
atomic events against the spatial interest and reason about
temporal causalities, they are stamped with a type (type),
location (1), and timestamp (ts). The query in the example
of Figure 1 selects changes in speed and locations of cars
as atomic events with respect to its spatial interest 7% and
uses them in operator graph G2 to detect obstacles or the
occurrence of an accident around the consumer. When the
focal point f@2, given by the mobile consumer’s location,
changes, the processing of an old spatial region is stopped,
the spatial interest is updated, and the operator graph is
restarted on the updated spatial interest.

2.2 Operator Execution

The execution of an operator is characterized by perform-
ing a sequence of correlation steps. In each correlation step
the operator takes as input a selection of events from its
incoming event stream and applies its operator specific cor-
relation function—which implements the operator logic—to
produce a set of outgoing events. The selection on the in-
coming stream is regularly updated by means of a selection
policy, i.e., windows that shift on the incoming streams and
determine sub-streams. In previous work [18] we already
discussed that such a model is highly expressive in terms of
temporal correlations. Yet note that this particular window
model needs to be extended to efficiently support unbounded
operations like Kleene closure. For example, w2Q % in Figure 1
has specified a selection policy in form of a sliding window
of size 3 to select three subsequent speed events {eo, e1, 62}
on its incoming stream. In the next correlation step the
operator will apply its correlation function to the selection
{e1, e2,e4}. To support selection policies like counting win-
dows or time-based windows [8] we assume the input streams
and outgoing streams are temporally ordered by means of
a timestamping mechanism. Any event that has been pro-
duced with respect to a selection s of events, carries the
largest timestamp comprised in s. Furthermore, each event
is annotated with a sequence number to resolve ambiguities
that can stem from two events carrying the same timestamp.
At times, we also need to refer to the start and end of a se-
lection s, where t,(s) is the smallest and t.(s) is the largest
timestamp comprised in a selection. Any event comprised
in a selection s of an operator is caused by and therefore
depends on the processing of atomic events in the operators
sub-graphs. We denote this set of atomic events as a(s).

Observe, although the model of executing selections per-
forms correlation steps, the processing of a selection can hap-
pen asynchronously, i.e., the correlation function can start
analyzing the events even if not all events comprised in a
selection were streamed to the operator.

2.3 Infrastructure

The RECEP system is deployed on a distributed infras-
tructure consisting of a set of Virtual Machines (VMs).The
virtual machines in RECEP are primarily used to execute
one or multiple operators. This allows the CEP system to

Query Q2 < selection
—» stream
@ operator
operator B event

Reused stream

Query Q4 QueryQl Query Q3

Processing
Neighbor

[e6]——
€.
o1
—

Figure 2: Example for reuse-aware operator graph:
w2Q2 processes on behalf of its processing neighbor
w§3. The event eg is delivered to w?3 instead of eg.
dynamically adapt the number of required computing re-
sources to the current workload without the need for the
system’s provider to maintain a large-scale infrastructure.
The virtual machines are requested on demand and follow
the Infrastructure as a Service model. Similar to cloudlets
and the fog model, virtual machines can be requested on
the path between a consumer and a producer to ensure low
latency, in-network processing of events. We assume the ca-
pabilities of each virtual machine is constraint in terms of
compute cycles, memory, and bandwidth.

3. PROBLEM DESCRIPTION

In this paper we explore the potential of reusing corre-
lation steps of operators and this way reduce the number
of resources that need to be allocated by the CEP system.
Note, that in mobile environments consumers are interested
in similar types of events, e.g., an accident in a traffic moni-
toring application. Therefore, we expect that in many cases
two consumers will utilize, if not the same, highly similar op-
erator graphs—comprising the same type of operators and
the same dependencies to their predecessors and successors.’
Since processing is performed with respect to a consumer-
centric spatial interest, two mobile consumers can only share
the result of an operator’s correlation step if the spatial in-
terest of their queries is overlapping. In particular, the re-
sult of an operator can only be reused by another operator
if both operators intend to perform a processing step with
respect to matching selections, i.e., both selections comprise
the same set of events. Hence, the execution of the RECEP
system can be characterized by a reuse-aware operator graph
(see Figure 1) in which some operators perform correlation
steps on behalf of other operators. For an operator w multi-
ple operators—named the processing neighbors—may exist
on whose behalf w can process and stream produced events.

Due to the dynamically changing partial overlap in the
spatial interests of mobile consumers it becomes highly chal-
lenging to find matching selections between pairs of opera-
tors without significantly interrupting the execution of the
CEP system and this way increase the time until events can
be detected. As part of this paper, we approach this prob-
lem by providing mechanisms to relax the quality at which

!Consider that many cars are equipped with navigational
systems that may display live-information about traffic jams
or blocked roads. Corresponding situational information can
be detected using an operator to calculate the average speed
in an area in addition to other, disjoint operators.

the CEP system detects events. This offers two major bene-
fits: i) By utilizing observed event and mobility patterns, the
overlap between selections can be estimated before receiving
all events which are included in the selection, thus reducing
the time of interruption caused by finding matching selec-
tions. ii) The gain through reusing can significantly increase,
in particular the reuse of an operator can be performed in
many cases over a sequence of subsequent correlation steps.

Note, that relaxing the quality is for many mobile ap-
plications completely acceptable. For instance, an average
speed based on seven out of ten speed events can still give
sufficient insight to detect that the traffic is slowing down.
However, the quality degradation should be kept within ac-
ceptable limits. In order to quantify the quality degradation
for utilizing a selection s’ instead of s within a correlation
step, we will compare the set of atomic events a(s) and a(s’)
on which s and s’ depend. This allows us to apply two com-
monly used metrics, called precision and recall: The preci-
sion defines how noisy the input of a selection is. The recall
defines how relevant the input of a selection is.

a(s) Na(s)
a(s’)

precision(s,s’) =

(1)
(2)

recall(s,s') =
Since an input of an operator depends on multiple pre-
decessors in the reuse-aware operator graph and each event
comprised in a selection was detected reusing results of a
distinct set of processing neighbors, we also need to measure
the disparity in spatial regions on which events in a selection
depend on. In particular, let I, denote the set of all spa-
tial interests utilized by operators of G in detecting events
of a selection. Then we measure disparity by determining
for each atomic event e € a(s) how many r € I, match the
corresponding location [over all possible combinations of
atomic events and spatial interests, i.e.,

Dcea(sy {71(r € L) A (l(e) € 1)}
la(s)[[1u]

A good disparity of 1 means that all spatial interests are
comprising all relevant atomic events while in the example

of Figure 1 the disparity is worse and closer to 0.5 for w?‘n’,

since it reuses results from w?l and w§?2, and the spatial
interests of Q1 and Q2 hardly overlap.

Our goal is therefore to maximize the reuse in the sys-
tem in order to minimize the required computing and band-
width consumption of the CEP system, while preserving a
high quality. This means that precision, recall, and disparity
(denoted Quality of Result (QoR)) should each be preserved
above an individual threshold Tz? T2, Tf (short QoRfi) for

each query @ in the system.

disparity(s) = (3)

4. REUSE-AWARE PROCESSING

Before describing our approach to reuse-aware event pro-
cessing, we briefly introduce and summarize the main com-
ponents that make up the RECEP system.

Upon registering a query @ for a mobile consumer, @ is
directed to a component called RECEP controller to boot-
strap the deployment of the query. The RECEP controller is
in charge of finding an initial placement for the operators of

G on the set of VMs. To this end the controller can reserve
new VMs or remove VMs similar to [14].

Each VM of the RECEP system runs a reuse-aware ex-
ecution environment which controls the streaming and the
processing of the operators. Moreover, the execution envi-
ronment also provides mechanisms to automatically adapt
the placement of an operator and provides mechanisms for
the live migration of operators from one VM to another.
Besides ensuring low latency, the placement mechanism of
the RECEP environment will ensure that operators of the
same type and similar location will be hosted at the same
VM. In this work we build on already proposed migration
and placement mechanisms [25], so we omit the details.

However, what distinguishes RECEP from traditional dis-
tributed or mobile CEP systems is the presence of a compo-
nent we call selection manager (see Figure 3). Each operator
receives streams from and forwards streams to the selection
manager. In return, the selection manager i) determines in-
dependently processable selections on the incoming stream
(selection phase), ii) decides which selections need to be exe-
cuted by which operator (processing phase), and iii) decides
to which targets the results of a correlation step needs to be
streamed to (streaming phase).

In the remainder of this section we present the details be-
hind the concepts and implementation of the selection man-
ager. In Section 4.1, we first detail the concepts behind the
phases performed by the selection manager where a group
of operators is already assigned to the selection manager.
To increase the scalability of our approach, we illustrate in
Section 4.2 how to perform a general grouping of operators.
Since the mechanisms for managing selections crucially de-
pend on the mechanisms for monitoring the quality of selec-
tions, we will detail the quality monitoring in Section 4.3.

4.1 Selection-based Processing

Recall, the main objective of the selection manager is to
minimize the number of selections that need to be processed
by the operators connected to the selection manager. There-
fore, the selection manager analyzes the incoming streams
and determines whether in a subsequent correlation step
the selection of one operator can cover also some selections
processed by other operators. In this case, the result of a
correlation step with respect to such a selection—we call a
covering selection—can be reused by all operators whose se-
lections are covered. Each operator w is also assigned a set
of processing neighbors, i.e., a preselected set of operators
connected to the selection manager for whom w can provide
covering selections. For now, we will detail the phases be-
hind the selection manger to identify a covering selection in
a simplified setting where a grouping of the operators is al-
ready given and each operator has already been assigned a
set of processing neighbors.

4.1.1 Selection Phase

In the selection phase incoming streams of all connected
operators are analyzed in order to build up the selections
on which operators perform their next correlation steps. As
part of this analysis the selection manger identifies according
to the selection policy specification when a new selection can
be opened, e.g., for a sliding window specification a selection
can be opened when the first event matching the window
boundaries arrived over the incoming stream. Furthermore,
the selection manager identifies with respect to the selection

gg I3 To: Communication Substrate (e.g. TCP)

’
< S— e LR D
N Qs <o VMs Ph

utgomg Buffer to ase
Q2,03 \\ VM:

g Processing

' Phase

]

h

LN \Qperators \

\ covering
selection

|
|
et of % < 1
1
electlons \

" Precision=1/3

Selection
Selections Phase

Incoming Buffer of »$*

. 2
Incoming Buffer of “’3

Incoming Buffer of w?*

- From: Communication Substrate (e.g.
events TCP)

Figure 3: Since comprising the same events, s;
through ss can cover each other. In the process-
ing phase s; is selected as covering selection and wQQB

processes on behalf of the other operators.

policy when the selection can be closed, e.g., when all events
matching a sliding window specification have arrived.

For each opened selection, the selection manager keeps
a buffer comprising references to the events that match a
selection. Moreover, each selection carries two additional
attributes: the first attribute marks whether a selection is a
covering selection, the second attribute marks whether the
processing of a covering selection can be started. Initially,
every selection will be marked as a covering selection and the
processing of events is disabled. Since events of a selection
can be asynchronously processed, disabling the processing
imposes a buffering delay. This buffering delay will be used
by the selection manager to identify covering selections.

Events of the incoming stream are filtered according to
the selection policy of opened selections and inserted to
the buffer of all matching selections while respecting the
order relation imposed by the timestamps. Furthermore,
all events in the buffer of a selection need to comprise in-
formation about their dependency to atomic events. This
information will be later used to find a covering selection
that yields a given QoR following the definition of precision
and recall. How to provide such information efficiently is
discussed in Section 4.3.1. For now, assume that each event
is annotated with the complete provenance information [10],
i.e., the provenance information comprises ids of all atomic
events on which the event depends.

4.1.2 Processing Phase

The processing phase is periodically initiated and per-
formed with respect to all selections for which processing
is disabled. The goal of the processing phase is to minimize
the number of covering selections. For now we will disregard
the fact that some selections may be incomplete and not all
relevant events are available yet.

The problem to find a set of covering selections that is
minimal can be reduced to the minimum set covering prob-

1: function find_covering selection(Set of Operator Q)
2: W « 0 //Set of covering selections
3: F <« 0 //Family of subsets
4: for all s, € S do //iterate over selections of oper. in
5: C + {sw} //each selection covers itself
6: for all w’ € neighbor(w) do
7 for all s’ € S,/ do
8: if precision(s,,sw) > TI‘,"/
A recall(syr, Sw) > T;"/ then
9: C + CJs, //increase subset for s,
10: end if
11: end for
12: end for
13: F+ F U (C,sw)
14: end for
15 L+ SQ
16: while L # () do //greedy set covering heuristic
17: choose (C,s) € F s.t. C () L is maximal
18: W<+ W U I(C,s)
19: L+~ L-C
20: V(C’,s") € F update C' < C' — C

21: end while
22: return W
23: end

1: function find_covering selection(£2))
2: P <« PriorityList(€2) //Operators are sorted by priorities
3: W <« 0 //Set of covering selections
4: while P # (do //cover all selections of all operators
5: w < Extract-Max(P) //Extract oper. with max prio.
6: for all s, € S,, do //iterate over selections of w
7 covered + false
8: for all (C,s,s) € W with w’ € neighbor(w) do
9: if precision(sw,s,r) > Ty

A recall(sw, $or) > T then

10: C <+ C | sw //increase subset for s,
11: covered < true

12: break

13: end if

14: end for

15: if covered = false then

16: W« W UJ({sw} sw) //covering selection s,
17: end if

18: end for

19: end while
20: return W
21: end

Figure 4: Maximum QoR Coverage Heuristic

lem [7], which is known to be NP hard. In this work we
therefore build on heuristics to find the minimum number of
covering selections. In a nutshell, the set covering problem
is the problem of finding for a set of elements denoted by X
and a family of subsets of X denoted by F, the minimum
number of subsets in F' covering all elements in X. In our
setting, an element of X is a selection. Moreover, a subset
in F' is given by a set of selections which are covered by the
same selection with acceptable level of quality.

We will propose and later evaluate two ways to approach
the problem of finding the minimal number of covering selec-
tions. In the first approach we generate the family of feasible
subsets and then solve the set covering problem by applying
Johnson’s greedy heuristic [15], which is known to give a log-
arithmic ratio bound with respect to the maximum size of a
subset. As alternative, we propose a heuristic to reduce the
computational cost that stems from the generation of sub-
sets. Intuitively, the heuristic prioritizes covering selections
that stem from operators with many processing neighbors,
since those selections potentially cover many selections.

Maximum QoR Coverage Heuristic (MQC). The MQC
algorithm, which is detailed in Figure 4, takes as input a
set of operators 2. All operators in {2 are of the same type
and are grouped ahead by the selection manager. MQC re-
turns as a result W, comprising the set of covering selections
as well as the selections covered by each covering selection.
To this end MQC generates in a first step the family of
subsets F' that jointly cover all selections (Line 4-Line 14).
This is achieved by iterating over all selections s € Sq for
which processing is still disabled (Line 4). Let s,, be a selec-
tion comprised in the buffer maintained for operator w € €2,
then MQC builds w.r.t. s, a subset as follows: MQC will
add for every processing neighbor w’ of w (Line 6), the se-
lections s,/ € Sq to the subset if precision(s,,s.) and
recall(s,, Sw) meet an acceptable quality threshold (Line 9).
The subset is then added to F' (Line 13).

After MQC iterated over all selections, the greedy heuris-
tic is applied to select the subsets in F' that yield the largest
coverage. Once a subset is chosen, its elements are removed

Figure 5: Maximum Neighbor Heuristic

from the remaining subsets in which they are comprised,
in particular also the subset for which they are chosen as
covering selection is removed (Line 20).

Maximum Neighbor Heuristic (MNH). The maximum
neighbor heuristic presented in Figure 5 also takes a set
of operators (2 as input and returns the set of covering se-
lections W. Each operator in 2 is assigned a priority level
which is given by the number of processing neighbors. MNH
then iterates over the operators in order of their priority by
extracting in each iteration the operator with maximal pri-
ority (Line 5). Let w be the operator with the maximal
priority extracted from the priority list P then MNH checks
for each selection of w, say s., whether the set W already
comprises a selection s, which can cover s, (Line 9). If
this is the case then s, is added to exactly one subset in
W (Line 10). If no covering selection exists in W, then s,
is added to W as a new covering selection with s, itself
as covered selection. The algorithm terminates after it has
iterated over all operators.

Properties. To understand the different behavior of MQC
and MNH and their influencing parameters let us briefly
compare the complexity of both approaches in finding the
covering selections. Let no be the average number of pro-
cessing neighbors, ns the average number of selections the
selection manger maintains per operator, and ng the average
number of comparisons to determine precision and recall of
a pair of selections. The complexity of MQC is driven by i)
generating the subsets (Line 4) and ii) applying Johnson’s
heuristic (Line 16). Generating all subsets has an expected
cost of O(|Sa|nansng) since the quality of each selection
is compared against the quality of ngns elements. Fur-
thermore, Johnson’s greedy heuristic will impose a cost of
O(|W||Sa|+|Sa|nsnga) . In each round—from beginning un-
til termination—one element is inserted to W. Extracting
the maximal element costs O(log|Sq|) while updating the
priorities of |F| = |Sq| elements can be achieved amortized
in O(|Sql) using a Fibonacci Heap. Finally, overall at most
|Sa|nsna elements are to be removed from F' if all selec-
tions of processing neighbors are covered by all selections.
Hence, the expected time to calculate the set of covering

selections is O(|Sq|nansng + |W||Sq|). In contrast, MNH
iterates over all selections |Sq| and makes in each iteration
at most |W|n, comparisons. Hence, the time complexity for
MNH is O(|W||Sqa|ng).

The performance for MNH is therefore expected to yield
performance gains when the generation of subsets is the
dominating factor. We can influence this factor at run time
when grouping the operators maintained by Q2. If the group-
ing of operators ensures all operators of 2 perform process-
ing with respect to the same region, we expect the number
of selections covering the grouping, namely |W|, to be by far
smaller than nons. The performance gains of MNH comes
also at a potential cost in the quality and number of found
subsets, since MNH restricts the number of comparisons to
be performed with other selections.

Independent of the decision whether to choose MNH or
MQC, the complexity analysis shows that the computational
overhead of the selection manager requires to carefully in-
crease the scalability with appropriate mechanisms. In that
context we ask:

e How many pairs of operators should compare their se-
lections to generate the subsets?

e How many pairs of selections should be compared to
generate the subsets? In particular, can we make a
coarser decision on the coverage by comparing many
selections of a pair of operators at once?

e How much information about atomic events should be
examined to make a good estimation for precision and
recall when building the subsets?

We will give answers to these questions when introducing the
run-time aspects of the RECEP system in the next sections.

4.1.3 Streaming Phase

When an operator w produces events as a result of pro-
cessing a covering selection s, the streaming phase is initi-
ated. The produced events need not only to be forwarded
to a destination defined by w, but also to the destinations of
operators whose selections were covered by s.,. The destina-
tions of these events are those selection managers to which
the successors of operators with covered selections are con-
nected to. RECEP ensures that events are sent only once
over a network link if two distinct destinations reside on the
same VM. To assign these events at the destinations to
operators, they are annotated with all ids of operators to
which they need to be forwarded to.

Upon arrival, each incoming event is analyzed and for each
annotated destination operator the selection phase is initi-
ated. Note that because preceding operators can reuse dif-
ferent asynchronously processed selections, events might not
arrive in a desired order. Each selection is therefore assigned
a sequence number. Such information can be piggy-backed
with the produced events or regular heart-beat messages,
which allows the successors to first buffer and sort events
according to the sequence number before they are added to
the incoming buffer.

4.2 Grouped Selection Processing

This section details how a selection manager groups oper-
ators in order to connect them to the same selection manager
and based on that decision assigns processing neighbors.

4.2.1 Distributed Execution of a Selection Manager

Operators of the same type that process on behalf of
consumers with overlapping interests have to be connected
to the same selection manager to find covering selections.
Therefore, the more operators can be connected to the same
selection manager the more selections may be covered and
a gain in saving resources can be achieved.

However, note that the selection manager and its con-
nected operators do not need to be hosted by the same VMs.
Therefore, it is easy to integrate in RECEP placement algo-
rithms to optimize latency and bandwidth usage (see [25]).
Moreover, the number of operators connected to a selection
manager influences the throughput of the selection manger
in processing selections. RECEP avoids overload situations
for the selection manager by introducing a grouping mech-
anism. This way RECEP can share the load in processing
selections between multiple selection managers. A natural
way to establish a grouping is to classify the operators by
their type as well as their spatial location, i.e., two operators
are only connected to the same selection manager if they are
of the same type and their consumer’s focal point is com-
prised in the same spatial area. This way, operators that
belong to queries with a high overlap in the spatial interest
are automatically grouped.

Dynamic Group Management. For the RECEP system
the geographical region in which events are produced and
consumed is partitioned into disjoint spatial regions. Each
of the spatial regions will be assigned a selection manager
by the RECEP controller if at least the focal point of one
query is comprised within this area. Hence, a new selection
manager will be deployed once the first operator of a given
type is comprised within the spatial region and is discarded
after the last operator of a specific type has left the spatial
region. To this end, the RECEP controller is a distributed
component that scalably keeps track of the location of mo-
bile consumers similar to location services [33]. Moreover,
we bound the number of operators that can be connected to
a selection manager. If this bound is exceeded, the number
of selection managers deployed in a spatial region will be
increased, and each selection manager takes an even share
in processing the selections.

The requirements regarding the size, location, and shape
of such predefined spatial areas can vary for different appli-
cations, and therefore can be specified for RECEP by the
system administrator. All selection managers are initially
hosted by the same VM. Their placement can then be dy-
namically adapted with the previously mentioned operator
placement mechanism by treating selection managers in the
same way as operators. For example, for rectangular shaped
interests Quad-Trees [24] can be used to efficiently update
the deployment of the selection managers and find selection
mangers to which an operator can connect to. This connec-
tion is dynamically adapted with location updates provided
by the consumers.

4.2.2 Dynamic Processing Neighbor Selection

After a new group is established and operators are con-
nected to selection managers, RECEP needs to update the
processing neighbors for each operator of a group. Recall,
that the set of processing neighbors, assigned to each oper-
ator, is a key parameter for MNH and MQC in finding high
quality covering selections. Besides, efficiently updating the

: Distance d //maximal allowed distance between neighbors
: number kj //allowed number of neighbors
: N //set of operators managed by the selection manager

upon init_reference_graph(Operator graph G)
N(G) « range_query(f(G),d)
H(G) = g € N(G) with max 37, 5 [1(9) N 1(g")])
VYw € G: trigger neighbor_selection(w, H(G))

end

RN P W

9: upon neighbor_selection(Operator w, Op. graph H(G))
10: Q' + k range nearest_neighbor(f(H(G)),d,kp)
11: for allw € ' do

12: neighbor(w’) « w
13: end for
14: end

Figure 6: Basic Coordinated Neighbor Selection

set of processing neighbors, we address how to achieve a low
disparity which results from reusing selections that comprise
events that result from reusing selections. For example, we
aim to avoid the situation illustrated in Figure 2, where wQQQ
and w? ! are spatially dispersed and therefore a high dispar-
ity at w$® is imposed.

Further observe, even though operators are grouped ac-
cording to type and spatial region, the number of processing
neighbors can differ for each operator. Since consumers can
choose distinct quality thresholds, the relationship is in gen-
eral not even symmetric.

Coordinated Neighbor Selection. The key idea behind
the solution illustrated in Figure 6 is to consistently restrict
the number of processing neighbors over all levels of the op-
erator graph G. This is achieved by restricting the set of
atomic events on which the set of operators that process on
behalf of another operator depend. In particular: i) we re-
duce the maximum distance between the focal points of two
operators that can process on behalf of the same operator
and ii) we restrict the number of operators that select the
same operator as processing neighbor.

The system determines in a first step at the level of the
root operator of an operator graph G, a reference graph
H(G). Note that operators are always informed about the
current location of a consumer [18]. The focal point of H(G)
is then used as a reference by all operators in G for choos-
ing the operators to whom they are processing neighbors.
To allow the reference graph to be chosen independently for
each operator graph, we introduce a metric which enforces
each operator to select a reference graph with similar focal
point and this way reduce the disparity based on the depen-
dency to atomic events. Let N(G) be the set of operator
graphs with a spatial overlap to the spatial interest imposed
by G and with focal points that are at most a distance d
away from the focal point of G (Line 5). Then the refer-
ence operator graph H(G) is the operator graph in N(G)
which achieves the highest pairwise spatial overlap over all
operator graphs N managed by the root’s selection manager
(Line 6). The focal point of H(G) is then forwarded to all
selection manager which are connected to an operator w € G
(Line 7). Once the selection manager knows H(G), it will
determine the set of operators to whom w is a processing
neighbor by performing a k nearest range query centered
in the focal point of H(G). The query returns a maximum
of k, operators whose focal points are comprised within a
radius of size d around the focal point of H(G). (Line 10).

In order to reflect the mobility driven changes in process-

ing neighbor relationships when there are no changes in the
grouping of operators, the selection of H(G) and the selec-
tion of processing neighbors is performed in regular time
intervals. A low time interval will comprise often the same
set of processing neighbors for slow mobile consumers and
a high interval will often lead to processing neighbors with
non-overlapping interests for faster mobile consumers. An
adaptive solution to determine such a time interval can be
derived from safe time approaches [9], yet the details are
left out for brevity. Moreover, finding processing neighbors
itself imposes a processing overhead which is amortized in
scenarios with a high event rate and thus a high potential
for resource savings.

Note that the presented algorithm only intends to reduce
the disparity for each operator graph. However, reusing se-
lections from other operators still imposes the potential that
the introduced disparity is exceeding a quality threshold.

4.3 Optimizations

We now detail two optimizations. First, we describe how
grouping several selections together into so called selection
batches can increase scalability. Second, we describe how we
can efficiently calculate and predict the QoR.

4.3.1 Batching Selections

Reusing individual selections can be costly. Consider com-
putational weak operations like parameter filters that have a
small selection, e.g., one event per selection, and can be per-
formed with few instructions, e.g., one instruction speed <
20. Finding k other selections that might cover the selec-
tion requires at least k instructions to decide that these se-
lections are potential covering selections. The solution is
thus to group selections into sets of subsequent selections,
denoted as selection batches. A selection batch can then be
processed on behalf of another selection batch.

Processing of Batches of Selections. Selections can be
batched on a temporal basis or for a number of n, sub-
sequent selections. In the first case a selection batch b is
assigned a time window (¢5(b),te(b)) and comprises all se-
lections s where t5(s) > ts(b) and te(s) < te(b). In the lat-
ter case, beginning and end of these number-based selection
batches can be referred to by the time-stamps of the first (s1)
and last selection (sn) in the batch, i.e., ts(b) = ts(s1) and
te(b) = ts(sn). Furthermore, there are two special selection
batches: np = 1 denotes the individual reuse of selections
as discussed until now, n, = oo denotes the case where all
selections are shared with the same processing neighbor dur-
ing the whole run-time. The choice of the parameters are
operator specific and depend also on the expected mobility
pattern of the application and therefore need to be specified
by the domain expert.

The MNH and MQC algorithms for batches require little
changes to their previously presented versions. Instead of
comparing and iterating over individual selections, batches
of selections are compared. The core difference to reusing
individual selections is that we lose a fine-grained control
on the QoR-aware reuse. The system either cannot cover
another batch if at least one selection of the batch does not
yield an acceptable quality, or the consumer accepts that
at least some selections in the batch have a bad quality and
only the average QoR over all selections yields a better qual-
ity than QoRy,. How important it is to ensure QoR depends

Query Q3

batch b1l b2

—_— e —— —— L
y — —— M 'Q_
4 result of b3: result of b4:

 ——— = =

—
Exmen, B

.,

batch b3 batch b4

Figure 7: Batched reuse-aware processing

on the application, yet, only the latter approach can be ef-
ficiently implemented.

Recursive Operator Stop. Observe, so far an operator w
with a covered batch b, ceases to perform processing with
respect to b,. However, preceding operators of w may still
perform processing steps and produce events which are sub-
sequently discarded by w. For example, if the batch b; in
Figure 7 is covered by another batch, all events produced by
bz are discarded—even if b3 reuses another batch.
Therefore, RECEP offers mechanisms to stop the execu-
tion of an entire sub-graph of an operator graph. The pro-
tocol that implements such a stopping is invoked after the
MNH or MQC determined a set of covering batches. For
all batches that reuse the results of covering batches a stop
message is sent to the selection managers that are connected
to corresponding preceding operators, i.e., operators that
provide the input streams to these batches. This message
contains a time-interval (¢5(b;), te(b;)) that indicates which
selections can be stopped with respect to a batch b; and an
id of the corresponding preceding operators. Selection man-
agers buffer all received intervals for each operator and pre-
vent corresponding batches that only comprise selections s
with a start and end within these time-intervals, e.g., where
ts(s) € (te(bi),ts(bi)), from being processed or becoming a
covering batch, iff they are not already selected as covering
batch. Such a stop can be propagated even further down
the operator graph, since now the predecessors of the pre-
decessor can stop processing for all stopped batches. Note
that te(b) of a batch b is not fixed if b is defined for a num-
ber of selections and thus has to be estimated based on the
inter-arrival time of the most recently arrived events.

4.3.2 Scalable Run-Time QoR Monitoring

In this section we discuss how we reduce the overhead for
calculating the precision and recall if all events of a selection
or batch are present at the operators incoming buffer and
predict the quality if not all events of a selection or batch
are present at an operators incoming buffer.

Determining the QoR metrics. Both heuristics of Sec-
tion 4.1.1 calculate the precision and recall for a pair of se-
lections or batches based on estimates about atomic events
they depend on, e.g., by annotating the ids of atomic events
to processed events similar to [10]. The better these esti-
mates are, the better the calculated quality. However, since
calculating the quality according to the metrics given in Sec-
tion 3 requires a pairwise comparison of these estimates, the
imposed overhead can be high. We detail three approaches

to determine the atomic events and their influence on the
overhead and the quality:

Spatial Interest Quality: The QoR can be determined by
intersecting the spatial interests of queries that correspond
to a pair of selections or batches. To this end, operators keep
track of the current spatial interest of their corresponding
query. This approximation of atomic events assumes that all
atomic events are evenly distributed in the spatial interests
of queries, which can result in a high inaccuracy, since none
of the events of a selection might actually lie in the spatial
overlap. Moreover, it disregards the fact that events of a
selection might already depend on reused selections.

Per Neighbor Quality: The number of shared incom-
ing events with processing neighbors, i.e., their predecessors
reused the processing of the same batch, can be used as in-
dicator for the overlap in atomic events. These events can
easily be identified, since they are streamed only once for a
pair of processing neighbors to the selection manager during
the streaming phase. The system determines, for each pair
of selections s,s’, the number m, of events that are pro-
duced by a common predecessor and the number of events
in those selections ms, m, . Precision and recall thus eval-

uates to %z and ;7. This method disregards events that

stem from already reused selections and therefore already
have a degraded quality. Hence, we annotate the calculated
QoR for each selection that reuses the result to each outgo-
ing event. The system can then weight m, by the sum of all
annotated QoRs of events from a common predecessor com-
prised in the selection. Since quality degrades over all levels
in the operator graph and the probability to have events
from common predecessors also degrades, this method is de-
signed for operator graphs with few levels in their operator
graph.

Coarse-grained Spatio-temporal Quality: This approach
annotates each event with the information about atomic
events it depends on. In particular, it coarsens the anno-
tated information about atomic events over time and space
in a spatio-temporal grid data structure. The grid divides
the spatial interest into distinct cells. Each cell then com-
prises the number of occurred atomic events during a time-
span, e.g., during the start and end of a selection. Atomic
events can thus be aggregated over the course of a selection
at the leaf operators and the grid is then propagated in a
leaf to root direction with the events. At each level of the op-
erator graph all annotated grids of events that are comprised
in a selection are then joined and annotated to the outgoing
events. Congruent cells are joined by summing up the corre-
sponding numbers of atomic events. We further denote these
grids as reuse dependency. Moreover, events comprised in a
selection can already depend on reused selections, which re-
quires that the actual information about atomic events that
a selection would depend on without reusing must also be
annotated in the same way—denoted as actual dependency.
For a pair of selections s,s’, the system can now use the
actual dependency of s and the reuse dependency of s’ to
calculate the QoR according to the metrics given in Sec-
tion 3. Cells with the same spatial coordinates comprise the
number of events in the overlap. Depending on the granu-
larity of the size of the cells, more or less atomic events are
compressed with the spatial grid. The programmer can thus
trade-off accuracy in the calculated QoR against overhead
for maintaining estimates with the grid size.

Prediction. Due to the asynchronous processing, not all
events that are comprised in a selection or batch might be
present in the incoming buffers when calculating the QoR.
Moreover, it can be computationally less intensive to predict
the QoR from a sample of annotated estimates, instead of
calculating precision and recall over all annotated estimates.
In these cases we have to predict the QoR at run-time.
Pessimistic and optimistic approaches assume that no or
all events that arrive in the future lie in interest overlaps
of queries corresponding to selections. This means, if some
events already arrived for a selection s and based on that
information the system determines that m, atomic events
lie in the interest overlap with another selection s’ which
typically comprises mg atomic events, then the recall would

evaluate to ;= in the pessimistic case.

FEvent patte;“n prediction. Assuming that the past event
pattern of selections indicates the future event pattern, the
most recent received estimates about atomic events are buf-
fered. The estimation of future atomic events comprised in
a pair of selections can then be determined based on the
buffered estimates using a bins and balls model. In order
to estimate a QQoR metric for a selection s, e.g., a precision
> mis,, where my is the number of atomic events typically

comprised in the potential covering selection s’, the system
has to draw k atomic events from the interest overlap out of
mg draws. The corresponding probability to draw k or more
atomic events can then be calculated using a hypergeometric
distribution. Let K be the atomic events in the interest
overlap of the buffered estimates and M all events in the
buffered estimates of the processing neighbor, then the QoR

can be predicted to n’je/ , according to the expectation value
of ke = n * % This means if the estimates for m, atomic
events are still missing for the determination, we assume
that my * £ will arrive that lie in the overlap of these atomic

M
events.

S. EVALUATION

We evaluated our reuse methods with two sets of exper-
iments, each with a different operator graph. An approach
without reuse, in particular the MCEP [18], was used as
baseline approach in both cases. The first set of experiments
(mobility setup) was using realistic movement patterns of
cars generated by SUMO [4], the simulation environment
Omnetpp [28], and an operator graph that resembled the
one in Figure 1 that detects accidents (for details see [18])
to show the benefits of our approach. In the second set
of experiments (basic setup) we determined the overhead of
finding covering selections for different complex operators
written in C++ without mobility.

In the mobility setup, approximately 500 cars were simu-
lated on a street map of a German town (around 8 km? in
size with corresponding speed limits). The cars emitted
events when accelerating or decelerating beyond a thresh-
old or changing lanes (approximately two event every sec-
ond). A number of cars (numCars) was selected at random
as consumer with a square sized spatial interest. In order
to test our approaches with different parameterizations for
the operator we used a generic count-based window to select
the inputs to the operators. If not stated otherwise, we used
all operators of the same type as processing neighbors. Each
simulation was performed approximately 5 to 10 times using

a different set of movement trajectories as input with each
new run.

In the basic setup we systematically derived a meaning-
ful threshold for the throughput under synthetic workloads.
We deployed one operator per query that implemented an
average function at a random location in the service area.
To emulate computational more complex operators, e.g., an
operation that scans every pixel of an image that is com-
prised in an event, we assigned a parameter to the operator
that allowed us to repeat the average operation several times
on the same selection. We generated an evenly distributed
workload of atomic events and spatial interests had a size of
i of the service area.

Since our main goal is to reduce the number of processed
selections in order to save computations, we measured our
computational savings in terms of actually processed selec-
tions (proc. selections). The output QoR was always deter-
mined according to the formulas given in Section 3 by an-
notating each event with the set of atomic events it depends
on. The actual measured QoR is presented as the average
precision and recall over all detected situational information
(avg. QoR). Most results are presented as relative results,
in particular relative to the baseline, MCEP, without reuse.

5.1 Scalability of the Set Cover Heuristics

With the mobility setup we tested how much computa-
tional savings we can achieve with MQC and MNH, how
much these approaches affect the QoR, and how significant
the overhead is.

We varied several control parameters. At first, the quality
threshold QoRy,. Secondly, the side length (in m) of the
spatial interest (r). Note that with larger spatial interests
the overlap of the interests increases. For these experiments
we fixed the size of the temporal batches to 10s and the
number of cars that queried for traffic to 25, the frequency
of initiating the processing phase was set to 1s.

Figure 8(a) presents the computational savings when reus-
ing batches of selections. The x-axis depicts the QoRs, and
the y-axis the fraction of actually processed selections in
comparison to the number of processed selections in the
baseline approach. When decreasing the QoR:, threshold
the system is able to reuse by far more selections since more
selections can cover each other. However, it can only reuse
when the interest overlap is high enough, e.g., in the case
for » = 500m the interests hardly overlap and nearly no
reuse is possible. Figure 8(b) presents the effect of the reuse
on the actually measured average QoRs. Since all operators
of an operator graph cooperatively keep the threshold, the
average quality always remains above the threshold with a
low standard deviation (depicted with the error-bars). The
overhead imposed by comparisons of selections is depicted in
Figure 8(c) on the y-axis as the number of QoR estimations
performed by the heuristics over the number of selections
that were actually covered by another selection. Here, we
also compare the results for reusing individual selections to
the case when reusing batches. A key observation over all
evaluations is that the computational savings of the MQC
are slightly better than for the MNH, however, with the
downside of incurring more overhead.

We also varied the number of cars (numCars) that queried
for traffic. The higher numCars, the more operators are de-
ployed and more queries overlap on the very same or similar

proc. selections

(a) Computational Savings; batch (b) QoR; batch execuiton; 25 cars

©O00000000
RNwbhULoN®o

\u' L L1
K

0.2 03 04 05 0.6 0.7 0.8 0.9

QoR threshold

r=500;MQC —— r=500;MNH ———

r=2500;MQC

r=2500;MNH

r=5000;MQC —¥— r=5000;MNH

execuiton; 25 cars

avg. QoR

0.2 0.3 04 05 0.6 0.7 0.8 0.9
QoR threshold

r=500; MQC —+—

r=2500; MQC

r=5000; MQC —¥— r=5000; MNH

c

-g 10000 F—— T T

& 1000 F o

2 100 £ 3

E 10 £ E
1E

S F

2 01k il

g 0.01 C 1 1 T 1

i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5 QoR threshold

o

r=5000;MQC;per selection ——

r=5000;MNH;per selection
r=5000;MQC;batch —¥—
r=5000;MNH;batch ———

(c) Overhead; 25 cars

r=500; MNH ——-
r=2500; MNH

08 1
"
s 071 2 0095
=1 0.6 - o -
3 05 g 09 Z
& o4 g 085 3
. w
g o3r g 08 S
S o2t 8
o1 : 5 075
0.2 03 04 05 06 0.7 0.8 0.9 07 . 0.965 R e
QoR threshold 1 2 3 4 5 6 7 1 2 3 4 5 6 7
num. of proc. neighbors num. of proc. neighbors
numCars=5 —}— numCars=25 ———
numCars=10 numCars=50 d=1 —— d=2500 —¥— d=1 —— d=2500 —¥—
numCars=15 —¥— d=500 d=5000 —=— d=500 d=5000 —=—
(d) Scaling; batch execuiton (e) Impact of Processing Neighbors (f) Impact of Processing Neighbors
on Computational Savings; 15 cars on Disparity; 15 cars
1 12 2.2
0.95 11 3
< 09 5 i 5 18
o
S o085 - z 92 2 1e
s 08 > 07 e 13
s 0751 e 28 e 1
0.7 s 0 <
0.65 I I I I I I = 8‘31 = 82'\
0.2 03 04 05 06 0.7 0.8 0.9 02 0.4
0 50 100 150 1 2 3 4 5 6 7 8

QoR threshold
optimistic ——

pessimistic
ep-predicted —¥—
current selection ———i

Operator Complexity

MQC - 5 Operators —+—
MQC - 15 Operators
MQC - 25 Operators —¥—

num. of Batches

MQC - 5 Operators —+—
MQC - 15 Operators
MQC - 25 Operators —¥§—

(g) Impact of QoR Prediction; 5 (h) Throughput ratio over operator (1) Throughput ratio over batch

cars complexity

s1zes

Figure 8: Evaluation of the RECEP System

spatial interest. We used the MQC for selection batches,
while fixing the spatial interest to 5000 m.

The results in Figure 8(d) depict the relative computa-
tional savings in comparison to the baseline approach (y-
axis) for different quality thresholds (x-axis). Due to high
overlaps in the interest of queries, selections can be reused
by more operators if more queries are deployed, resulting in
a lower percentage of processed selections.

5.2 Impact of Processing Neighbors

Since increasing the number of processing neighbors (k)
increases the potential to find operators to reuse with and
the distance d between processing neighbors affects the dis-
parity (see Section 4.2.2), we also tested the effects of both
parameters on the computational costs with the mobility
setup. In fixed time intervals of 2s new processing neigh-
bors were selected. In this experiment we fixed the QoR
threshold to 0.5, the spatial interest to 5000 m and reused
individual selections with the MNH heuristic among 15 cars.

Figure 8(e) depicts on the x-axis the maximal number of
selected processing neighbors, on the y-axis the number of
processed selections relative to the baseline approach. The
savings gradually increase with the number of neighbors
since more reuse is allowed, however, as depicted in Fig-

ure 8(f) the disparity drops with the number of neighbors
and their relative distance to each other.

5.3 Impact of Quality Prediction Methods

To study the impact of the different quality prediction
methods (see Section 4.3.2) we conducted an experiment
with the mobility setup, where the number of cars that
queried for traffic was fixed to 5 and r was set to 5000 m.
Figure 8(g) shows how the different quality predictions affect
the actually measured quality (y-axis) for different quality
thresholds (x-axis). The optimistic approach reused many
selections with actually bad qualities, since it always overes-
timated the quality at run-time. The pessimistic approach
missed many reuse opportunities, but only reused selections
with good qualities. The event pattern-prediction, and an
approach that evaluated the quality over the events in cur-
rent selection settled between both approaches.

5.4 Efficacy of the Set Cover Heuristic

The basic setup was used to determine how much delay
is induced by applying the set cover heuristics before actu-
ally processing the selections. The operators had to pro-
cess a set of 10000 selections and sliding windows that each
comprised 30 events. We used the event pattern predic-
tion method to reduce the overhead for estimating the QoR

and a naive implementation of the MQC. The results de-
picted in Figure 8(h) show how the ratio of the throughput
without reusing to the throughput by applying the MQC
changed with the complexity of the operator, i.e., how often
the average was computed (Operator Complezity). We also
varied the number of deployed operators in that area. Our
system clearly benefits from a high number of operators,
since many operators can reuse the processing. Moreover
the higher the complexity of the operator, the better the
performance of our approach, since the overhead of finding
covering selections is always the same and eventually amor-
tizes. Figure 8(i) depicts how the throughput ratio changed
with the number of batches. More batches require more
comparisons and estimations of the QoR, hence our system
preforms especially well when the number of batches that
have to be reused per operator is small.

6. RELATED WORK

Reuse has already been studied for a broad variety of
queries. For example, the shared execution of queries and
reusing partial results is a common technique in location-
based queries to improve the query latency, scalability, com-
putational load, or bandwidth [11, 9, 31]. For example if two
range-queries that provide a consumer with objects over-
lap in their spatial interest, the result of the overlap can
be cached and reused. However, these reuse techniques are
highly specialized for the individual queries and not tailored
for a more general reuse approach. In CEP, reusing results
from an overlap can lead to false negatives and false posi-
tives, e.g., when aggregates are computed separately on the
overlap and the non-overlapping area.

CEP and data base systems [30, 6, 26] typically allow
reuse by finding completely overlapping sub-sets of opera-
tors that process the same input events. However, this is not
suitable for overlapping interests in sensor data. The QoR
can degrade arbitrarily, e.g., if no event of interest lies in
the overlap. Other methods that can work on streams that
comprise similar input event [3, 13, 20, 19] are mostly tai-
lored towards specialized operators and not tailored towards
a general solution as presented with this paper. Consider
that aggregates could be processed on the overlapping and
non-overlapping interests, and then combined by applying
the same aggregation again. However, this is not applicable
for all operators, e.g., averaging the temperature over two
averages from two sub-ranges is not the same result as the
average temperature of the whole range. Moreover, while
these methods are tailored to provide exact results, our ap-
proach allows to control the degradation in the quality.

Filter operations [23, 27, 32] allow for reuse with respect
to containment relations. For instance, in distributed pub-
lish/subscribe systems routing paths are merged if filters
overlap. This reduces the bandwidth and computing costs.
Take for example two subscribers, one that filters for events
with temperatures > 20 and another one that is connected
to the same host for events > 30. If on a preceding host an
event with temperature 33 arrives, only one filter (> 20) has
to be evaluated reducing the computing costs and the event
has only to be sent once. However, this is only possible be-
cause filters are per-event operations and do not change the
content of an event.

The sharing technique for cyber foraging presented in [29]
allows to efficiently share computations of several compo-
nents in a video application. This works well, since these

components are designed for incremental updates. However,
our goal was to provide a more general sharing technique.
Our previous work [12] used a set cover heuristic to select
a minimal number of spatial interests for a single query, in
contrast to this work, where we select a minimal number of
reusable selections for multiple queries.

7. CONCLUSION

In this paper we presented a method for sharing compu-
tations between stateful operators in distributed CEP sys-
tems. In the context of a situation-awareness application we
showed the potential of RECEP in decreasing the compu-
tational overhead and resources needed by CEP systems in
meeting quality requirements of consumer. Our method ex-
ploited two inherent characteristics of many CEP systems:
overlapping interests in sensor data and the fact that slightly
inaccurate results are acceptable in many application scenar-
ios. Besides introducing the basic algorithms in maximizing
the number of selections that can be reused, we proposed a
comprehensive set of run-time mechanisms that ensure the
feasibility of our approach in a large-scale and highly dy-
namic deployment.

Beyond the methods proposed as part of this paper, we
plan to study as part of future work how to further reduce re-
sources needed in meeting consumer-centric quality require-
ments. In this direction, we intend to investigate the poten-
tial of a tighter coupling between methods for placing op-
erators and the proposed methods for reuse. Furthermore,
to ease the deployment of RECEP-based applications, we
will research how to self-configure many application-specific
RECEP parameters like the batch-size or the number of pro-
cessing neighbors that at current stage need to defined by
the programmer.

8. REFERENCES

[1] www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files
/publications/national transportation_statistics/
html/table_01_36.html. online, 2011. [online; accessed
2014-04-10].

[2] http://www.capgemini.com/resources/cars-online-
1213. online, 2013. [online; accessed
2014-04-10].

[3] A. Assefa and F. Getahun. Multi-query Optimization
for Semantic News Feed Query. In Proc. of Int. Conf.
on Management of Emergent Digital EcoSystems,
MEDES ’12, pages 150-157. ACM, 2012.

[4] M. Behrisch, L. Bieker, J. Erdmann, and
D. Krajzewicz. SUMO - Simulation of Urban
MObility: An Overview. In Proc. of 3rd Int.
Conference on Advances in System Simulation
(SIMUL), pages 63—68, Oct. 2011.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog
Computing and Its Role in the Internet of Things. In
Proc. of 1st MCC workshop on Mobile Cloud
Computing, pages 13-16. ACM, 2012.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In Proc. of 2000 ACM SIGMOD
Int. Conf. on Management of Data, SIGMOD 00,
pages 379-390. ACM, 2000.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E.

[19]

[20]

Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition, 2001.

G. Cugola and A. Margara. TESLA: A Formally
Defined Event Specification Language. In Proc. of 4th
ACM Int. Conf. on Distributed Event-Based Systems,
DEBS 10, pages 50-61. ACM, 2010.

B. Gedik and L. Liu. MobiEyes: A Distributed
Location Monitoring Service Using Moving Location
Queries. IEEFE Transactions on Mobile Computing,
5:1384-1402, 2006.

B. Glavic, K. Sheykh Esmaili, P. M. Fischer, and

N. Tatbul. Ariadne: Managing Fine-grained
Provenance on Data Streams. In Proc. of 7th ACM
Int. Conf. on Distributed Event-based Systems, DEBS
’13, pages 39-50. ACM, 2013.

A. M. Hendawi and M. F. Mokbel. Panda: A
Predictive Spatio-Temporal Query Processor. In Proc.
of 20th Int. Conf. on Advances in Geographic
Information Systems, SIGSPATIAL ’12, pages 13-22.
ACM, 2012.

K. Hong, D. Lillethun, U. Ramachandran,

B. Ottenwiilder, and B. Koldehofe. Opportunistic
Spatio-temporal Event Processing for Mobile Situation
Awareness. In Proc. of 7th ACM Int. Conf. on
Distributed Fvent-Based Systems, DEBS ’13, pages
195-206. ACM, 2013.

M. Hong, M. Riedewald, C. Koch, J. Gehrke, and

A. Demers. Rule-based Multi-query Optimization. In
Proc. of 12th Int. Conf. on Eztending Database
Technology: Advances in Database Technology, EDBT
’09, pages 120-131. ACM, 2009.

A. Ishii and T. Suzumura. Elastic Stream Computing
with Clouds. In Proc. of 2011 IEEE Int. Conf. on
Cloud Computing, CLOUD, pages 195-202, 2011.

D. S. Johnson. Approximation Algorithms for
Combinatorial Problems. In Proc. of 5th annual ACM
Symp. on Theory of Computing, STOC ’73, pages
38-49. ACM, 1973.

G. G. Koch, B. Koldehofe, and K. Rothermel. Cordies:
Expressive event correlation in distributed systems. In
Proc. of the 4th ACM Int. Conf. on Distributed
Event-Based Systems, DEBS 10, pages 26-37. ACM,
2010.

B. Koldehofe, R. Mayer, U. Ramachandran,

K. Rothermel, and M. Vélz. Rollback-Recovery
without Checkpoints in Distributed Event Processing
Systems. In Proc. of 7th ACM Int. Conf. on
Distributed Event-Based Systems, DEBS 13, pages
27-38. ACM, 2013.

B. Koldehofe, B. Ottenwilder, K. Rothermel, and

U. Ramachandran. Moving Range Queries in
Distributed Complex Event Processing. In Proc. of 6th
ACM Int. Conf. on Distributed Event-Based Systems,
DEBS ’12, pages 201-212. ACM, 2012.

S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein,
and G. Jacobson. The Case for Precision Sharing. In
Proc. of 80th Int. Conf. on Very Large Data Bases,
VLDB ’04, pages 972-984. VLDB Endowment, 2004.
S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly
Sharing for Streamed Aggregation. In Proc. of 2006
ACM SIGMOD Int. Conf. on Management of Data,
SIGMOD 06, pages 623—-634. ACM, 2006.

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

30]

(31]

(32]

(33]

R. Lange, H. Weinschrott, L. Geiger, A. Blessing,

F. Diirr, K. Rothermel, and H. Schiitze. On a Generic
Uncertainty Model for Position Information. In
QuaCon, LNCS 5786, pages 76-87. Springer, 2009.

D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

S. Madden, M. Shah, J. M. Hellerstein, and

V. Raman. Continuously Adaptive Continuous
Queries over Streams. In Proc. of 2002 ACM
SIGMOD Int. Conf. on Management of Data,
SIGMOD ’02, pages 49-60. ACM, 2002.

A. Meka and A. Singh. DIST: A Distributed
Spatiotemporal Index Structure for Sensor Networks.
In Proc. of 14th ACM Int. Conf. on Information and
Knowledge Management, CIKM ’05, pages 139-146.
ACM, 2005.

B. Ottenwiilder, B. Koldehofe, K. Rothermel, and

U. Ramachandran. MigCEP: Operator Migration for
Mobility Driven Distributed Complex Event
Processing. In Proc. of 7th ACM Int. Conf. on
Distributed Event-Based Systems, DEBS ’13, pages
183-194. ACM, 2013.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and Extensible Algorithms for Multi Query
Optimization. In Proc. of 2000 ACM SIGMOD Int.
Conf. on Management of Data, SIGMOD ’00, pages
249-260. ACM, 2000.

M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, and
K. Rothermel. Meeting subscriber-defined QoS
constraints in publish/subscribe systems. Concurrency
and Computation: Practice and Ezxperience,
23(17):2140-2153, 2011.

A. Varga and R. Hornig. An Overview of the
OMNeT++ Simulation Environment. In Proc. of the
1st Int. Conf. on Simulation Tools and Techniques for
Communications, Networks and Systems &
Workshops, Simutools '08, pages 1-10. ICST, 2008.
T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt.
Leveraging Cloudlets for Immersive Collaborative
Applications. Pervasive Computing, IEEE,
12(4):30-38, 2013.

S. Xiang, H. B. Lim, and K.-L. Tan. Impact of
Multi-query Optimization in Sensor Networks. In
Proc. of 8rd Workshop on Data Management for
Sensor Networks: In Conjunction with VLDB 2006,
DMSN 06, pages 7-12. ACM, 2006.

X. Xiong, M. Mokbel, and W. Aref. SEA-CNN:
Scalable Processing of Continuous K-Nearest Neighbor
Queries in Spatio-temporal Databases. In Proc. of 21st
Int. Conf. on Data Engineering, ICDE 2005, pages
643-654, 2005.

Z. Xu and H.-A. Jacobsen. Expressive Location-Based
Continuous Query Evaluation with Binary Decision
Diagrams. In Proc. of 2009 IEEFE Int. Conf. on Data
Engineering, ICDE 09, pages 1155-1158. IEEE, 2009.
J. Zhang, G. Zhang, and L. Liu. GeoGrid: A Scalable
Location Service Network. In Proc of 27th Int. Conf.
on Distributed Computing Systems, ICDCS 07,

page 60. IEEE, June 2007.

