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Abstract: Numerical simulations are import for analyzing Big Data and realizing
applications in the Internet of Things. Running numerical simulations on mobile
devices makes analyzing and reasoning about Big Data ubiquitous. However, mobile
devices are limited in energy and compute resources, and connectivity to a dedicated
infrastructure like a cloud cannot always be assured. Therefore, we propose to run the
simulation on a distributed environment consisting of a mobile device and the cloud.
This environment has a number of constraints for compute and network resources that
need to be considered for providing simulation results in time and with high quality.
In this paper we propose an architecture for mobile simulations and list challenges for
realizing them.

1 Introduction

Numerical simulations have many applications ranging from stress tests in computer aided
designs (CAD) over traffic analysis to weather forecast. In engineering and natural sciences,
dynamic complex systems and processes are often described by means of partial differential
equations. Numerical simulations allow understanding the dynamic evolution of such
systems that follow from such a description. Numerical simulations are also important
for analyzing huge data sets in the context of Big Data and the Internet of Things. Given
real-world measurements and data, simulations can predict important future critical states
or situations within a complex system. Embedded in a control-loop, a controller can react
to predicted states in order to optimize or stabilize the future evolution of the system.

Whenever the result of a simulation needs to be directly available on a mobile device,
the term mobile simulation can be applied. For instance, a controller reacting to critical
states and situations in traffic, navigation, or logistics is embedded in a car, ship or drone.
Furthermore, in a wide range of applications like medicine, sports, or agriculture, decision
makers like the doctor, trainer, or farmer require personalized simulations that depend on
the current context, e.g. the status of a patient, the training activity, or plants.

A key challenge is how to realize mobile simulations so they yield 1) sufficient quality of
result, ii) offer the actors sufficient responsiveness and iii) are energy efficient for the mobile
device. Naive methods in deploying mobile applications are likely to yield unsatisfactory
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results in the context of mobile simulations. First, mobile simulation may be executed
similar to traditional simulations on a high performance computing infrastructure, offered
by a cloud provider. Although a simulation may benefit from strong compute resources,
temporal loss of connectivity is common in mobile services and can severely impact the
time until actors can react to simulated results, e.g. when no network is available. Second,
loss of communication may be tackled by running the entire simulation on the mobile
device themselves. Even though mobile devices are becoming more powerful and already
replace their stationary counterparts in many fields like image and video processing, it
should be observed that simulations are highly demanding regarding processing resources.
Simulations like in fluid dynamics require solving linear equations with thousands of
unknowns. Performing all computations of a simulation on the mobile device will therefore
lead to high response time and energy usage or allow only low quality results by simplifying
the underlying simulation model.

In this paper, we present our vision towards supporting mobile simulations that establishes a
trade-off between the two deployment possibilities dynamically under run-time constraints
like the connectivity of the mobile and constraints of the decision maker on time and quality
to respond to results of a simulation. In the remainder of the paper we give an overview of
what numerical simulations are and how mobile simulations can be realized using existing
work. In Section 3 we propose an architecture to realize mobile simulations overcoming the
drawbacks from a naive deployment. Section 4 describes challenges for implementing this
architecture, possible methods and further aspects to be regarded during implementation of
the proposed architecture.

2 Background

In numerical simulations, the behavior of the system is described by a mathematical model
such as partial differential equations (PDEs). These equations are defined on continuous
space and time also called domain of the simulation. As computers are not capable of
dealing with continuity, time and space need to be mapped to a finite set of discrete points.
The discrete points form a mesh on the continuous spaces. Using this mesh, the partial
differential equations can be numerically solved using a system of linear equations.

Figure 1 gives an overview of the process. On the left, the numerical treatment of PDEs is
depicted. The model is kept in partial differential equations. These PDEs are discretized
using techniques such as finite elements, finite differences or finite volumes. Those dis-
cretization techniques allow transforming the simulation to a finite mathematical problem
like linear equations. The mathematical problem is then solved using a task-specific Solver,
e.g. to solve a system of linear equations iteratively. In this paper, we deal with the question
how to run this process within a distributed environment consisting of the mobile device
and a server hosted in the cloud (cf. right side of Figure 1). In order to run the numerical
simulation on this environment, quality has to be adapted to run-time constraints of the user
and the available network and compute resources.

There are a number of methods of how mobile simulations could be realized using existing
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Figure 1: Numerical simulations have to be adopted to run-time constraints in order to run on a
mobile distributed environment.
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work which can be categorized into two main classes. On the one hand, there are methods
reducing quality of simulation so that the entire simulation can be efficiently executed on the
mobile device [ASGO1,HDO11]. On the other hand, there are methods to execute programs
on a distributed infrastructure [CBCT10,CIM™11,RSM*11, GRA12,Fuj99, BPOS12].

In model reduction, the numerical simulation is transferred into a lower dimensional
space [ASGO1,HDO11]. This reduces quality, while it also reduces computational cost.
Using model reduction, it is possible to run the entire simulation on mobile devices. A
drawback of the approach is that no additional compute resources accessible over a wireless
link can be used. Utilizing many compute resources in the course of a simulation is
often addressed in high performance computing by a parallelization of the simulation’s
execution [Fuj99, BPOS12]. However, the execution of a parallel simulation requires
very frequent exchanges of states and synchronization between the parallel simulation
instances. Therefore, parallelization yields good response time only when—unlike in a
mobile environment—communication is subject to low latencies and high availability.

A promising alternative are code offloading techniques. Code offloading is a paradigm where
some parts of a mobile computation is offloaded to the cloud in order to either speed up the
application [RSM*11,GRA12] or to save energy on the mobile device [CBCT10,CIMT11].
While both aspects are important for mobile simulations, code offloading is oblivious to the
quality of the results of an application. In particular, code offloading per se will not be able
to benefit from different discretization parameters of the simulation model.

3 An Architecture for Mobile Simulations

The proposed architecture of the mobile simulation middleware supports the execution
of a mobile simulation to be executed on two interconnected nodes, the mobile device
and a server in the cloud. Both nodes are assumed to be connected through a wireless
communication link such as WiFi (IEEE 802.11) or a cellular network. As the mobile
device is carried by users, the wireless connection is subject to varying bandwidth, e.g. a
mobile device might leave the coverage area of its company’s WiFi and therefore has to



rely on cellular networks, providing significant lower bandwidth.

In order to initiate a simulation a request needs to be posed to the middleware in form of
atuple (ts,tp). The request defines that state of the simulated system at time ¢g should
be available on the mobile device before the deadline ¢, expires. Our middleware should
provide an adequate quality with respect to a trade-off between available resources and risk
to exceed the deadline ¢ p.

Note, there is no perfect simulation. As it would cost too much compute resources to
simulate all effects, some aspects of the real-world system have to be omitted during mod-
eling and implementation [BZBP09]. In order to make run-time decisions our middleware
requires to change some well-defined parameters during run-time that effect the trade-off
between computation cost and quality. This may include time and space discretization grids
(cf. Section 2). There are further parameters, e.g. the maximum error of an iterative solver
after the discretization process or even different models for simulating the system. However,
we will focus on discretization grids as they have a significant impact on computation time
and state transfer volume.

The method of how quality can be adopted in the discretization process depends on the
applied discretization method. For finite differences, only the mesh size can be changed.
For more advanced discretization techniques like finite elements, test functions can also
be changed [BZBP09]. However, as the method used for discretization is chosen by the
programmer, she also has to specify how quality can be changed in her implementation.

Figure 2 depicts our architecture consisting of four components, named discretization
controller, quality predictor, resource statistics and run-time protocol. These components
will be explained in detail in the remainder of this section in the context of the following
example: Consider a sailor on a boat near the cost and the sailor wants to find the fastest
route to a nearby harbor. The fastest route depends on the wind flow near the coast. Wind
depends on weather conditions as well as the structure of the coast like hills. To keep our
simulation simple, we will neglect the flow of the sea and just focus on the wind flow. The
behavior of wind flow will be modeled using Navier-Stokes equations [KPLOO]. In our
example, these equations are discretized using the finite volume method. For simplicity, we
assume a quadratic 2D spatial domain. The quadratic domain is cut into squares of width
Ax. The time domain is divided into equidistant time steps of length At¢. The simulation
will provide the sailor with a map of the wind flow. This map is generated using data of
nearby weather stations. In a more advanced example, sensor data of nearby boats might
also be integrated into the simulation. To run and see the results of the mobile simulation,
the sailor uses a mobile device like a tablet or smartphone. Dependent on the distance to the
coast the communication link between the mobile device and the cloud can strongly vary
in its characteristics. If the sailor is near the coast, the device might be connected through
a 3/4G cellular network. When the sailor is too far off the coast, the mobile device may
require satellite communication, or there may be temporarily no connection at all.
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Figure 2: Components of the Architecture for Mobile Simulations

3.1 Quality Predictor

For multiple discretization parameters it is hard to find the optimal combination in order
to have good quality with low computational cost. The question whether further compute
resources should be invested for having finer spatial (in our example Ax) or finer temporal
(in our example At) discretization to achieve maximum quality is not trivial [LDBNR13].

The quality predictor component is used to predict the quality of a fixed combination of
discretization parameters. Given a combination of discretization parameters, it returns a
number expressing the predicted quality of the result of the simulation. Quality can be
defined by performing a comparison of the simulated to the real-world system. To obtain
the real-world system state, either sensor data can be used, or the system has to be simulated
using a reference combination of discretization parameters. Computing the outcome of the
simulation using the reference discretization costs a lot of time. Therefor the spatial and
temporal domain of the simulation needs to be constrained.

In order to allow for time efficient computations, the reference simulation should be run
on a highly constrained domain. Neglecting errors of inaccurate sensors, the model of
the simulation and other effects, the outcome of the reference simulation and observed
sensor values can be treated as the 'real’ behavior of the system. Finally, the behavior of
the ‘real’ system and the simulation with given discretization parameters is compared by a
user-defined metric which is suited best for expressing quality in the application.

In our example, the quality predictor component will receive requests (Axq, Atg). It will
use a very fine reference resolution (Ax,f, At,y), expressing the behavior of the real
system. For predicting the quality, the spatial domain will be restricted to a smaller square.
In order to obtain results that are valid for the entire domain, we can choose a region where



the velocity of the flow was very fast, or changed its direction frequently in the past. When
the reference simulation with (Az ¢, At,.¢) and the requested simulation with (Axzg, Atg)
are finished, their results will be compared. As metric, the maximum different velocity
at any point in the simulated domain can be used. This value is returned by the quality
predictor component.

3.2 Resource Statistics

The resource statistics component will collect data on load, bandwidth and latency on the
nodes and the link connecting them. The data is interpreted statistically to predict available
resources in future computation steps of a simulation.

There are two components relying on resource statistics. The discretization controller needs
statistical information on how load and bandwidth will develop in the future to set the
discretization parameters. During run-time, the run-time protocol needs to decide when to
transfer state from one node to another to estimate the risk in exceeding the bandwidth. The
available bandwidth depends on the location of the mobile device. Therefor the resource
statistics component may benefit from known mobility patterns of the device to improve
the prediction of available bandwidth. In particular, the mobility of the device is restricted
in many applications. For example, if the simulation is executed on a car, positions will
be limited to the street network. Additionally the route can be known in advance as the
destination might be known to the car’s navigation system. All this information can be used
to predict available resources for future computations.

In our example, the resource statistics component might collect data on where 3/4G cellular
network is available. As the smartphone or tablet knows its current position and its heading,
it might be able to predict its future position. This position can be used to predict available
resources for the future.

3.3 Discretization Controller

In numerical simulations, there are several ways of how quality can be adopted to the
availability of resources. One way is to change the discretization of time and space. If the
simulation consists of fewer discretization points, computation time and quality is reduced.
Discretization parameters affect different resources, e.g. while temporal discretization just
affects compute resources, spatial resolution also affects the volume of data having to be
transferred over the air.

Goal of the discretization controller is to decide which discretization parameters to choose.
Discretization parameters should be chosen such that the simulation i) has decent quality
and ii) does not exceed the deadline .

The discretization controller has to rely on the resource statistics to estimate the available
computing and network resources. On the basis of these statistics it can find a set of



possible combination of discretization parameters. Every possible combination is fed into
the quality estimator. The best quality combination is set as the discretization parameter for
the simulation.

For example, the flow simulation running on a device on a boat can use the resource statistics
component to obtain a set of feasible discretization parameters Py = {(Az;, At;)}. A
simple implementation would annotate each of these parameter combinations (Ax;, At;)
with the expected quality ¢; using the quality predictor component. After the annotation
process it might select the parameter combination with maximum ¢; for execution.

3.4 Run-time Protocol

During execution of the simulation, the run-time protocol controls which of the computa-
tions are performed on the mobile device and which computations are performed in the
cloud. The run-time protocol is a distributed online algorithm executed on both the mobile
device and the cloud which intends to minimize the resource usage on the mobile device
so that the result of a simulation is available within the specified deadline ¢p. To this end,
the online algorithm needs to decide for each time-discretization step whether it should
be executed on a node or not. It ensures that at least every time discretization step will
be executed either on the mobile device or the server in the cloud. In order to perform
a time-discretization step the results of the immediate preceding discretization step must
be available on the device. Therefore, the run-time protocol also decides when to send
updates between the cloud server and the mobile device. The online-decisions depend on
the information about resource statistics which are also used to predict when meeting a
deadline becomes infeasible. In this case, the run-time protocol needs to re-invoke the
discretization controller to choose new discretization parameters at lower quality.

A simple run-time protocol for our sailing boat example would be for the device on the
boat to wait for a computation result of the cloud. If the network suddenly becomes and
stays unavailable, the simulation has to be processed on the mobile device. To save time
and energy in such a case, the server in the cloud can transfer intermediate results to the
mobile device from time to time.

4 Challenges

As the mobile device is subject to movement by the user, its bandwidth on the link to
the server in the cloud varies. Through this variation there is the risk of exceeding the
deadline as a state transfer from the cloud to the mobile device might take longer than
expected. Figure 3 depicts such a situation. The discretization controller decided to split the
computation into 5 discrete time steps. The figure depicts two executions, (1) and (2). On
(1), the last step of the computation is run on the mobile device, where in (2), the simulation
is completely run on server in the cloud. During the computation of time step 5 on the
cloud, the bandwidth decreases. Thus it is no longer possible for execution (2) to deliver
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Figure 3: Varying bandwidth can cause the system to miss the deadline ¢p.

the end state of the simulation to the mobile device before the deadline is reached. We will
describe the following challenges using this example.

4.1 Dealing with Bandwidth Variations

In the previous example, one execution exceeds the deadline since the final state transfer
takes longer than expected. A simple solution to this problem would be to run both
executions, (1) and (2) at the same time. The run-time protocol is not restricted to atomic
executions of time steps. It might compute time step 5 on both, the mobile device and the
cloud. As the computation on the mobile device typically takes longer, the computation can
be stopped when the state of time step 5 is successfully transferred to the mobile device.
However, running the same computation on multiple nodes also consumes more resources.
It will lead to increased bandwidth usage as multiple states need to be transferred over the
wireless medium. It will also cost more energy for communication and computing.

In cases where the available bandwidth is low and updates to the states can be only
transferred at low rate, the server may have finished with the computation of several time-
discretization steps before successfully sending the update of a single state. In such a
situation the run-time protocol has to decide whether the transfer of the old time step should
be continued or if it should be stopped to transfer the new time step.

Another challenge is to find a good initial combination of discretization parameters. It
would be easily possible to have a 6th time step if the bandwidth would be constantly as
good as in execution (1). However, this would also increase the risk of not meeting the
deadline. This risk is also increased by choosing a finer spatial discretization as the volume
needed for state transfers increases. The discretization controller has to carefully optimize
quality. While optimizing quality it has to take into account a constraint on the risk to
exceed the deadline the user is willing to take.

To have more choices during run-time, data can be compressed while sending it over the
link. Especially when there is only small bandwidth available, compression might be the
only way of how the final state can be delivered to the mobile device in time. There are



two classes of methods of how data can be compressed. Either the compression does not
affect quality (lossless compression) or it does (lossy compression). Lossless compression
is typically asymmetric. It takes more computational power to compress data than to
decompress it. Thus it would be most interesting to compress data on the way from the
cloud to the mobile device. There is a trade-off between decompressing and receiving data
over a wireless medium in terms of energy cost. Either the energy is consumed by the
processor for decompression or by the communication system to receive the data. Using
lossy compression, the run-time protocol might send low quality states in order to reduce
the risk of exceeding the deadline. Computation can be continued with reduced quality
on the mobile device to have a backup result if the link is down and the final result cannot
be transferred before the deadline is reached. One easy way to realize lossy compression
would be to simply omit some spatial points of the simulated area. However, there are more
advanced techniques like proper orthogonal decomposition, which also has a background
in Model Reduction [ASGO1].

Dealing with varying bandwidth is a critical task for the design of mobile simulations. In
order to be able to describe the risk, statistical models need to be developed. The run-time
protocol needs to decide if it should compress states in order to transfer it over the wireless
medium even when bandwidth is scarce. However, this needs careful modeling as the user
not only has to set a risk of exceeding the deadline but also a risk to get non-optimal quality.

4.2 Limited Energy Resources

Another challenge for mobile simulations are limited energy resources. Energy plays an
important role in mobile computing. As typical code offloading exploits the trade-off
between computation and transfer cost, mobile simulations might need to run several
computations on both computing nodes in parallel.

Energy consumption on mobile devices is already understood very well [BBV09, TANT12].
There are several approaches of how energy consumption can be reduced, e.g. by shifting
the transmission time to deliver messages in a bulk. Especially with multiple processors
such as a graphical and a main processor, there might be different energy and computational
characteristics for simulations. The usage of graphical processors for computation on
smartphones is already provided by the latest Android version [And14]. Although there are
no hardware vendors implementing these interfaces yet, they are expected to implement it
in the near future.

Since the quality of simulations depend on the validation of simulation parameters against
real-world measurements, e.g. in form of global sensor grid [BKR14], the energy-efficient
execution of a mobile simulation may strongly depend on how the integration of sensor
measurements is achieved. In particular, participatory sensing utilizes sensors on the mobile
devices themselves to gain increased access to sensors to sense various environmental prop-
erties such as pollution or temperature [LML™ 10]. Sensor measurements of a participatory
sensing system cost on the one side energy. On the other side, quality can be increased, as
more information about the real-world system is available. If the discretization controller



decides to run the simulation using a certain combination of parameters, sensor data can be
requested to meet required quality while minimizing energy cost.

While optimizing quality, mobile simulations should also be constraint in their energy
consumption. Components need to be quality-aware. Methods to find out how much energy
resources will be needed for an execution have to be developed. On top of that, methods
to interact with sensor networks to provide just the right quality for the combination of
discretization parameters are needed.

4.3 Monetary constraints

Computations in the cloud typically cost money and therefore impose additional constraints
for the execution of the mobile simulation. There are numerous pricing mechanisms
discussed in the literature to determine dynamically the resources in cloud dependent on
the user behavior and the availability of resources [AWS12]. For instance, with spot-
instances [AWS12] the price is set by the users. Every user decides how much she is willing
to pay to run her spot-instance. If the price given by the provider is lower, the instance will
be started. If the price rises above the user defined threshold, the instance will be stopped.

Especially for predicting the quality of a simulation the understanding of pricing mecha-
nisms is highly important. To avoid dependency on a single spot instance, we may need
to refine our architecture to benefit from multiple servers in the cloud to increase the
availability of resources.

5 Conclusions

In this paper we have proposed an architecture for mobile simulations and described
challenges we need to address as part our future work for their realization. In particular,
we highlighted in the context of simple distributed execution model consisting of a mobile
device and a server in the cloud, mobile simulations can benefit from a distributed execution
on both nodes in order optimize quality under time and resource constraints. The validation
of the requirements and evaluation of the conceptual design will be performed in the course
of simulation models explored by researchers in the context of the Cluster of Excellence in
Simulation Technology.
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