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Abstract—Resource allocation problems are an important part
of many distributed autonomous systems. In sensor networks,
they determine which nodes get to use the communication links,
in SmartGrid applications they decree which electric vehicle
batteries are loaded, and in autonomous power management
they select which generators produce the power required to
satisfy the overall load. These cases have been considered in the
literature before under the aspect of demand satisfaction: how
well can distributed algorithms with local knowledge approximate
the best allocation. A factor that has been ignored, however, is
fairness: how fair is the resource allocation and—in extension—
the distribution of revenue, wear, or recovery time.

In this paper, we bring together previously disjoint ap-
proaches on dynamic distributed resource allocation and on fair-
ness in electronic institutions. We show that fair allocations based
on Ostrom’s principles and on Rescher’s canons of distributive
justice create value in repeated resource allocations. We apply the
scheme to solve the multi-objective problem of distributing load
to generators fairly based on demands made by the individual
generators. Our evaluation shows that a fair distribution increases
satisfaction of the individual agents while reducing the hazard of
optimising the problem in the short-term at the cost of long-term
robustness and stability.

I. INTRODUCTION

Resource allocation problems usually use objective func-
tions that optimise resource usage, utility or overall cost. Such
an approach is acceptable as long as the participants in the
allocation depend on the resources and have no alternative
but to be part of the scheme. In contrast, in systems that
depend on the voluntary participation of autonomous entities
and their provision of resources, the situation to be addressed is
different: we are now dealing with multi-criteria optimisation,
where additional considerations include the retention of as
many participants as possible, and ensuring the long-term
endurance of the system itself.

The distributed resource allocation scheme TruCAOS [1]
is an exemplar of such a system. It was developed to create
schedules in autonomous power management systems. In a
market-based scheme, load created by power consumers is as-
signed to controllable prosumers. The term “prosumer” stands
for producers as well as consumers and includes generators
based on sources such as coal, biofuel, gas, as well as electric
vehicles and other storages. Each prosumer can make bids on
a share of the overall load. The best bids are selected by the
share of the load they cover and the price they incur. While
this approach provides excellent results with respect to the
distribution of the load and the overall cost, situations can

occur in which specific prosumers always win the bidding pro-
cess. Other prosumers participating in the scheme thus are not
able to achieve any monetary rewards for their participation,
effectively driving them out of the system.

This can be highly problematic. Power plant scheduling is
a repeated process that occurs at certain instances to schedule
energy production for specific intervals. The schedules are
highly dependent on the production of stochastic sources such
as solar or wind power plants. If the input of these sources
decreases unexpectedly while the demand surges, situations
can occur in which a cohort of ‘cheaper’ power plants can no
longer satisfy the demand. In such cases, additional degrees
of freedom are required to resolve the ‘extreme’ condition, in
practice requiring that a larger number of producers participate
in the scheme than is strictly necessary for ‘normal’ conditions.
If this ‘slack’ in the system has been driven out because of
price pressure, no capacity to compensate for the sudden surge
is available.

In this case, the achievement of maximum utility has come
at the cost of increased exposure to risk, a lack of robustness
and possibly complete systemic failure. We would contend that
the exclusive emphasis on utility has driven out considerations
of fairness. It has been shown that fairness does indeed come
at a price [2], as a reduction of overall utility; however, in
this paper, we are concerned with the value of fairness, i.e.
that some ‘inefficiency’ in the system is tolerable in return for
increased satisfaction. This in turn provides the basis for less-
easily quantifiable properties (or non-functional requirements)
such as stability, robustness and endurance.

In the ongoing transition to open, self-organising distrib-
uted computing systems and networks, we believe that the
resource allocation problem found in TruCAOS will increas-
ingly occur. Examples include sensor networks that determine
which nodes get to use the communication links, smart grid
applications that decide which electric vehicle batteries are
charged and discharged, cloud computing solutions that need
to balance total cost of ownership versus quality-of-service
constraints, grid computing, and so on. All of these systems
exhibit features of voluntary, opportunistic and dynamic as-
sembly and disassembly, shared use of endogenous resources,
repeated (rather than one-off) scheduling of resource provision,
an economy of scarcity rather than excess, and the possibility
of non-compliant behaviour.

In this paper, we develop an algorithmic framework based
on an innovative synthesis of [3], which proposed a self-
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organising resource allocation scheme based on Rescher’s
theory of distributive justice, and issues of cooperation and
trust in resource allocation in autonomous power management
systems [1]. This provides the basis for the implementation of
an experimental testbed which is used to explore the trade-
off between optimising utility and satisfaction with respect to
self-organised repeated resource allocation. We discuss how
fair solutions (using a specific fairness metric) give agents an
incentive to stay in the system, thus providing redundancy
that increases resilience and the ability to deal with critical
situations. As a result, short-term losses in optimality with
respect to efficiency or economic considerations can lead to
long-term benefits with respect to stability and robustness.

The paper is therefore structured as follows: Section II
introduces the case study on autonomous power management
outlined above in more detail and provides background on
fairness in electronic institutions. The concepts from electronic
institutions are then mapped to the case study in Section III,
leading to the fair resource allocation scheme described in
Section IV. We illustrate the results of the evaluations in
Section V, along with a detailed discussion of the trade-offs
of fairness and costs that we observed. While the experimental
results do not put exact prices on these long-term benefits, we
show that such trade-offs exist. We should therefore be aware
of them, or better still, use them to our advantage.

II. AUTONOMOUS POWER MANAGEMENT SYSTEM,
ELECTRONIC INSTITUTIONS AND THE LPG’

This section will introduce the case study used in the
following, the theoretical background on electronic institutions
based on Ostrom’s principles and Rescher’s cannons, and the
variant of the Linear Public Goods game used in the analysis
of the resource allocation problems we are concerned with.

A. Autonomous Power Management (APM)

One of the main tasks of a power management systems
is scheduling, i.e., the determination of the output levels
of dispatchable prosumers1 for future time steps considering
physical as well as economical constraints. Automating this
process promises benefits in adaptivity, costs, and especially in
the ability to include a large number of distributed prosumers
that have so far been largely ignored. This is especially desir-
able as the need for complex distribution networks is decreased
and complications such as voltage band constraints [4] can
be alleviated. Such a scheme, however, requires prosumers
to act as agents that proactively participate in the creation of
schedules and in maintaining grid stability (see, e.g., [5], [6]).

The major disadvantage of such an automation is the
enormous computational complexity incurred by scheduling
thousands of dispatchable prosumers based on the status of
the electric grid. Scheduling takes place in fifteen minute
intervals, limiting the time each decision can take. Since the
problem is NP-hard, scalability becomes a major concern for
systems of realistic size. Even municipal utilities have to deal
with thousands of potentially dispatchable prosumers in their
catchment area. One proposed solution to this problem is the

1Later on in the paper, we will use the term “producer”. Please note that
many producers can also create a load (e.g., storages). In this section, we stick
to “prosumer” to include dispatchable loads such as refrigerating warehouses.
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Figure 1. Hierarchical system structure of a future autonomous power man-
agement system: prosumers are structured into systems of systems represented
by AVPPs, thereby decreasing the complexity of control and scheduling.
AVPPs can be part of other AVPPs and can represent organisations.

introduction of intermediaries that form a hierarchy [7] of so-
called Autonomous Virtual Power Plants (AVPP) [8] as shown
in Figure 1. Each AVPP deals with a smaller sub-problem,
thus regionalising scheduling and making it possible to scale
the system to the number of agents required. The structure of
an AVPP is dynamic and agents can enter and leave the AVPP
at their own discretion.

Within an AVPP, schedules can be created in a centralised
or in a distributed fashion. For centralised approaches (see,
e.g., [9], [10]), the intermediary must know the physical and
economic limitations of the prosumers and combine them in
a model [11]. In distributed schemes, prosumers can keep
their control models private and do not have to disclose
potentially classified information. Due to privacy concerns,
cooperation-based approaches, such as TruCAOS mentioned
in the introduction or the scheme put forward in this paper
(cf. Section IV), allow prosumers to formulate valid schedules
without disclosing their internal models.

An important aspect that has to be considered in all such
scenarios is the inherent uncertainty of electricity consumption
and production. The main factor in the creation of schedules
is the residual load that combines forecasts of the production
of intermittent power sources (mainly solar and wind, but
also domestic heat and power) with forecasts of electricity
consumption. Basically, only the consumption that will not be
covered by intermittent power sources has to be distributed to
dispatchable prosumers. Since both consumption and intermit-
tent production are influenced by external factors, the forecasts
are inaccurate. When creating schedules, this inaccuracy has to
be taken into account. In addition, a prosumer that promises to
provide a certain power and fails to deliver might destabilise
the system. If such behaviour is observed repeatedly, it should
be taken into consideration in the scheduling.

This can be achieved by using the notion of trust, i.e., a
measure of the expectation that an agent sticks to its promises.
A promise in this context is a forecast of a certain production
or consumption. The trust value—in this case a credibility
value—then gives an estimate of the long-term deviation from
these forecasts that can be used to calculate the expected re-
sidual load and the expected production respectively. Another
form of trust—reliability—is calculated by measuring the time
a power plant is connected to the power grid, a value that
can be influenced by unexpected downtimes or failures. These
measures can be used in electronic institutions as the basis for
decentralised control decisions as outlined in the next section.



B. Enduring Electronic Institutions

An AVPP in the form discussed above constitutes an elec-
tronic institution that embodies an open, embedded, resource-
constraint system with decentralised control over resources and
the expectation of both intentional and unintentional errors. Pitt
et al. [12] state that in such systems the ‘optimal’ distribution
of resources (in an utilitarian sense) is less important than
the ‘robustness’ or ‘survivability’, hence the endurance, of the
distribution mechanism. In case of the AVPP, this endurance
depends on the availability of prosumers providing dispatch-
able power to deal with unexpected surges.

Electronic institutions based on the principles for enduring
self-governing institutions, as introduced by Elinor Ostrom,
and on design principles for allocation systems incorporating
distributive justice, based on the work of Nicolas Rescher,
provide the means to ensure this endurance. When using an
appropriate scheme adhering to these principles, the system
becomes indeed survivable and robust based on the continued
willingness of all participants to contribute to the system [3].

In a Common-pool Resource (CPR) allocation system, the
divisible pooled resource is public but restricted in quantity,
while the system components ‘are required to share and
appropriate resources in order to satisfy individual goals’. The
resources may either be exclusively exogenous (provided by an
external source) or endogenous (provided by the system itself)
or a mixture of both. Game theory predicts the Tragedy of the
Commons [13] which describes the dilemma of rational agents
that are dependent on a limited CPR, acting independently and
rationally according to each one’s self-interest in allocating
such an amount of resources that the common pool is depleted
in the short-term, even though such a behaviour contradicts
both the group’s and the individual agents’ long-term interest.
The depletion of the resource renders depending individuals
or organisations unable to operate further. In economics this
phenomena can be found in a large number of systems, tightly
connected to the concept of endurance and sustainable devel-
opment, like fishery, water irrigation, farming, with respective
commons fish, water and soil or meadows [14].

Ostrom observed, however, that delegating the government
of commons to institutions avoids the tragedy of the commons.
Her notion of institution describes a set of working rules,
regulating and constraining provision to and appropriation
from the resource. These rules are used ‘to determine who
is eligible to make decisions in some arena, what actions are
allowed or constrained, what aggregation rules will be used,
what procedures must be followed, what information must or
must not be provided, and what payoffs will be assigned to
individuals dependent on their actions’ [14, p. 51].

According to Ostrom [14, p. 90], eight design principles
ensure the endurance of self-governing institutions. The most
important ones are: P1) clearly defined boundaries of who has
rights to appropriate resources; P2) congruence between ap-
propriation and provision rules and local conditions; P3) those
affected by the operational rules participate in the selection and
modification of those rules (collective-choice arrangements);
P5) graduated sanctions for violating rules and P8) layered or
encapsulated CPR, with local CPR at the base level.

These design principles do not, however, give details on
the allocation mechanisms that should be used, especially

concerning the fairness of the outcome for the participants.
Such details can be found in the field of distributive justice,
especially in the work of Nicholas Rescher. He proposes
to assess fairness based on the seven canons of distributed
justice [15]. These can be used as ultimate determinant of
individual claims, e.g., to resolve if participants are treated as
equals or according to their needs. Rescher also concludes that
justice is not ensured by valuing the individual claims on basis
of only one canon, as they are monoistic, each recognising but
one solitary mode of claim production. Instead, he states that
distributive justice consists of the pluralistic Canon of Claims
which treats people according to all their legitimate claims,
positive and negative, i.e., according to a valuation of all
canons [15, p. 81f]. He also concludes a need for individualised
canon selection within the Canon of Claims based on the
context of the allocation system.

C. Fair Distributed Resource Allocation: The LPG’

The characteristics of open systems, such as autonomous
power management, the principles put forward by Ostrom, and
the canons proposed by Rescher are combined in the LPG’,
a variant of the Linear Public Goods Game (LPG) [3]. The
LPG is a classical experiment in game theory, demonstrat-
ing the prominent contradiction of following the dominant
individual strategy of withholding one’s own resources to the
disadvantage of all players, while the maximum utility could be
achieved when fully provisioning the resources of all players.
Each player has resources that it can contribute to the common
pool and that it requires from the pool. The LPG’ assumes an
economy of scarcity, meaning that the total amount of required
resources exceeds the amount available resources. The game is
used to establish a resource allocation system for open systems
ensuring fairness and endurance, gaining a better balance of
utility and fairness, for compliant agents, and hence improved
stability.

The LPG’ is repeatedly played in clusters of agents, where
a game step consists of the following sequence of actions:

1) players determine the resources available for contribution
to the public pool

2) players determine their actual need for resources
3) players make a public demand for resources
4) players announce how many resources they are willing to

provide to the public pool
5) players are informed of the allocation of resources, i.e.,

how many resources they can appropriate
6) players appropriate resources from the public pool (not

necessarily identical to appropriation)

The assumed resource scarcity raises incentives not to con-
tribute at all and to violate rules in order to increase the
amount of appropriated resources. Cheating is possible in
two places in the system: 1) publishing a higher demand
than internally determined, and 2) appropriate more than got
allocated. Monitored non-compliant agent behaviour is fed
back to the allocation scheme, which considers and sanctions
the misbehaviour in the next rounds by reducing the resource
allocation. Thus, compliance to rules is rewarded while cheat-
ing is penalised by reducing the rank of the perpetrator’s claims
in the next round.



A major extension to the LPG is the introduction of
satisfaction of the individual agent. It is measured by assessing
the deviation of published demand and actual allocation. (Dis-)
Satisfaction accumulates through reinforcement over the game
rounds and causes the agent to abandon the cluster when the
satisfaction falls below a certain threshold. The allocation
scheme thus plays a crucial role for an agent’s satisfaction.
The most trivial, though possibly unfair, scheme is a uniform
allocation of the public pool resources to the agents. Pitt et.
al [3] showed that a fair allocation, implemented by Rescher’s
canons of distributive justice increases utility and satisfaction
in the long-term. For this purpose, the canons are represented
by an agent’s legitimate claims. These claims are assessed
by functions that are used to calculate ranking lists based on
the agent’s merits. The set of functions (F ) in the LPG’ is
defined in [3, p. 3f], considering, inter alia, an agent’s demand,
appropriation, compliance and satisfaction.

To implement the canon of claims, i.e., to combine the
individual claims, the Borda count voting protocol is used.
Each canon represents a preferential voter f∗ ∈ F [3], with
the agents being the candidates to vote for. Each voter creates
a rank list, by computing the rank of each agent. Every rank
list assigns Borda points to an agent proportional to its rank.
The Borda points of an agent from each ranking list are ag-
gregated to a resulting total Borda score. In order to reconcile
conflicts between the claims, each of them is assigned a weight
representing its importance. The aggregation of Borda points
is then computed as a weighted sum. Then, a queue containing
the agents in decreasing order of the total Borda score is
created and resources are allocated to the agents in decreasing
order of the queue. Each agent receives the full demanded
quantity until the resource pool is depleted. The canon weights
are determined by the agents themselves based on collective-
choice-rules of the self-organising electronic institution that
plays the LPG’. They are updated at the end of a round.

III. MAPPING: ELECTRONIC INSTITUTION & APM

In this section we present the mapping of concepts from
electronic institutions to the case study of the APM, where
the allocation in the scheduling process is delegated to an en-
during electronic institution, incorporating fairness and hence
promoting stability and endurance.

Differences in the conceptual notions and design principles
of the LPG’ and the APM are presented in Table I and
described subsequently. The LPG’ is designed as a general
approach, without immediate real-world application intention.
Thus, its system nature is abstract, as are its players. There is
neither individualisation nor differentiation in the player model

Table I. CONCEPT MAPPING: ELECTRONIC INSTITUTION AND APM

Concept Elec. Inst.
(LPG’)

APM

System nature abstract cyber-physical (real-world), mission-critical
Player homogeneous

abstract player
heterogeneous power plant

Institution abstract ‘cluster’ macro level: APM; meso level: AVPP
Resource type abstract resource power demand (load)
Resource origin endogenous exogenous
Res. economy scarcity scarcity/surplus (each infeasible or feasible)
Player demands arbitrarily, time-

independent
static, time-dependent

— they are homogeneous. The institutional boundaries are
defined through memberships to abstract clusters. In contrast,
the APM can be classified as a Cyber-Physical System (CPS),
as its computational elements control physical entities [16].
The APM defines an institution itself on the macro level,
whereas an AVPP constitutes an institution on the meso
level. Its actors, i.e., the players, are power plants, which are
classified by their energy source where each class exhibits
distinct characteristics. Furthermore, a power plant has indi-
vidual properties, such as the maximum power output. Players
in the APM are thus highly heterogeneous. We consider both
the technical and economical context of power management
systems, which impose strict requirements and exhibit distinct
properties the allocation system has to satisfy:

1) Since power plants are physical components, physical re-
strictions such as maximum power production and change
rate (slope) are to be treated as hard constraints and must
not be violated by the scheduling.

2) Power plants are to be considered as market participants,
which include economical factors like optimal power
production in the assessment of their perceived fairness.

Employing agent autonomy in a mission-critical context con-
stitutes an inherent conflict. While the focus in a CPS lays on
control and optimization, satisfying hard constraints, unres-
tricted autonomy of agents may jeopardise the system goals,
e.g., when players arbitrarily leave the system or behave
maliciously. On the one hand we thus argue to limit agent
autonomy by enforcing compliance, i.e., forbid cheating, and
using hard constraints. On the other hand, we sacrifice the
optimality of the schedules w.r.t. load distribution to both
promoted agent-autonomy and degree of self-organisation as
well as agent satisfaction and fairness. We discuss the implica-
tions of this trade-off in Section VII. The systems’ substantial
difference in the level of abstraction is also reflected in the
allocation system with respect to the type of resource. In
case of the LPG’ the resource is only regarded as an abstract
concept, whereas in the APM it is defined as the load, i.e.,
the power demand, the power plants are in competition to
fulfil. In contrast to the LPG’ the resource is not provided
by the agents themselves in the APM but is assigned from an
instance outside of the institution and is hence of exogenous
nature. The assumption of an economy of scarcity regarding
the resources in the LPG’ does not generally hold in the APM,
where an economy of scarcity would mean that an AVPP’s
total optimal power production would exceed its assigned load,
such that there would be a competition between the producers
to satisfy this load. The demand of a controllable power plant
(CPP) will converge to its static optimal production. Based
on the CPP’s current production, its slope may bound the
demand which is thus time-dependent. In the LPG’, players are
assigned resources randomly at the beginning of each round.
They determine their need based on this assignment.

Figure 2 gives a high-level overview of the target system.
An AVPP gets load assigned from its superordinate AVPP and
distributes this load to its constituents within the scheduling
process. The scheduling utilises an electronic institution to
perform the resource allocation. Due to the inherent coupling
of an AVPP and its constituents, the borders of the organisation
they form and the role of an appropriator are clearly defined,
as demanded in Ostrom Principle P1.



Within the electronic institution, resource distribution is
performed, based on a modified LPG’ with APM-specific can-
ons which, along with the constituent’s demand, determine the
allocations for the constituents. The delegation of scheduling
to encapsulated AVPPs satisfies P8. A CPP receives a load
allocation, i.e., a resource allocation, as the outcome of the
scheduling of its AVPP, appropriates load and produces power,
matching the appropriated load which it feeds into the power
grid. Deviations from the allocated and appropriated load and
from the appropriated and produced power are subsumed as
operational deviation. Operational deviations are measured by
a suitable trust metric and are fed back to the allocation system
in form of a canon, sanctioning misbehaviour or unreliability.

Based on its power plant model, a CPP determines and
publishes a demand for resources to the allocation system.
However, depending on the resource situation (resource case),
i.e., the total quantity of available compared to demanded
resources, it is likely that a deviation between the quantity of
demanded and allocated resources, expressed as distributional
deviation, exists. This deviation is quantified in different ways,
since it is the basis for the CPP satisfaction metric.

The weight determination in the electronic institution of
the LPG’ stipulates a self-organisation process incorporating
voting and thus following Ostrom principle P3 (collective
choice-agreements).

As denoted by feedback in Figure 2, a CPP’s demand,
distributional deviation, satisfaction and trust are published
to the allocation system to be valuated as claims. Since the
distributional deviation and thus also the satisfaction, is an
indirect result of a load allocation, i.e. a scheduling outcome,
and is used in claims to determine the allocation, i.e. the
schedule, this represents a feedback loop.

IV. FAIR DYNAMIC ALLOCATION IN THE APM

In this section we present details of the implementation of
fair dynamic scheduling. Figure 3 gives an overview of the
APM allocation system, whose action sequence is outlined as
follows:

1) At the beginning of each round each CPP i within an
AVPP’s constituting set of power plants CPP determines
its demand di (see Section IV-A) and publishes it.

2) The AVPP’s allocation scheme in the scheduling process
determines the prevailing resource case based on its as-

VIOLATIONS

CANONSALLOCATION METH.

LOAD ALLOCATION

APPROPRIATION

PLANT MODEL

DEMAND

SATISFACTION PHYS. FEEDING

OPERATIONAL
DEVIATION

TRUST

RESCHER
DISTR. JUSTICE

OSTROM
PRINCIPLES

OVERALL UTIL.

ENDURANCE

VOTING WEIGHT DETERMINATION

AVPP CPPs

ELECTRONIC
INSTITUTION

P3

promote promotes
promotes

outcomes

measureoutcome

determined by

P2

F e e d b a c kutilises

SCHEDULING

FAIRNESS
promotes

DISTRIBUTIONAL
DEVIATION

Figure 2. Semantic map of the final system: concepts, involved organisations,
their relations and interactions.

signed load (loadres ) and published demands of its CPPs
(see Section IV-B), followed by computing an allocation
ai for each i ∈ CPP (see Section IV-C).

3) Each CPP i receives an allocation ai and appropriates
a′i = ai, as cheating is not allowed.

4) In the last step each CPP assesses its satisfaction σCi with
its allocation (see Section IV-D).

A. Demand Determination, Deviation and Satisfaction Metrics

For the determination of the demand di(t) for a CPP i at
time step t, the hard constraints for minimum production, max-
imum production, and slope of the CPP must not be violated.
Let pmin

i denote the absolute minimum production of i and
pmax
i its absolute maximum production. The slope si bounds

the output of i, based on its current output pprod
i (t), such that

there exist time-dependent minimum and maximum production
bounds, denoted as pmin

i (t) and pmax
i (t) respectively.

The static optimal production of i is given by i’s model and
shall be denoted by p∗i . Since every CPP strives to reach its
optimum, di(t) converges to p∗i , but is bounded by pmin

i (t) or
pmax
i (t) and therefore depends on the current output. After all

CPPs published their demands, they get an allocation from the
APM allocation scheme and assess their satisfaction. Starting
from the trivial demand-allocation deviation δi(t) = ai(t) −
di(t), δi(t) is normalised with respect to i’s time-dependent
minimum and maximum production bounds for comparison
with other CPPs:

δni (t) =
ai(t)− di(t)

pmax
i (t)− pmin

i (t)
and δni (t) ∈ [−1; 1] (1)

The economic context of the plants raises the need for
a sophisticated deviation metric, where, e.g., positive and
negative deviations from the optimum shall have distinctive
implications, i.e., power plant operators prefer over-production
to under-production of the same quantity. We thus model
the deviation metric asymmetrically, weighting positive and
negative deviations differently by introducing a factor ω+ ∈
[0; 1] which possibly attenuates positive δni (t) in the resulting
weighted deviation δwi (t) as follows:

δwi (t) =

{
δni (t) · ω+ if δni (t) ≥ 0,

δni (t) otherwise
(2)

Allocation Appropriation

CPP SATISFACTION

i

i

i

CPP i

Provision Allocation scheme:
APM

di

res

AVPP

exog.

i

Demand

Figure 3. The APM allocation system: within the scheduling of an AVPP,
its CPPs publish a demand, get an allocation from the allocation scheme,
appropriate their allocation and assess their satisfaction with the outcome.



B. Resource Case and Determination of Allocator Sequence

In step 2, the given residual load is fully allocated to the
CPPs. For this purpose, the APM allocation scheme determines
the prevailing resource case by comparing the exogenous
resource provision, i.e., loadres(t), with the published demands
and both maximum and minimum production capacities. It
then determines the individual allocations according to this
resource case, thus implementing Ostrom’s principle P2.

Infeasible resource cases cause a violation v(t) =∑
pprod
i (t) − loadres(t), as either the complete residual load

can not be fulfilled (v(t) < 0: under-production) or there is
an over-production (v(t) > 0). Feasible (exact) cases have
v(t) = 0. We informally enumerate the resource cases as
follows:

1) Upper bound All power plants are allocated their max-
imum output (feasible or infeasible)

2) Lower bound All power plants are allocated their min-
imum output (feasible or infeasible)

3) Variable There is a variability in the allocation: CPPs
get individual allocations within their feasible production
range (feasible; scarcity: loadres(t) >

∑
di(t); surplus:

loadres(t) <
∑
di(t), exact: loadres(t) =

∑
di(t))

The APM allocation scheme implements a set of particular
mechanisms for resource allocation (allocators), to cover spe-
cific resource case aspects. Depending on the resource case, a
single allocator or an adaptive sequence of allocators is used to
define the ultimate allocations. Thus we refine a∗i (t) to denote
a single allocation for CPP i from allocator ∗ at time t and
we let Ai(t) =

∑
∗ a
∗
i (t) denote the sum over all allocations

of i. The mapping of allocators for the resource case and the
determination of the allocator sequence—both part of the APM
allocation algorithm—are shown in Figure 4. In case of the
upper bound resource cases, the MAXall allocator allocates re-
sources equal to the CPPs’ time-dependent maximum produc-
tion quantity (Ai(t) = aMAXall

i (t) = pmax
i (t), ∀i ∈ CPP ).

Analogously, the MINall allocator allocates time-dependent
minima (pmin

i (t)) for the lower bound resource cases. The
algorithm in both cases terminates after that single allocation.

For the variable resource cases, a sequence of allocators is
executed. The allocation quantity of each allocator is bounded
by the maximum production constraint. After each allocation,
the residual load as well as minimum and maximum production
constraints are updated, considering the quantity of allocated
resources. In all variable subcases MINall is allocated first, as
a base allocation to satisfy the plants’ minimum production
constraint. In the variable scarcity case, where the CPPs are
in competition over resources, i.e., there is an economy of
scarcity, the APM LC allocator, implementing a fair legitimate-
claims based allocation (see IV-C), is used. In the variable
exact resource case, where the residual load equals the sum of
demands, the DEMANDall allocator allocates resources such
that the total allocated resources, including those from MINall
before, equal the CPPs’ demand (Ai(t) = di(t)∀i ∈ CPP ).
The algorithm then terminates. For the variable surplus case,
DEMANDall is applied. As any further allocation is then
detrimental for a CPP because its demand is already fulfilled,
the APM LC allocator is applied in inverse mode, as described
in IV-C. It is possible that in the APM LC, a CPP’s merit based
on its claims may be high enough to get an allocation quantity
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exceed.exactexact
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DEMAND lower deviation exceedanceexact

MAXall MINall
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Figure 4. Resource cases and allocator sequence mapping. Unfilled boxes
represent resource conditions, filled boxes represent allocators.

which would exceed its maximum production bound. The
exceeding resource quantity is then accrued in a resource pool
which is (repeatedly) distributed by a new APM LC instance,
until this pool is depleted and the algorithm terminates.

C. The APM Legitimate Claims Allocator

The APM LC allocator allocates resources proportional to
a CPP’s demand and its legitimate claims, valuated in form
of particular canons of distributive justice for APM resource
allocation. As the power plants are highly heterogeneous, we
pay special attention to equalise the treatment of CPPs by
adequately comparing individual CPPs. For instance, both the
demand and maximum production of different CPPs may differ
by several orders of magnitude, e.g., when comparing a nuclear
power plant to a small community-driven bio-gas power plant.
We thus define the relative demand dri (t) ∈ [0; 1]:

dri (t) =
di(t)∑

j∈CPP
dj(t)

(3)

We use canons to determine rank lists, reflecting the power
plants’ relative merits, analogously to the LPG’, but based
on APM specific canons, as presented in Table II. As the
allocations are dependent on the resource case, which differs
in the APM for different rounds, the canons operate on data
from previous rounds. The computation of the ranking lists and
resulting total Borda score B(i, F ), analogously to the LPG’,
is the first step of the APM LC allocator. In inverse mode,
where allocations are considered detrimental, the ranking lists
are reversed, transforming positive to negative claims and vice
versa.

The main purpose of the APM LC is to determine
allocations proportional to both relative demand dri and
total Borda score B(i, F ) of CPP i based on the residual
load. The relative demand is incorporated in the proportional
allocation, as a compensation for the equalisation within
the equality canon, considering the CPP heterogeneity. The
bounded allocation of APM LC for i is computed as follows
(time indices omitted for brevity, ticks depict consideration of
allocations from other allocators):



Table II. APM-SPECIFIC CANONS OF DISTRIBUTED JUSTICE

f1 The canon of equality equalises heterogeneous CPPs by firstly
ranking them in decreasing order of their average absolute
weighted deviation |δwi |, secondly ranking in increasing order
of their satisfaction σC

i , and thirdly in increasing order of the
number of rounds in which they received an allocation.

f2 The canon of needs ranks the CPPs in decreasing order of
their average relative demand dri .

f3 The canon of productivity ranks the CPPs in decreasing order
of their reliability trust value.

– The canon of effort is considered conceptually inapplicable in
the APM context and is thus unrepresented.

f5 The canon of social utility ranks the CPPs in decreasing order
of their credibility trust value.

– The canon of supply and demand is considered conceptually
inapplicable in the APM context and is thus unrepresented.

– The canon of merits and achievements is considered
conceptually inapplicable in the APM context and is thus
unrepresented.

aLC
i = Min

[
p′max
i︸ ︷︷ ︸

upper bound

, load
′
res ·

(
ωd · dri + ωlc ·Bn(i, F )

)︸ ︷︷ ︸
proportional allocation

]
(4)

where ωd and ωlc are weights ∈ [0; 1], for the relative demand
and the legitimate claims respectively, which allows balancing,
and Bn(i, F ) is the normalised total Borda score given as:

Bn(i, F ) =
B(i, F )
n (n+1)

2

, where n = |CPP | (5)

where the divisor states the total sum of Borda points over all
voters (canons) and participants (CPPs).

D. Assessment of Satisfaction

Finally, a CPP i assesses a subjective satisfaction σCi (t) ∈
[0; 1] at time t. ε+ and ε− span a skew ε-area around the
demand. i adapts its satisfaction as follows:

σC
i (t+1) =

{
σC
i (t) + α · (1− σC

i (t)) if ε− ≤ δwi (t) ≤ ε+,

σC
i (t)− β · σC

i (t) otherwise
(6)

where α and β are coefficients ∈ [0; 1] which determine
the rate of reinforcement of satisfaction and dissatisfaction
respectively.

On the meso level, we compute the satisfaction of an AVPP
a at t as the average CPP satisfaction over its set of constituting
controllable power plants and possibly nested AVPPs CPPa :

σAa (t) =
1

|CPPa |
∑

i∈CPPa

σC
i (t). (7)

V. EMPIRICAL VALIDATION OF APM CPR SCHEDULING

Previously introduced concepts are empirically evaluated
in this section by an analysis of scheduler performance with
respect to the APM’s macro level goals and the expected
promotion of both fairness and satisfaction. The results are
then compared to scheduling based on constraint satisfaction
and optimization (CSOP). We discuss trade-offs of fairness
and performance in light of the results obtained from the
experiments.

A. Evaluation Methodology & Parameter Configuration

We implemented a testbed, using an existing version of
the APM and modified the scheduling process to use self-
organising legitimate-claims CPR allocation. The data for the
investigation of a simulation run with a predefined number of
simulation time steps (ticks) are captured on different levels
of observation and are aggregated accordingly:

System level:
1) The system’s total residual load is assigned to and cap-

tured as top-level AVPP residual load.
2) The total consumption-production gap measures the

actual deviation of total power, produced by all con-
trollable power plants (CPPs), and power consumption
(residual load). The consumption-production gap thus
depicts the main measure for the system stability. For ease
of comparison we define the gap quotient as gap/loadres .

AVPP level:
3) Statistical data of satisfaction capture aggregations of

the satisfaction of an AVPP’s constituents. Note that
since scheduling is performed for a given number of
lookahead steps in each time step, the data pro-
duced in each step are aggregated as averages.

In order to obtain statistically significant data, each exper-
iment, i.e., each simulation with a specific parameter config-
uration, is repeated n times (runs). Thus, within an evaluation
on system scope, two additional kinds of time aggregation
are performed. Run aggregation combines the individual runs,
computing the average and standard deviation for each value
over all runs. Analogously, tick aggregation aggregates tick
values to a single value for each experiment run.

Due to the huge parameter space, we empirically prede-
termined a suitable standard parameter configuration of nu-
merical experiment parameters through a sensitivity analysis
shown in Table III. Crucial parameters regarding satisfaction
are the deviation thresholds ε+ and ε− for the satisfaction rein-
forcement. Higher statistic window sizes indirectly
delay satisfaction reinforcement and thus stipulate a tolerance
mechanism, whereas the reinforcement rates α and β stipulate
direct control regarding satisfaction reinforcement.

In addition to the numerical parameters, the most important
categorical experiment parameters are how the initial AVPP
meso level hierarchy is determined and which type of claim-
weight determination is used. The initial hierarchy determines
the number of AVPPs and their compositions. It may either be
a pre-defined structure or formed through a random structura-
tion process in which power plants are randomly assigned to
a random number of AVPPs. The set of physical power plants
(PPPs), including their models, is pre-defined.

The AVPP hierarchy is technically modelled as a tree-
structured partitioning graph (see Figure 1), with a top-level
element denoted as top-level AVPP. Each AVPP has child
elements which may either be AVPPs or PPPs, whereas the
leaves have to be PPPs, i.e., CPPs or stochastical power plants
(SPPs). We denote hierarchies consisting of only one layer
of intermediary AVPPs as flat. The pre-defined initial flat
hierarchy Hflat consists of 10 AVPPs and a total of 523 PPPs
(350 SPPs, 173 CPPs). We use real power plant-, weather-,
and load data from public sources for an area of Bavaria.



Table III. NUMERICAL EXPERIMENT PARAMETERS AND STANDARD
PARAMETER CONFIGURATION

System Subsystem Parameter Value

APM Scheduling lookahead steps 4

LPG’

APM LC allocator statistics window size 10
” ωd 0.2
” ωlc 0.8
deviation ω+ 0.5
satisfaction ε+ 0.2
” ε− -0.2
” α 0.1
” β 0.1

We denote fairness as statistical dispersion of AVPP sat-
isfaction, similar to [3]. The fairness metric is thus defined
as the Gini inequality coefficient [17] G(t) ∈ [0; 1] over the
AVPP satisfactions σAa (t), a ∈ AVPP . G(t) = 0 indicates
maximum fairness at time step t, i.e., the satisfactions of
all AVPPs are equal, whereas G(t) = 1 depicts minimum
fairness, i.e., maximally dispersed AVPP satisfactions. The
mean satisfaction is also given but is insufficient to describe
fairness. If satisfaction is generally low, a distribution where
a single agent has high satisfaction (indicated by a high
Gini coefficient) is considered undesirable and vice versa. In
general, high mean satisfaction and low Gini coefficient are
thus ideal.

B. Scheduling Performance & Fairness Evaluation

We evaluate the performance of the LPG’ scheduling on
the scope of the system by comparing it to the CSOP-based
scheduling firstly in terms of consumption-production gap
and secondly by the resulting total satisfaction. To ensure
comparability, two experiments operate on the same flat pre-
defined initial hierarchy Hflat .

Figure 5 shows mean residual load and mean production-
consumption gap time-curves for CSOP scheduling, where
the CPLEX optimizer is used to solve the CSOP, and LPG’
scheduling respectively. Both experiments are repeated n = 10
times and run for 500 time steps in each run. Since we use
the typical scheduling interval of 15 minutes per time step, the
residual load oscillates with a cycle length of 96 ticks, corres-
ponding to 1 day. Because the residual load is the main input
to the scheduling, its oscillation is reflected in the production-
consumption gap, though only the cycle length is reflected.
Also the gap cycle profiles are only qualitatively similar to
each other. In the first half of a cycle, the mean gap quotient of
CSOP scheduling is around 0%, whereas in LPG’ scheduling it
is considerably higher, around 4% (-50,000kW). Interestingly,
their mean gaps are very similar to each other in the second
part of a cycle. The average values of residual load, gap
quotient and absolute gap over all ticks are presented in Table
IV. The average gap of the LPG’ scheduling is about 14 times
higher than the CSOP scheduling gap. However, the average
standard deviation of the mean gap quotient over the individual
runs of 0.261% for the LPG’ scheduling is only about half
the value of CSOP. Comparing satisfaction and fairness,
LPG’ scheduling considerably outperforms CSOP scheduling
with approximately 4.3 times higher mean satisfaction and 4.6
times higher fairness (Table IV, Figure 6). Overall the LPG’
scheduling seems suitable to replace CSOP-based scheduling.
Its lower performance regarding production-consumption gap
was expected due to the sacrifice of CSOP’s optimality.
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Figure 5. Residual load and consumption-production gap time-curves on the
system scope (Hflat , run-aggregated). The mean consumption-production gap
is higher in the LPG’- than in the CSOP scheduling.

Table IV. LOAD GAP AND AGENT SATISFACTION

Tick Aggregation Run Aggregation

Mean SDev Average SDev

Residual load [kW] -1,270,722 197,500 0

CSOP (Hflat )

Gap quotient [%] 0.124 3.332 0.508
Prod./Cons. gap [kW] -1,398 45,441 6,119

Satisfaction 0.200 0.155 0.032
Gini coefficient 0.438 0.090 0.025

LPG’ (Hflat )

Gap quotient [%] 1.717 3.843 0.261
Prod./Cons. gap [kW] -20,199 49,916 3,121

Satisfaction 0.864 0.152 0.007
Gini coefficient 0.095 0.031 0.002

LPG’ (rand.)

Gap quotient [%] 1.807 3.861 0.350
Prod./Cons. gap [kW] -21,233 49,968 4,266

Satisfaction 0.832 0.176 0.111
Gini coefficient 0.104 0.031 0.089

In a last experiment, we determined the AVPP structure
randomly with a uniformly distributed random number of
partitions, ranging from 1 (grand coalition) to 50. The sample
size is n = 50. As shown in Table IV, the performance of
LPG’ scheduling is stable also for random initial structures,
while the average standard deviation of the runs is increased,
as expected due to varying initial structures.

C. Trade-Offs between Fairness and Utility

The evaluation results clearly show a trade-off between
utility in form of the consumption-production gap and fairness,
indicating the system’s pareto optimality. Fairness is confirmed
to come at a price as expected. We have focussed on the short-
term effects of a fair allocation on the power plant’s satisfaction
in our evaluation. We did not explicitly model reactions of
the agents to a perceived low fairness, such as abandoning
the AVPP they are currently part of. In the short-term, such
behaviour may be prohibited, e.g., by market contracts.

More interesting are a) the mid- and long-term implications
of continuously dissatisfied participants and b) the attract-
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Figure 6. Illustration of run- and tick-aggregated satisfaction dispersion as
explanation for respective Gini coefficients on the AVPP scope for CSOP and
LPG’ scheduling. Respective mean satisfaction values are indicated through
dashed lines.

iveness of a scheme for new entrants. For the purposes of
this discussion, an AVPP can be considered as a market in
which load is allocated and compensation for this allocation is
distributed. The higher the allocation, the higher the payout.
The economic incentive for each participant to be part of
the market is thus based on its ability to contribute. Power
markets often reimburse power plant operators for providing
the possibility of power production. This is not necessarily
efficient since considerable funds are paid without receiving
any actual power from the plants. A scheme based on fairness,
however, guarantees that each power plant receives a share of
the payments for power that is actually delivered to the system.

This approach incentivises operators to join the scheme
and participate in the long-term. Such behaviour has a positive
effect on stability and robustness since it ensures that sufficient
potential is available in critical situations. By sacrificing a
small quantity of utility, we gain a significant increase in total
satisfaction and fairness, which gives all participants a strong
incentive to continue contributing to the system. Moreover, the
losses in utility are tolerable and can be compensated by the
inertia of the system.

VI. RELATED WORK

The notion of Virtual Power Plant (VPP) has been intro-
duced in the late nineties as a combination of locally dispersed
power producers, and has been widely adopted by both science
and industry visions since the number of Distributed Energy
Resources (DERs) has started to grow significantly in the
early 2000s. A VPP constitutes a set of logically and physic-
ally interconnected DERs, where their power productions are
aggregated and represented by a single entity acting like a
conventional power plant. Common goals of VPP approaches
are the enhancement of the visibility of a group of DERs to
allow for controllability and consideration in scheduling [18].
To maximise both collective and individual profit, VPPs are to
enable power market access for groups of DERs [18].

Electronic markets have become a popular metaphor for
cooperative algorithms that solve the scheduling problem.
DEZENT [19] is used to balance energy supply and load
in a hierarchical system structure in a bottom-up manner.
A further approach based on a hierarchical system structure
is PowerMatcher [20] in which the root of a tree balances
supply and load by determining an equilibrium price, based on
aggregated load, supply, and price predictions, to establish a
market equilibrium. Fairness is not considered in either of these

approaches, thus making it possible that individual participants
are effectively shut out of the market. Stigspace [21] is a
coordination mechanism that uses a blackboard, called stig-
space, as the medium of communication between distributed
energy resources in order to create schedules in an iterative
process. Again, fairness is not considered, allowing some
power plants to satisfy all the load and shutting out others.
The same distinction holds w.r.t. TruCAOS [1], the cooperative
scheduling mechanism introduced in Section I.

Incentivising participants to stay in the system and particip-
ate in the market is especially important when the allocation of
resources is repeated over time. In such cases, the system bene-
fits from having as many participating agents as possible. One
way of providing such incentive is through fairness. Fairness
has been well studied in the area of communication networks.
However, the main goal of having fair allocations in this case
is to improve the system’s performance, usually through load
balancing and flow control [22], and not that of making the
agents ‘happier’. Besides, in this domain, there is an absolute
control of who can and cannot use the resources at any given
time. On the other hand, in systems such as power management
and other open systems, agent satisfaction becomes relevant.
While a fair allocation might not be economically optimal [2],
it has indirect benefits such as increasing the satisfaction of
the participating agents, which in the long-run might actually
be better than the classical ‘optimal’ solution. This kind of
benefits have already been shown in the domain of auctions,
in particular for service oriented marketplaces [23], [24]. These
works address, among others, the bidder drop problem, in
which those agents repeatedly left out of any allocation leave
the marketplace. As a consequence, the remaining agents gain
more power for setting higher prices, which in the long-term
can lead to the collapse of the system due to excessive cost.
Power management systems face a similar problem, whereby
those plants not being allocated any production might decide
to leave, thus leaving the system with fewer available plants,
which as we already mentioned can be highly problematic.

VII. CONCLUSION & OUTLOOK

This paper combines concepts of fairness in electronic
institutions with algorithms for dynamic resource allocation
in power management systems. We started out creating a
fair resource allocation mechanism and in the course of the
endeavour uncovered a deeper principle: fairness and indi-
vidual satisfaction of the agents are secondary optimisation
criteria that should be considered in addition to standard
utility optimisation to ensure robust, resilient, and enduring
organisations. The contributions of the paper are as follows:

• We propose a novel approach to resource allocation
that is a convergence of electronic institution and trust
and cooperation for dynamic allocation algorithms. The
approach considers issues of fairness and individual agent
satisfaction as well as solution utility.

• We illustrate how such an approach can be applied to the
domain of autonomous power management. This domain
benefits especially from the aspects we focus on due to
the open nature of such systems and the requirement to
include all power plants in the power production.

• An extensive testbed for the evaluation of the algorithms,
of agent satisfaction, and overall utility is laid out that al-



lows creating experiments with different system structures
and power plant configurations.

• The experimental results show that there is a trade-off
between utility and fairness: increasing the latter comes
at the price of decreasing the former, and vice-versa.

• Combining our results with those shown in [3], we can
turn the price of fairness into value, since its consider-
ation in dynamic resource allocation contributes to the
optimisation of qualitative objectives such as robustness,
resilience and endurance.

Our results are of utmost importance, since we are ob-
serving a transition from closed systems with an abundance
of resources and no choice to open systems with a scarcity of
resources and a choice of who these resources are allocated to.
Power management systems are one exemplar of a complex
system in which such a transition is currently taking place.
There is a move away from centralised production and control
and a small number of powerful generators in the hand of one
utility towards distributed generation that includes generators
from a number of companies and private citizens. For them,
fair resource allocation and thus fair allocations of revenue
is a necessity—otherwise, there would be no incentive to
participate in the system.

The presented approach contrasts with “classical” re-
source allocation literature, where only utility—a quantitative
objective—is considered. Criteria such as robustness, resili-
ence, and endurance are, however, not directly measurable and
only manifest in the long-term and in moments of crisis. Since
we showed how to measure fairness, and fairness contributes to
these criteria, we have also provided a way to at least indirectly
include these considerations in strategic planning.

Future work will further investigate these relationships in
long-term experiments with heterogeneous agents that valuate
satisfaction differently. We will study how these agents react
to disturbances and how the stability of the system compares
to “classical”, non-fair resource allocations. Furthermore, we
will study the inclusion of the concept of social capital in elec-
tronic institution: power plants could accrue social capital by
compensating unintentional errors of other power plants. This
capital can then be included in claims or be reciprocally re-
warded by the malfunctioning power plants in other situations.
An interesting aspect of our work is the potential feedback of
agent satisfaction into the self-organisation of agent structures.
An institution’s dissatisfied agents can decide to abandon the
current structure and create their own organisation. On the
other hand, a successful organisation can attract other agents.
Of course, there is a fine line between system stability—the
goal we try to achieve with the inclusion of fairness—and
optimising the system structure towards agent satisfaction. In
the worst case, the two adaptation mechanisms could interfere
negatively, in the best case they reinforce each other.
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