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ABSTRACT

With the increasing popularity of Software-defined networks
(SDN), TCAM memory of switches can be directly accessed
by a publish/subscribe middleware to perform filtering oper-
ations at low latency. This way two important requirements
for a publish/subscribe middleware can be fulfilled: namely
bandwidth efficiency and line-rate performance in forward-
ing messages between producers and consumers. Neverthe-
less, it is challenging to sustain line-rate performance in the
presence of dynamic changes in the interest of producers
and consumers. In this paper, we propose and evaluate the
PLEROMA middleware to realize publish/subscribe at line-
rate and bandwidth efficiently in SDN. PLEROMA offers
methods to efficiently reconfigure a deployed topology in the
presence of dynamic subscriptions and advertisements. Fur-
thermore, PLEROMA ensures interoperability and indepen-
dent reconfiguration of multiple controlled SDN networks.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems]: Distributed ap-
plications; D.2.11 [Software Architectures|: Data ab-
straction

Keywords

Content-based Routing, Publish/Subscribe, Software-defined
Networking, Network Virtualization

1. INTRODUCTION

Publish/Subscribe is a universal paradigm to mediate
information (events) in a bandwidth efficient manner be-
tween multiple consumers (subscribers)and multiple produc-
ers (publishers) of information. Each subscriber expresses
in a subscription its interest in events and in turn receives
all events matching the expressed interest. Therefore, pub-
lish /subscribe can yield significant saving in terms of band-
width usage especially if the interest in information is highly
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diverse.

In publish/subscribe systems, (e.g. [2, 19, 8, 25]), saving
bandwidth is commonly achieved by installing filters inside
the network. Filtering is performed by specific components
called brokers which are placed inside the network and medi-
ate events between subscribers and publishers. Broker-based
filtering in a publish/subscribe system imposes a significant
delay by extending the end-to-end path length with a detour
to the brokers and a processing delay for matching events
against installed filters.

Recent progress towards the software-defined configura-
tion of computer networks, however, poses a high potential
to reduce this delay and apply publish/subscribe in delay
sensitive application fields to quickly react to events, e.g.,
financial applications, traffic control, online gaming, manu-
facturing, or the smart grid. Standards like OpenFlow [3]*
specify the interface to directly install and modify flows on
switches and install dedicated communication paths between
the hosts connected to the network. To match the received
packets efficiently against the installed flows, switches are
equipped with a specific hardware called TCAM memory.
Interestingly, the matching operations performed by TCAM
memory are equivalent in expressiveness to many filtering
operations needed in content-based publish/subscribe sys-
tems [13] and can significantly outperform software imple-
mentations. Therefore, in a software-defined network, it is
possible to install a network topology which is not only band-
width efficient, but also yields line-rate performance in for-
warding events between producers and consumers.

While a deployed network topology offers line-rate perfor-
mance in forwarding events at the data-plane, the topology
needs also to be dynamically updated with ongoing sub-
scriptions and advertisements. In software-defined networks
this is the task of the controller, a logically centralized com-
ponent which is in charge of installing/modifying flows in
switches and can access the switches via a dedicated control
network. The design of the control algorithm is therefore
crucial for the performance of a publish/subscribe middle-
ware in the presence of dynamic subscriptions and unsub-
scriptions.

In this paper we focus on three main requirements towards
achieving scalability for SDN-configured publish/subscribe:

1. Publish/subscribe should in the presence of subscrip-
tions and advertisements offer a low latency until sub-

'The OpenFlow standard is defined by the OpenNetwork
Foundation, and many switch vendors such as CISCO, HP,
and NEC currently implement the OpenFlow as part of their
products
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scribers can react to published events. For example,
financial trading, traffic monitoring, or online gaming
are not only known to be highly latency sensitive appli-
cations, but also highly dynamic with respect to the
interests of publishers and subscribers [10, 15]. The
subscriptions and advertisements often depend on the
context on which subscriptions and publications are
performed. In order to analyse the trend of stocks and
quotes, the threshold for receiving events is updated in
the time-scale ranging from just a few seconds to sev-
eral hours for a single subscription [10]. Traffic mon-
itoring and online gaming require location-dependent
updates of run-time parameters such as the location of
objects, often at larger frequency than one update per
minute per subscriber [15].

2. Publish/subscribe should offer interoperability between
multiple independently manageable network domains.
Independently managed network domains naturally ari-
se in many business systems, for instance to avoid in-
terference of manufacturing processes and enforce se-
curity policies in accessing events [22, 24]. In addi-
tion, a partitioning of a large network can increase the
scalability by performing multiple concurrent adver-
tisements and subscriptions.

3. The control algorithm must be efficient in the number
of flows installed in a switch. Note, that the cost for
TCAM is critical in the design of switches. Therefore,
vendors offer only a limited set of flows which is cur-
rently in the order of 40,000-180,000 flow entries per
switch [5].

The contributions of this paper are a detailed perfor-
mance evaluation of SDN-configured publish/subscribe sys-
tems and methods for their scalable reconfiguration address-
ing the aforementioned requirements. In Section 2, we first
give an overview of the PLEROMA middleware. Section 3—
5 present mechanisms that i) achieve efficient reconfigura-
tion of the network topology, ii) ensure interoperability of
multiple independently controlled SDN networks, and iii)
limit the number of flows to be installed inside an SDN
switch. Finally, in Section 6 we present detailed performance
evaluation of PLEROMA on a real SDN testbed [12] and
Mininet [16] environment with respect to event forwarding
performance (throughput and delay), reconfiguration delays,
control overhead in managing multiple controllers and band-
width efficiency. We conclude with a comparison to state of
the art publish/subscribe systems and future work.

2. THE PLEROMA MIDDLEWARE

Before introducing the methods for managing dynamic
subscriptions and unsubscriptions we present the main com-
ponents of the PLEROMA middleware. The middleware
manages one or multiple interconnected network partitions
(cf. Figure 1). The network partition is composed of a set of
SDN-configurable switches. Two neighboring network par-
titions are interconnected to each other by a pair of border
switches. All switches of a partition are controlled by a sin-
gle controller which knows the entire network topology of a
partition including outgoing links to neighboring partitions.

Each controller runs the PLEROMA middleware which
configures the network topology to comprise short and band-
width efficient paths between publishers and subscribers.

Controller: Runs PLEROMA Middleware to
configure a network partition
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Figure 1: Two interconnected network partitions: Each con-
troler autonously configures its network partition using the
PLEROMA middleware.

The network topology is changed by installing or remov-
ing flows on the SDN-switches. In this paper, we follow
the widely accepted OpenFlow standard to perform such
updates. Consequently, each flow will describe any content
which can be matched against the header fields, such as
VLAN tags, a MAC address, or IP address [20]. A flow fur-
ther defines an outgoing port of a switch to which a packet
with a matching header field is forwarded. Note that not all
of these fields are equally well suited to describe a network
topology for publish/subscribe. For example, configuring
MAC addresses can easily conflict with other services oper-
ated at the link layer. Therefore, in this paper we assume
that PLEROMA will only install flows with respect to the
fields corresponding to IP-Multicast addresses.

An update of the network topology is initiated whenever
the controller receives an advertisement or a subscription re-
quest. Advertisements, publications, and subscriptions are
performed by hosts connected to the SDN-switches of the
network topology. A publisher is required to send an adver-
tisement before sending any publications, while a subscriber
is required to perform a subscription before receiving any
messages. Since hosts are not directly connected and aware
of the SDN-control network, each publisher/subscriber is re-
quired to send an advertisement /subscription to a specific IP
address, IPy;., which has been reserved specifically for the
purpose of performing advertisements and subscriptions. No
switch will install a flow with respect to I Py, and therefore,
all packets carrying this address will be directly forwarded
from a switch over the control network to the controller.

To ensure high expressiveness and establish paths with
low-bandwidth usage between publishers and subscribers,
we follow the content-based subscription model, i.e., an event
is composed of a set of attribute value pairs. The event space
Q, i.e., the set of all possible events that can be disseminated
by the publishers, can be interpreted by a multi-dimensional
space of which each dimension refers to the values of a spe-
cific attribute. An event is simply represented as a point
in this space. Building on the principle of spatial index-
ing [13], we can divide the event space into regular subspaces
that serve as enclosing approximations for events, advertise-
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Figure 2: This figure illustrates for two attributes A and
B the decomposition of the event-space in subspaces each
associated with a distinct dz [14].

ments, and subscriptions. Any subspace can be identified by
a binary string named dz-expression (in short dz). In par-
ticular, dz-expression fulfill following characteristics. 1) The
shorter the dz the larger is the corresponding subspace in
Q. 2) A subspace represented by dz; is covered by the sub-
space represented by dz;, iff dz; is a prefix of dz;. In this
case, we write dz; > dz;. 3) Two subspaces dz; and dz;
are overlapping if either dz; > dz; or dz; > dz; holds and
the overlap dz; N dz; is identified by the longest of two dz.
4) For overlapping non identical subspaces dz; and dz;, the
non overlapping part, say dz; — dz;, may need to be identi-
fied by multiple subspaces. For instance, the non overlapped
part of dz; = 0 w.r.t. dz; = 000 contains subspaces 001, 010
and 011.

The advertisement /subscription can be composed of sev-
eral dz, denoted as DZ. For instance, to approximate the
advertisement in Figure 2 two dz are required, i.e., DZ =
{110,100}. The containment and overlap relationships be-
tween a pair of DZ can be defined w.r.t. set of dz-expressions
represented by them.

Using the above relationships, an event e disseminated by
a publisher p will comprise in its packet header fields a dz
of maximum length. In order to deliver e to a subscriber
s, the controller must have installed on each switch along
the path (between p and s) a flow comprising a covering
dz in a field. The subspace relationship of dz-expressions
allows subscribers with overlapping subscriptions to share a
common subpath(s) and therefore, bandwidth.

Incoming advertisements and subscriptions are processed
by the controller in a sequence to avoid inconsistent up-
dates to the network topology. In order to ensure connec-
tivity between the distinct network partitions, a controller
will need to react in addition to internal advertisement and
subscription requests, also to external advertisements and
subscriptions received via the border gateways (switches).
The rate at which a controller receives external and inter-
nal requests is critical for the time until a subscription is
available. Furthermore, with increasing number of adver-
tisements and subscriptions the number of flows to be in-
stalled within each partition can grow.

The PLEROMA middleware addresses these issues along
three components: The Topology Reconfigurator reacts upon
dynamic internal advertisements/subscriptions. It computes
changes in the network topology of a single partition and in-
stalls flows correspondingly. The border-gate configuration
component of the PLEROMA middleware acts upon exter-
nal advertisements/subscriptions. It treats border gateway
switches as additional subscriber and publisher and ensures
that events published in one particular network partition
will be also forwarded to subscribers in other network par-
titions. Partitioning the network already helps to improve
scalability since subscriptions (of which many may only be
of relevance to a single partition) can be processed concur-
rently by multiple controllers. However, the number of flows
can be further reduced by the dimension-selection compo-
nent which determines for each network partition the most
relevant attributes and limits the length of any installed dz.

3. TOPOLOGY RECONFIGURATION

In this section, we describe how reconfigurations of the
network topology are performed. To this end, we need to
maintain a dissemination structure which allows for band-
width and latency efficient forwarding of packets. Moreover,
changes to the network topology must be efficiently installed,
to handle many subscription and advertisement requests.

3.1 Overview

For the design of a dissemination structure we consider
as constraints latency efficiency, bandwidth usage, and cost
efficiency to update the network topology. Clearly, the low-
est latency is achieved if a controller establishes a short-
est path for each publisher/subscriber pair. However, this
severely limits the reuse in forwarding an event on common
paths. Moreover, each new subscription or advertisement
would trigger updates of the network topology to add paths
between all relevant publishers and subscribers and there-
fore, impose a very high reconfiguration cost.

A common alternative—often taken by traditional broker-
based systems [2, 8]—is to embed the paths between publish-
ers and subscribers by means of filters in a single spanning
tree. The spanning tree reflects low latency paths between
any pair of publisher and subscriber. Since all paths between
publishers and subscribers are embedded in the same tree,
the number of times an event needs to be forwarded is sig-
nificantly reduced. The reconfiguration cost is also limited
to the edges in the spanning tree and is significantly reduced
wherever subscriptions and advertisements overlap. Never-
theless, such a topology imposes limits on the capacity of for-
warding events. While links in the core of the spanning tree
are heavily utilized other links remain even idle. Moreover,
with an increasing number of subscribers and publishers the
path length may increase (because of the limited choice of
edges in the spanning tree) imposing larger delays [27, 17].

The approach followed by the PLEROMA middleware is
to maintain multiple independently configurable spanning
trees. The intention is to i) better balance the load on the
links of the network and this way offer a higher forwarding
capacity in sending events, ii) reduce the length of the path
by limiting the number of publishers and subscribers (i.e.,
organizing edges of the spanning tree only w.r.t. relevant
publishers and subscribers) and this way reduce both the
latency as well as the reconfiguration cost of a path. To this
end, PLEROMA accomplishes the following: Depending on



dynamic advertisements of the publishers, PLEROMA up-
dates the set of spanning trees and determines to which
spanning trees a publisher should forward its events (cf.
Section 3.2). Furthermore, depending on dynamic subscrip-
tions, PLEROMA installs flows with respect to a spanning
tree to ensure published events will reach each subscriber on
an embedded path (cf. Section 3.3).

3.2 Spanning trees

The controller maintains a set of spanning trees (in short
trees), denoted by T'. Each tree t € T is built to disseminate
events covered by a set of subspaces and is overlapping with
advertisements of some publishers. It logically interconnects
all hosts and switches of a partition. A tree t is identified
by the set of dz-expressions, DZ(t), that span the overlap
with advertisements of the publishers. We will ensure for all
trees t and ¢’ in T that DZ(t) N DZ(t") = (). Therefore, an
event will be disseminated at most in a single tree. Let P;
denotes the set of publishers whose advertisements overlap
with DZ(t) of a tree t. Likewise, T, denotes the set of
trees with which the advertisement of a publisher p overlaps.
Furthermore, DZ*(p) defines the part of the advertisement
of a publisher p in P, which overlaps with DZ(t).

On the arrival of an advertisement DZ(p) from a publisher
p, the controller checks for each dz; in DZ(p) the trees in T
to which the publisher can join, i.e., each tree t € T" whose
subspace set DZ(t) overlaps with the subspace of dz;. More-
over, the controller creates a separate tree t,, for the (fine
granular) subspaces of dz; which are not covered by the DZ
of existing trees (cf. Algorithm 1, lines 2-15). In more de-
tail, the controller checks the containment relation between
dz; and the dz comprised in DZ of existing trees, and per-
forms one of the three actions: (1) If dz; € DZ(p) is covered
by DZ of one or more existing trees, then the publisher p
joins the corresponding trees (for publishing events matching
dz;). For instance, a publisher p with a new advertisement
DZ(p) = {11} joins an existing tree with DZ = {1}. (2) If
dz; in DZ(p) covers the DZ of one or more existing trees,
then p joins the corresponding trees (for publishing events
matching the covered subspaces of its dz;) and the uncovered
subspaces are added to the DZ of new tree t,,. For instance,
a publisher p with a new advertisement DZ(p) = {0} joins
an existing tree with DZ containing 00 and uncovered part
of DZ(p), i.e., 01, is added to the DZ(t,) of a new tree t,.
(3) If no containment relation exists, then dz; is added to
the DZ(t,) of newly created tree t,. The procedure cre-
ateTree is used to build the tree ¢, as a shortest path tree
rooted at the publisher p?(cf. Algorithm 1, line 14). With
the controller having a complete view on the switch network,
the building of a tree (e.g., t,) is reduced to a simple graph
problem. The procedure adjustFlowMultSubs identifies ex-
isting subscriptions in the system that match DZ* (p) and
establishes routing paths along the edges of t,, between the
subscribers (of those subscriptions) and the publisher p by
adding flows to the switch network. The addition of flows
to the switch network is detailed in Section 3.3.

The proposed strategy might result in the creation of large
number of trees depending on the advertisements of the pub-
lishers. To avoid this problem, the controller merges exist-

2We opted for shortest path tree in our implementation,
however, other tree creation algorithms such as minimum
spanning tree etc., can also be employed without any mod-
ification to the propose approach.

ing trees if their number increases above a certain threshold.
Merging can be easily performed by mapping DZ of trees
(to be merged) to a smaller set of coarser subspaces (i.e.,
with shorter |dz|). For instance, two trees ¢ and t2 with
DZ(t1) = {0000,0010} and DZ(t2) = {0001,0011} respec-
tively, can be merged in a single tree with DZ = {00}.
Section 5 details further methods to avoid the problem as-
sociated with the number of trees.

Finally, it is worth noting that the proposed tree creation
strategy can be further enhanced by taking into account
the event traffic and available subscriptions in the systems.
However, we opted for the simple version to ensure low re-
configuration overhead in terms of creation/merging of trees
and thus low reconfiguration delay in the presence of dynam-
ically arriving (un)subscriptions and (un)advertisements.

3.3 Maintenance of flow tables

The flow tables in the switch network are modified (e.g, by
adding or removing flow entries) by the controller as a result
of (un)subscription and (un)advertisement requests. In the
following, we will first focus on subscription requests and
later briefly describe the handling of unsubscription requests
by the controller.

3.3.1 Subscription requests

Subscription requests are handled similar to the advertise-
ments, except for the fact that a newly arrived subscription
cannot trigger the creation of new trees (cf. Algorithm 1,
lines 16-25). More precisely, upon the reception of a sub-
scription DZ(s) from a subscriber s, the controller searches
for a set of trees T such that the subspaces represented by
the DZ of trees in T, overlap with the subspaces of DZ(s).
If no overlap exists (i.e., Ts is empty), then the subscription
is simply stored at the controller. The stored subscriptions
are again checked for overlap, whenever DZ of an existing
tree is changed or a new tree is created as a result of an
arrival of a new advertisement (cf. Algorithm 1, lines 9, 15).

Nevertheless, if T is not empty (i.e, overlap exists), then
the controller adds subscriber s to each ¢ in T by establish-
ing paths between the subscriber s and all publishers with
overlapping advertisements in ¢t. Each path between a pub-
lisher p and a subscriber s on a tree ¢ only forwards the
events matching the subspaces overlapped between DZ*(s)
and DZ'(p). This way false positives are avoided.

As a first step, the controller calculates the route be-
tween the subscriber s and each relevant publisher p (in
P;) on the tree t. A route consists of a sequence of physical
switches (denoted as R) on which flows need to be estab-
lished along with the out ports (denoted as oP) through
which a matching event should be forwarded so that con-
nectivity is achieved between the publisher p and the sub-
scriber s, i.e., (p,s,t) = {(Ri,0F;),...(R;,0P;)}. Once the
route is calculated, the controller establishes the path by in-
serting (or modifying) flows on the switches along the route
between the publisher p and the subscriber s. The flows en-
sure only the events matching the overlapped subspaces (i.e.,
DZ'(s) N DZ"(p)) are forwarded on the path. The process
of establishing paths along the switch network is detailed in
the next section.

3.3.2  Flow installation

The installation of flows on the switches requires to specify
the match field (MF), instruction set(IS) and priority order
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(PO) of a flow [20]. The matching field defines the header
information against which packets are matched. Recall that
PLEROMA uses for interoperability with other services the
IP-multicast range to embed dz-expressions. For instance,
subspaces with dz = 101101 and dz = 101 are converted to
IPv6 multicast addresses ££0e:b400:* and ££0e:a000: * re-
spectively. The symbol * is used to represent standard wild-
card/masking operations, which are supported by hardware
switches for matching IP addresses using Class-less Interdo-
main Routing (CIDR). Therefore, an event dz = 101101 can
be matched against a flow with dz = 101 in hardware switch
during forwarding, i.e., ££f0e:a000::/19 > £f0e:b400: : /22.

Furthermore, in the instruction set the outgoing ports are
specified, ensuring that a matching packet (i.e., an event)
can be forwarded to multiple destinations in the spanning
tree. Other than forwarding on out ports, another action
which can be specified in IS is to change the destination IP
field of the matching packets (i.e., events) on the terminal
switches (from dz) to the IP of the hosts on which sub-
scribers are running, as depicted by switches Ry and Rs in
Figure 3. Finally the priority order, needs to be defined to
decide on the order in which flows will be applied to a packet.
For example, an incoming event (dz = 1001) on switch R3
matches multiple flows with dz = 1 and dz = 100. However,
the switch only follows the instructions of the first match.
Therefore, to ensure proper forwarding the flow installation
gives higher priority to the flows with longer dz. In Figure 3,
priority order on Rj3 ensures that all packets matching flow
with dz = 100 are forwarded to both switches (R2 and Ry),
however, packets matching flow with dz = 1 but not with
dz = 100 are only forwarded to Ra.

To describe the maintenance of flows in the presence of
dynamic (un)subscriptions, we first define the containment
relation between flows w.r.t. a single switch. A flow fl1 cov-
ers (or contains) another flow fla2, denoted by fl1 > fla, iff
the following two conditions hold: (i) the dz associated with
the destination IP address in the match field of fls is covered
by the dz of fly, and (ii) the out ports to which a packet
matching fls is forwarded are subset of those specified in the
IS of fli. Likewise, a partial containment relation () can
be defined between flows of a switch (or flows to be installed
on a switch). A flow fIl; partially covers (or contains) an-
other flow flz, denoted by fli Z fl2, if dz associated with
the match field of fli covers dz of fla, but not all the out
ports used for forwarding packets matching fl2 are listed in
the IS of fli.

The procedure flowAddition is used by the controller to
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set up flows on the switches along the route (p, s,t) between
the publisher p and the subscriber s (cf. Algorithm 1, lines
31 - 51). The dz used for creating the match field of the
new flows (to be added in the switch network) is determined
from the overlap between DZ*(s) and DZ"(p), as mentioned
earlier.

In more detail, the controller iteratively checks the exist-
ing entries in the flow tables of each switch R; along the
route (p, s,t) and determines whether to add a new flow fl,
or to modify (or delete) existing flows. The following cases
drive the process of flow addition and modification at a par-
ticular switch R;. The cases are explained w.r.t. the changes
to the flow tables of the switches in Figure 4 on the arrival
of new subscriber s3 with subscription DZ(s3) = {10}. (1)
If the flows are not currently installed on a switch, then the
new flow fl,, is simply added to the flow table of that switch,
e.g., a new flow with dz = 10 is added to R in Figure 4.
(2) If an existing flow fl. already covers the new flow fl, to
be installed on the switch (i.e., flc = fl,), then no action
is performed, e.g., no new flow is added to the switch Ry in
Figure 4. (3) If an existing flow fl. is covered by the new
flow fl,, then the new flow fl, is added and fl. is deleted
from the flow table as it is no longer needed, e.g., in Figure 4
existing flows associated with dz = 100 are replaced by new
flows with dz = 10 on R3 and R4. (4) If the new flow fl,
is partially covered by an existing flow fl. (i.e., flc < fln),
then fl, should be added with high priority and should in-
clude the out ports in the IS of fl., as depicted by Rs in
Figure 4. (5) Finally, if the existing flow fl. is partially
covered by the new flow fl,, then besides adding fl,, to the
flow table, the existing flow fl. should be updated to include
out ports used by fl,, and to hold higher priority than fi,,
e.g., in Figure 4 an additional out port (i.e., oP = 3) and
a higher priority order is assigned to an existing flow on Rs
with dz = 100.

3.3.3  Unsubscriptions

Until now we have focused on the maintenance of flow ta-
bles w.r.t. advertisements and subscriptions in the system.
Now, we will briefly discuss the handling of unsubscriptions.
On the arrival of an unsubscription, the subscriber s is re-
moved from all the trees Ts associated with the correspond-
ing subscription. This is accomplished by removing previ-
ously established paths between s and all publishers with
overlapping advertisements (i.e., DZ'(s) N DZ'(p) # 0 ) on
each tree t in Ts. To remove a path on a tree ¢, the flows are
either deleted or downgraded depending upon other sub-



Algorithm 1 Publish/Subscribe maintenance at a single
controller

1 upon event Receive(ADV, p, DZ(p)) do

2 for all dz; € DZ(p) do

3 dzNewTree = ()

4 Ty ={t €T AN3dz; € DZ(t) : dz; > dz; V dz; > dz;} //
Set of trees with overlapping subspaces with dz;

5: if T, # 0 then

6: for all t € T, do

7 DZ'(p) = DZ(t) Ndz; // Overlapped subspaces

8 joinTree(p, DZ!(p), t)

9 addFlowMultSub(p, DZ!(p), t)

10: uncoveredSubspace = dzi— Uycireeger P2 (D)
11: dzNewTree = uncoveredSubspace

12: else

13: dzNewTree = dz;

14: t, = createTree(p, dzNewTree)

15: addFlowMultSub(p, dzNewTree, tr,)

16:  upon event Receive(SUB, s, DZ(s)) do
17:  for all dz; € DZ(s) do

18: Ts ={t € T A3dz; € DZ(t) : dz; > dzj V dz; > dz;}

19: if Ts # 0 then

20: for allt € Ts do

21: DZ!(s) = dz; " DZ(t) // Overlapped subspaces

22: pubSet = {p € P, A3dz; € DZ'(p) : dz; > dzj V
dz; = dz;} // Publishers with overlapping DZ?(p)

23: for all p € pubSet do

24: overlapWithPub = dz; N DZ!(p)

25: flowAddition(overlapWithPub, (p, s,t), t)

26: procedure addFlowMultSub( p, DZ, t) do
27: for all s€ S do

28: if DZNDZ'(s) # 0 then
29: overlapWithPub = DZ N DZ(s)
30: flowAddition(overlapWithPub, (p, s, t), t)

31:  procedure flowAddition( dz, (p, s,t), t) do
32:  destIP = (binary(££0e:b400)& (dz < 112—|dz|))\ 16+ |dz]|
33:  for all r; € (p,s,t) do

34: Flow fl, = MFUISU PO

35: fln.MF = destIP

36: fln.PO = default value

37: fln.IS.0P = {r;.oP;}

38: curFlow = getCurrentFlowsFromSwitch(r;.R;)

39: if r; is last entry in (p, s,t) then

40: fln.I1S.set-destIP = s.IP

41: if curFlow # 0 A —(3flc € curFlow : fl. > fl,) then
// Cases 3 - 4: None of the curFlow fully covers fl,

42: for all fl. € curFlow : fl, > flc do // Case 3

43: deleteFlowFromSwitch(fl., r;.R;)

44: for all fl. € curFlow : fl. < fl, do // Case 4

45: flnIS.0P = fly.IS.0P U flc.IS.0P

46: increasePriority (fl,.PO)

47: for all fl. € curFlow : fl,, £ flc do // Case 5

48: fle.IS.oP = fl..IS.oP U fl,.I1S.0P

49: increasePriority(fl..PO)

50: modifyFlowOnSwitch(fl., r;.R;)

51: addFlowOnSwitch(fl,, r;.R;)

scribers reachable (w.r.t. their relevant publishers) via a
particular switch or in other words depending upon the al-
ready established paths passing through a particular switch.
For example, on the arrival of an unsubscription from ss in
Figure 4, the flow with dz = 10 is deleted from the flow
table of R¢ as no other subscriber is reachable w.r.t. p1 via
Rgs. However, the flows installed on switches R3, R4 and Rs
have to be downgraded from dz = 10 to use dz = 100 (in
their match fields) because the path from p; to subscriber
sg with DZ(s2) = {100} passes through these switches.

4. INTEROPERABILITY OF PARTITIONS

So far the mechanisms allow only for the independent con-

figuration of a single partition. In this section, we detail how
PLEROMA ensures also connectivity between subscribers
and publishers of distinct partitions. Our mechanisms pre-
serve the decentralized control in which each controller per-
forms independent updates to its own switch network (i.e.,
own partition) and therefore, ensures scalability in perform-
ing reconfiguration. The design goal of PLEROMA is to
minimize the coordination overhead between partitions and
exchange as little information as possible between neighbor-
ing partitions. To this end the controller needs to perform
two main tasks. 1) The controller has to discover adjoined
switch networks and establish communication with the cor-
responding controllers (cf. Section 4.1). 2) The controller
has to install inter-partition paths that provide connectiv-
ity between publishers and subscribers in different partitions
(cf. Section 4.2).

4.1 Communication across partitions

In order to set up routing paths between publishers and
subscribers residing in different switch networks, additional
knowledge is required such as i) interconnectivity between
network partitions, ii) identity of controllers assigned to dif-
ferent switch networks (i.e., partitions), and iii) local sub-
scriptions and advertisements managed by each switch net-
work. For instance, in Figure 5 an inter-switch routing path
between an incoming subscriber s1 (at c3) and an exist-
ing publisher p; can only be established if the controller
cs knows that i) a publisher p; with DZ(p:) is residing in
partition N¢,, and ii) partition N, is only reachable via
Ne,.

In our approach, a controller (e.g., ¢1 in Figure 5) only
maintains knowledge about the directly reachable neighbor-
ing switch networks (e.g., Ne,). Information required to set
up inter-network paths (such as advertisements or subscrip-
tions) is only shared with the neighboring switch networks
(e.g., N¢, ), which in turn may choose to share the infor-
mation with their respective neighbors (e.g., N¢, ) and in
this way the routing paths spanning multiple switch net-
works can be established. In realizing a decentralized ap-
proach, two important issues have to be resolved: First, the
controller ¢, which is only aware of its own N., needs to
discover reachable switch networks. Second, the controller
¢ needs mechanisms to contact and share information with
the controllers of the discovered switch networks without
knowing their actual identities.

Discovery of adjoining switch networks: A controller ¢ can
discover each of its adjoining switch networks N, by iden-
tifying border switch/es connecting N. and N, . Here, we
briefly describe an OSI layer 3 (i.e., network layer) mech-
anism to automatically detect the border switches of ad-
joining switch networks in the same connectivity domain.
More precisely, a controller (such as Floodlight [7]) discov-
ers the topology associated with it by sending Link Layer
Discovery Protocol (LLDP) packets to all switches in its
own local switch network. On receiving LLDP packet di-
rectly from the controller, a switch R; forwards the packet
over all its ports to other connected switches. However, in
case the LLDP packet is received from another switch it
is handed over to the controller which accordingly creates
a connection between the two switches (i.e., target switch
of the LLDP packet and the switch forwarding the packet
to the controller) in its discovery table. In general, LLDP
packets generated by one controller is considered invalid by
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Figure 5: Publish/Subscribe across multiple independently
controlled switch networks.

the other controllers. However, we extend this mechanism
by identifying the LLDP packets received from other con-
trollers and noting down the switch-port tuples at which
they were received. Clearly, according to this mechanism, a
switch can receive a packet from another controller only if it
is directly connected to a switch of the adjoining network.

Communication between controllers: For a controller ¢ to
forward a packet to a controller ¢, of a neighboring parti-
tion, ¢ looks up the switch-port tuple (R,oP) for the par-
tition N,,, . It instructs the border switch R to forward the
packet via port oP. The destination IP of the packet is set to
I Pyi;. Therefore, the border switch of N, will forward the
packet to ¢,,. In Figure 5, the switches R; and R2 connected
to the network N, serve as border gateways (or switches)
with their ports 3 and 2 linked to adjoining networks N., and
N, respectively. The controller c; can communicate with c;
by sending message through switch-port tuple (R1,3) with
destination IP set to IPyf;,. It is worth mentioning that
the proposed strategy ensures interoperability between het-
erogeneous switch networks. A neighboring switch network
may be organized (and optimized) in a different manner and
may be managed by multiple controllers (e.g., for load bal-
ancing).

4.2 Inter-partition routing paths

In this section, we detail how to establish inter-partition
paths building on the mechanisms in Section 4.1. In gen-
eral, to set up paths, advertisements are forwarded across
all partitions of the SDN network. The subscription re-
quests subsequently follow the reverse path previously taken
by overlapping advertisements.

More precisely, a controller ¢ on receiving an advertise-
ment request Adv. from a host (connected to a switch in
N.) forwards the request to the controllers of its adjoining
networks using the border switches. The external request
Adve (i.e., request from an adjoining network) is perceived

by a (remote) controller ¢, as arriving from the virtual host
connected to its border switch. Requests from virtual hosts
(i.e., external requests) are treated in the same way as those
from the local hosts. Moreover, the external advertisement
request Adve is forwarded by ¢, to all other adjoining switch
networks, except the one from which the (external) request
is received, to ensure advertisement is known to all parti-
tions of the SDN network. For example, in Figure 5 on
receiving an external advertisement request (DZ(p1) = {0}
at time = 0) from N,,, the controller ¢, i) identifies it as
arriving from a virtual host connected to switch R; at port
3, ii) creates/merges trees associated with dz = 0 in N.,,
and iii) finally forwards the external request to the adjoin-
ing network Nc,.

It is important to mention that forwarding each advertise-
ment to all partitions of the SDN network increases the inter-
partition control traffic and induces extra load on controllers
(in terms of processing and memory resources). Therefore,
we employed covering-based forwarding approach, where an
advertisement request is only shared with the controller of
a neighbouring switch network if it is not covered by previ-
ously forwarded requests.

Likewise, on receiving a subscription request matching an
external advertisement, a controller ¢ establishes the path
in its own N, by modifying flow tables of switches along
the route between the subscriber and the virtual host of the
external advertisement. Moreover, the controller ¢ forwards
the subscription to the controller of the adjoining network
from where the external advertisement arrives. Similar to
advertisements, a subscription request is only forwarded to
an adjoining network if it is not covered by the previously
forwarded subscriptions (to save inter-switch network con-
trol traffic). For example, in Figure 5 the controller c3 for-
wards an incoming subscriptions (DZ(s1) = {00} at time
= 1) to ¢z for setting up paths in N.,. The request is in
turn forwarded by controller c2 to ¢1. However, subsequent
subscription request from s (i.e., DZ(s2) = {000} at time
= 2) is not forwarded by c2 to c¢1 because it is already cov-
ered by the subscription of s;.

S. DIMENSION SELECTION

In PLEROMA, the length of dz-expressions required to
accurately represent the subspaces mapped by subscriptions
(advertisements or events) increases linearly with the num-
ber of attributes (or dimensions) in the system. Recall, in
practice the length of dz is limited by the range of IPv6 (or
IPv4) multicast address reserved for the publish/subscribe.
Similarly, for an event space with many attributes, the num-
ber of dz (i.e., subspaces) for an accurate subscription (or
advertisement) representation may be very high and may
produce flow tables with large number of entries.

PLEROMA addresses the above limitations by perform-
ing spatial indexing only on a small subset of dimensions,
denoted as 2p. The dimensions in the set Q2p are selected
according to their ability to avoid dissemination of unnec-
essary messages during in-network filtering. More precisely,
the ability of a dimension d to reduce false positives mainly
depends on two factors, i.e., selectivity of subscriptions and
distribution of events along that dimension. It is worth men-
tioning, that both the factors play an equally important role
during the selection of dimensions. For instance, selection of
a dimension solely based on high selectivity of subscriptions
may not be beneficial if the event traffic along the dimension



is always consumed by the same subscriptions. Therefore,
PLEROMA utilizes variability (or in other words variance)
in the set of subscriptions matched by the events (according
to current event traffic) as the main criteria for the selection
of dimensions to perform in-network filtering of events.

In more detail, let E* be the set of last 1 events pub-
lished in the system before a given time ¢. Let S¢ denote
the set of subscriptions matched by an event e € E* along
a dimension d. The number of subscriptions matched by
the events in E’ along all dimensions can be represented
by a matrix W € RIQlX‘Et‘, such that w;; = |Si|. Given
the matrix W, the dimensions with high variability in the
set of subscriptions matched by events in E? can be eas-
ily selected by calculating the variance along each row (of
W). However, distribution of events and subscriptions may
be correlated along different dimensions, e.g., subscriptions
may consume similar event traffic along multiple dimensions.
Selection of highly correlated dimensions is not desirable be-
cause correlated dimensions introduce redundancy (i.e., ad-
ditional overhead in terms of the length of dz-expressions
and number of flows) without much benefit towards reduc-
tion of unnecessary event traffic in the system.

Without going into much mathematical details, we high-
light the main steps required to select the dimensions (in
Qp) that can perform in-network filtering with low redun-
dancy. Initially, we calculate the covariance matrix, i.e.,

C=Wx WT, where W is a centred matrix obtained by
subtracting the mean of the matrix W from its columns.
The covariance matrix captures the correlations between all
possible pairs of dimensions w.r.t. event traffic consumed
by the subscriptions along each dimension. Afterwards, we
spectrally analyse the covariance matrix by means of eigen-
decomposition, i.e., C = QAQT, where A = {\;,.. DN
is diagonal matrix of eigenvalues and Q = {¢;...,qq} is
the matrix whose columns are orthogonal eigenvectors of
C. The eigendecomposition transforms the original dimen-
sions(in €2) into an orthogonal basis (represented by Q) such
that the eigenvectors (of Q) represent the dimensions along
which the variance in W is maximized (i.e., variance in
the event traffic matched by subscriptions is maximized).
However, dimensions in the orthogonal basis (i.e., eigenvec-
tors) do not directly correspond to the original dimensions.
Therefore, we need a method that can utilize the variability
information represented by eigenvectors to select the origi-
nal dimensions. We employed the method proposed by [18]
for this purpose. In particular, an eigenvector ¢ with largest
eigenvalue represents the dimension (in the orthogonal basis)
along which variance is maximized and thus this eigenvec-
tor q is used to rank the original dimensions. In more detail,
a higher absolute value of i*" coefficient of ¢ (i.e., ¢;) indi-
cates that the dimension d; is more important to be used for
filtering. Thus the dimensions (in the original space) that
correspond to the first k coefficients with higher magnitude
are selected for filtering. The number of dimensions (i.e., k )
to use for filtering can be determined by analysing the mag-
nitude of coefficients in q. More precisely, given the eigen-
vector ¢ (i.e., with the highest eigenvalue) sorted according
to the magnitude of its coefficients, k£ can be selected such

kg
that Zig(f‘ is above an administrator defined threshold.

Once the dimensions in Qp are selected, the controller i)
generates new DZ for existing subscriptions and advertise-
ments, ii) installs flows between publishers and subscribers

T

TRTITRT

Figure 6: Testbed topology.

in the switch network w.r.t. to newly created DZ, and iii) fi-
nally notifies publishers about the selected dimensions to en-
sure future events are published with correct dz. In practice,
subscriptions/advertisements as well as event traffic change
dynamically and therefore, over time the previously selected
dimensions may become suboptimal. In order to adapt to
the changes, a controller periodically collects information
about the events disseminated (in the recent time window)
by the publishers and repeats the dimension selection pro-
cess.

6. PERFORMANCE EVALUATIONS

This section is dedicated to an analysis of the design and
implementation of the proposed PLEROMA middleware. A
series of experiments are conducted to understand the effects
of the design on performance metrics such as (i) end-to-end
delay for event dissemination, (ii) throughput w.r.t. number
of published events, (iii) bandwidth efficiency in terms of
false positives w.r.t. length of dz and number of flows, (v)
reconfiguration delay in the presence of dynamics, and (iv)
control overhead in managing multiple control partitions.

6.1 Experimental setup

The PLEROMA middleware has been evaluated under
two test environments. The majority of the experiments
has been conducted on a SDN testbed [12] consisting of com-
modity PC hardware and virtualization technologies as used
in datacenters. Figure 7 depicts the hierarchical fat-tree
topology of the testbed which consists of a cluster of hosts
(running on commodity rack PCs). Some of these hosts
act as OpenFlow switches (switch hosts) with four phys-
ical ports by executing a production-grade software switch
(Open vSwitch [21]) attached to the 4-port NIC, i.e., switches
R1 to R10. The other hosts act as end systems (end hosts)
by executing virtual machines on two physical machines, i.e.,
h1 to hs. The end hosts implement the functionality to pub-
lish and subscribe events. The SDN controller is hosted on
a front end machine which manages the virtual machines
and network topology. Besides the testbed, experiments as-
sociated with multiple controllers have been conducted on
a prominent tool for emulating software-defined networks,
namely, Mininet [16]. Mininet uses the concept of OS-level
lightweight virtualization for network emulation that allows
users to experiment with various topologies and applica-
tion traffic. We use Mininet to experiment with 20 switches
on two different topologies, a fat-tree topology (as describe
above) and a ring topology. In the ring topology, each switch
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Figure 7: Performance evaluations

has an end host connected to it which may play the role of
a publisher or a subscriber.
The content-based schema contains up to 10 attributes,

where the domain of each attribute vary in the range [0, 1023].

Experiments are performed on two different models for the
distributions of subscriptions and events. The uniform model
generates random subscriptions and events independent from
each other. The interest popularity model chooses 7 hotspot
regions around which subscriptions/events are generated us-
ing the widely used zipfian distribution.

6.2 End-to-end delay

The first set of experiments study the delay characteristics
of the aforementioned SDN testbed (with fat-tree toplogy)
w.r.t. various metrics. More specifically, we first analyse the
effect of flow table entries on the end-to-end delay between a
publisher and a subscriber connected via the longest path in
the topology. During the experiment, the flow table size of
each switch along the longest path is varied between 5000 to
80, 000 entries and 10,000 UDP packets containing random
events (i.e., events matching different entries in the flow ta-
ble) are sent from the publisher at a constant rate. The size
of each packet is up to 64 bytes depending upon the length

of dz. Figure 7(a) shows that the average delay calculated
at the subscriber remains almost constant for different flow
table sizes. This clearly indicates that the number of entries
in the flow table has very little impact on the processing
delay at the switches.

We next analyse the end-to-end delay to deliver an event
from a publisher to all interested subscribers w.r.t. the num-
ber of subscriptions in the system. For the experiment, up
to 16,000 subscriptions are generated using the two above
mentioned distributions (i.e., uniform and zipfian) and di-
vided among different end hosts. Furthermore, end-to-end
delay measurements are averaged across 10, 000 events pub-
lished in the system at a constant rate. Figure 7(b) indicates
that the number of subscriptions does not significantly im-
pact end-to-end delay. It is worth noting that for uniform
distribution the generated subscription set is randomly di-
vided among all end hosts (i.e., subscribers). As a result, the
possibility of every end host receiving at least some events is
extremely high, resulting in a near constant end-to-end de-
lay in the system. However, in case of zipfian distribution,
each end host is assigned a hotspot and subscribes for sub-
spaces corresponding to its respective hotspot only. With
events also following a zipfian distribution, it may so hap-



pen that one or more end hosts do not receive any events.
As a result, the average end-to-end delay in the system may
vary (albeit slightly) with different subscription workloads,
as indicated in Figure 7(b).

We would like to stress that using virtual switches does
not invalidate our results, but rather gives very conserva-
tive performance bounds. For instance, recently performed
micro-benchmarks to evaluate the forwarding delay using a
NEC hardware switch validate our results and indicate addi-
tional gain that is expected from using hardware switch [5].

6.3 Throughput

In this experiment, we evaluate the ability of the switch
network and the end hosts to handle high incoming event
rates. Subscriptions are generated following zipfian distri-
bution and are divided among 4 end hosts. A single pub-
lisher is used to send events at varying rates. According to
Figure 7(c), beyond a certain event rate, not all the events
are received by the end hosts. However, results indicate
that the switch network is able to successfully forward every
event to the end hosts. The drop in received events is due to
the processing limitations at the end hosts. In another set
of experiments, we determine that by using faster machines
the throughput can be increased upto 170,000 events per
second. However, in either case the bottleneck is on the side
of end hosts.

6.4 Bandwidth efficiency w.r.t. false positives

False positives are those events which are delivered to a
subscriber without it being interested in receiving them. We
define false positive rate (FPR) as a percentage of the num-
ber of unnecessary events received to the total number of
events received. Clearly, false positives are undesirable and
the aim of any publish/subscribe system is to keep them to
a minimum. We observe that longer the dz, the lesser are
the false positives. This follows from the fact that as the
length of the dz increases, the granularity of the subspaces
(assigned to advertisements, subscriptions and events) also
increases and hence the false positives delivered to a sub-
scriber decrease. Figure 7(d) shows the variation of false
positive rate with the length of dz for different number of
subscriptions for both uniform as well as zipfian distribution.
As seen in the figure, with increase in the length of the dz the
false positives decrease for both distributions. The variation
of false positives is also noticeable with number of subscrip-
tions. This is justifiable as a large number of subscriptions
divided randomly among end hosts almost represents the
near-ideal case. As we only have a limited number of bits,
say Lg., for the representation of dz in an IP multicast ad-
dress, subscriptions and events which differ in dz only after
the Lg4. cannot be differentiated. Thus, for less number of
subscriptions, an event e might fit into the filtering criteria
of a subspace — which does not actually contain (or cover)
the event e — due to dz truncation and is counted as a false
positive. But for large number of subscriptions, the same
event e might have been contained in (or covered by) the
subspace subscribed by another subscription and hence is
no longer counted as a false positive.

It is quite clear from the above discussion that the Lg.
constraint in the dz representation of subscriptions and events
severely impacts the occurrence of false positives. If the
number of dimensions in the event space is high, the dz
constituting subscription subspaces can be very long and

difficult to be accommodated in limited number of bits (cf.
Section 5). For this reason we introduced the concept of di-
mension selection in this paper. To portray the effectiveness
of this concept, we conducted a set of experiments using an
event space with 7 dimensions. The subscriptions were gen-
erated using zipfian distribution and divided equally among
the end hosts. Events for the experiments are also gener-
ated primarily using zipfian distribution. To model vary-
ing selectivity (across different dimensions of event space),
we impose restrictions on the degree of variance of event
values along certain dimensions. Depending on the restric-
tions, three types of zipfian workloads are generated and
evaluated. Figure 7(e) presents the behavior of FPR on di-
mension selection for the generated zipfian workloads. The
figure clearly indicates that reduction of dimensions proves
to be an effective way for decreasing false positives.

6.5 Reconfiguration delay

This experiment measures the average reconfiguration time
required by a controller on the arrival of a new subscription,
after a particular number of subscriptions has already been
deployed in the system. Figure 7(f) shows that the recon-
figuration delay varies significantly with the initial number
of subscriptions installed in the system and it is difficult to
draw a relationship between the two. Results indicate that
this delay depends on the number of flows modified/added
on arrival of a subscription which itself is influenced by vari-
ous factors such as position of the subscriber in the network,
existing subscription workload etc. However, it is quite clear
from the results that even with 25, 000 already deployed sub-
scriptions in the system, the controller is capable of process-
ing around 54 subscriptions/second. This implies that the
proposed system scales fairly well in the presence of dynam-
ically arriving subscription and unsubscription requests.

6.6 Control overhead

A single controller processes one subscription request at
a time (to ensure consistency of flow tables in the switch
network) and this behavior can be further improved, as dis-
cussed earlier, by introducing multiple controllers capable of
processing simultaneous requests in disjoint network parti-
tions. In the distributed setting, there are mainly two types
of control messages received by a controller. These are mes-
sages generated by end hosts (i.e., internal advertisements
and subscriptions) and those generated by controllers (i.e.,
external advertisements and subscriptions) to share control
information with others (i.e., controllers). Even though this
implies that the generated (control) traffic increases, analy-
sis shows that the average overhead at each controller may
reduce significantly. Earlier, every end host request would
be sent to the only controller available in the system. But
now, end host requests are primarily sent only to the lo-
cal controller which then takes a decision on sharing it with
other controllers. So, our next set of evaluations study the
behavior of average controller overhead and total control
traffic with increased partitioning. We use uniform distribu-
tion and the subscriptions are randomly distributed between
the end hosts of the network. Consequently, the number of
requests received per controller for different number of con-
troller instances leading to different network configurations
has been measured.

Figure 7(g) presents normalized graphs depicting average
controller overhead when the number of controller instances



(network partitions) is gradually increased from 1 to 10. For
each subscription workload, the average controller overhead
reduces with increasing number of controllers. The normal-
ization has been done to compare the benefits of partitioning
when different number of subscriptions is used. It is visible
from the figure that if the number of subscriptions is signifi-
cantly increased, the benefit of partitioning increases as well.
This follows from the fact that with more number of sub-
scriptions, the probability of a match at the local controller
also increases. This means that gradually lesser number of
subscriptions needs to be shared with remote controllers be-
cause of covering-based routing. For the same reason, in
Figure 7(h), which depicts behavior of total control traffic
with increased partitioning, the comparative increase in con-
trol traffic for 400 subscriptions is less than 200 subscriptions
which in turn is less than 100 subscriptions.

7. RELATED WORK

In the past decade, many middleware implementations for
content-based publish/subscribe have been proposed with
scalability as the main design criteria [2, 8, 19, 25]. Sub-
scription summarization — using techniques such as sub-
scription covering [2] and subscription merging [19] — has
been identified as a promising method to achieve scalability.
Using subscription summaries, events are filtered from dis-
seminating to the parts of the broker network that do not
host interested subscribers. Similarly, forwarding of new
subscriptions is only restricted to the brokers which previ-
ously do not receive subsuming (or covering) subscription
summaries. Clearly, subscription summarization is benefi-
cial to reduce unnecessary message overhead in the broker
network. However, the time until a new subscriber starts
receiving events may be arbitrarily high, because the sub-
scription request has to be forwarded and processed by a se-
ries of brokers. Moreover, maintenance of subscription sum-
maries is very expensive in the presence of dynamic changes
to the topology of the borker network [4]. In literature sev-
eral solutions have been proposed to reduce the overhead
associated with the maintenance of subscription summaries
and efficient handling of new subscriptions [1, 10, 4]. Ja-
yaram et al. [10] introduce the concept of parametric sub-
scription to efficiently handle the subscriptions which are
continuously changing w.r.t. certain parameters such as lo-
cation. Kyra [1] partitions the publish/subscribe broker net-
work into smaller routing networks such that event matching
and subscription maintenance overhead is balanced between
the networks. However, the partitions are frequently recal-
culated to cope with the changes in the workload (e.g., event
traffic) as well as dynamics of the system (e.g., failure or ar-
rival of a broker).

A common drawback of most of the existing publish/sub-
scribe systems is their dependence on the application layer
mechanisms to optimize publish/subscribe operations. For
instance, event routing on a broker network that is orga-
nized oblivious to the underlying physical network (in short
underlay), may result in higher bandwidth utilization (irre-
spective of the use of subscription summarization and event
filtering mechanisms) and higher end-to-end delays, since
multiple logical links in the broker network may share the
same physical links [27]. Only a few systems explicitly take
into account the properties of the underlying network and
its topology to organize publish/subscribe broker network [9,
17, 27, 6]. Although, such systems bear significant cost, it is

still hard to accurately infer advanced underlay properties
such as the current link utilization based on observations on
end systems (such as brokers). In the past, IP multicast has
been proposed to distribute events between the clusters (or
groups) of subscribers and publishers. Clearly, IP multicast
overcomes many drawbacks of application layer by routing
events on the network layer [23, 26]. However, IP multicast
is very expensive in the presence of frequently changing sub-
scriptions and event traffic, mainly because clusters have to
be recalculated to ensure minimal false positives. The re-
cent advent of new networking technologies, such as SDN
and NetFPGA, has raised some research efforts towards re-
alizing publish/subscribe middleware that can support event
filtering and routing within the network. LIPSIN [11] uses
bloom filters in data packets to enable efficient multicast of
events on the network layer. However, the expressiveness
of LIPSIN is limited to the topic-based publish/subscribe.
Zhang et al. [28] address impact of SDN on future design
of publish/subscribe middleware and describe realization of
logically centralized publish/subscribe controller in a dis-
tributed manner. Koldehofe et al. [14] present reference ar-
chitecture to realize content-based publish/subscribe using
OpenFlow specifications. Nevertheless, to the best of our
knowledge we are first ones to thoroughly evaluate the per-
formance of SDN-enabled content-based publish/subscribe
middleware.

8. CONCLUSION

In this paper we have proposed the PLEROMA middle-
ware leveraging line-rate performance for content-based pub-
lish/subscribe in Software-definable computer networks. In
particular, we have proposed methods that preserve the per-
formance characteristics of PLEROMA in the presence of
dynamic subscriptions and publications. Our evaluations
show that PLEROMA i) imposes very low latency in mediat-
ing events between publisher and subscriber, ii) achieves low
latency reconfiguration, iii) reduces the control overhead in
managing multiple partitions, and iv) allows for limiting the
number of flows and preserve at the same time bandwidth
efficiency. Our future research will be on further optimiz-
ing the proposed methods to efficiently configure SDN-based
publish /subscribe systems so that predictable performance
guarantees can also be provided. In this direction, beyond
the presented algorithms for forwarding events and perform-
ing reconfigurations, new mechanisms need to be introduced
in order to detect and react to overload situation in the pres-
ence of a dynamic workload.
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