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Abstract—Complex Event Processing (CEP) systems enable
applications to react to live-situations by detecting event patterns
(complex events) in data streams. With the increasing number of
data sources and the increasing volume at which data is produced,
parallelization of event detection is becoming of tremendous
importance to limit the time events need to be buffered before
they actually can be processed by an event detector—named event
processing operator. In this paper, we propose a pattern-sensitive
partitioning model for data streams that is capable of achieving
a high degree of parallelism for event patterns which formerly
could only be consistently detected in a sequential manner or at
a low parallelization degree. Moreover, we propose methods to
dynamically adapt the parallelization degree to limit the buffering
imposed on event detection in the presence of dynamic changes to
the workload. Extensive evaluations of the system behavior show
that the proposed partitioning model allows for a high degree of
parallelism and that the proposed adaptation methods are able
to meet the buffering level for event detection under high and
dynamic workloads.
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I. INTRODUCTION

For modern IT systems, the ability to timely react to
situations of interest occurring in the real world has become
a fundamental requirement. A growing number of spatially
distributed sensors allow for monitoring the physical world and
enable new situation-aware applications, e.g., in algorithmic
trading [1], traffic monitoring [2]-[5] and the management
of smart energy grids [6]. Distributed Complex Event Pro-
cessing (CEP) systems [7], [8] provide the integration and
analysis of data streams from such sensors, correlating the
low-level information in the sensor streams to complex events
that correspond to situations of interest. Along this process,
distributed CEP operators detect event patterns on incoming
event streams and emit new events to neighboring operators or
to event consumers. In many cases, timely event detection is
crucial, as events that are detected late reduce the benefit the
application can gain from the CEP system.

Delays in an event processing system have several causes,
such as delays imposed by communication, processing, and
buffering of events. In a managed environment like a data
center it is in many cases easy to find acceptable bounds
for communication and processing latencies that can be met
with high probability. For instance, for an operator applied
in a traffic monitoring scenario (cf. Section VI-B) we have
measured in 99 % of the cases a maximal delay of 1.25

seconds for processing one event. However, understanding
communication and processing delays is not enough when the
operator is overloaded, i.e., the arrival rate of events exceeds
the achievable processing rate. In this case a high amount of
events need to be buffered before being processed, which can
cause an unacceptable latency in event detection. For instance,
for the former traffic monitoring operator, several thousand
buffered events induce a buffering delay in the magnitude of
minutes or even hours. Thus, in order to timely detect events, it
is important to be able to establish predictable buffering limits
for the operator.

This is highly challenging, since many situations of interest
encompass a high and fluctuating number of monitored entities
or events. For instance, in the New York Stock Exchange
(NYSE) in average 215,162 quotes/s and 28,375 trades/s occur,
with peak rates of 308,705 quotes/s and 49,570 trades/s [9].
Even higher fluctuations can be observed in traffic monitoring:
Official traffic statistics from the California Department of
Transportation' show that in one single hour (“rush hour”) up
to 25 % of the total daily traffic volume can occur on streets.
Those numbers show that when analyzing stock markets or
traffic situations, operators have to be highly scalable and
adaptive in order to keep a buffering limit.

To reach a processing rate that is high enough to cope with
the workload, the efficient parallel execution of an operator
on dozens of processing entities is necessary. Amongst all
other operator parallelization approaches, data parallelization
frameworks [10]-[17] that apply stream partitioning [18] are
the most potent ones in achieving a high degree of parallelism.
Such frameworks are capable of partitioning the incoming
event stream of an operator, process the partitions in parallel on
several operator instances, and then merge the events produced
by the instances to an outgoing event stream. However, state-
of-the-art frameworks do not provide methods for consistent
stream partitioning for many operator types, for example
aperiodic, period and sequence operators as defined in the
operator specification language Snoop [19]. This can lead to
false-negatives and false-positives. Furthermore, when facing
fluctuating workloads, the parallelization degree must be con-
tinuously adapted in order to keep a buffering limit. However,
since fluctuations of the workload may have a delayed effect
on the imposed processing efforts in event detection, state-
of-the-art approaches [20], [21] that only react to changes
in the utilization of resources will not be able to ensure a
predictable buffering limit. As also confirmed later by our
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evaluation results, those reactive approaches impose to exceed
the acceptable buffering limit most of the time by a factor of
more than 1000.

In this paper, we make an important step towards CEP
systems that timely detect events, by ensuring that each oper-
ator in an operator network produces consistent results and
enforces predictable buffering limits. Our contributions are
threefold: First, we propose a novel pattern-sensitive stream
partitioning model. The partitioning model allows to consis-
tently parallelize a wide class of CEP operators and ensures
a high degree of parallelism. Second, we propose methods to
model the workload and dynamically adapt the parallelization
degree utilizing Queuing Theory (QT), so that a buffering
limit of each operator can be met with high probability.
We combine the proposed models and methods, building an
adaptive data parallelization middleware. Our evaluation shows
that the proposed stream partitioning methods can achieve a
high throughput of up to 380,000 events per second, even on
commodity hardware. Moreover, we show in the context of a
traffic monitoring scenario that under heavily fluctuating work-
loads the adaptation methods enforce a stable parallelization
degree and this way ensure that the buffering limit is met and
only little over-provisioning in terms of resources is required.

The paper is structured as follows. Section II provides an
overview of our data parallelization middleware. Section III
describes the problem that we tackle with the system and
formalizes the guarantees about the buffering limit that we
provide. The novel stream partitioning model is described
in Section IV. In Section V, the problem of adapting the
operator parallelization degree is tackled. Finally, in Section
VI, we provide an extensive evaluation of the system, showing
the performance and efficiency in the context of exemplary
scenarios in the field of traffic monitoring. Related work is
discussed in Section VII, before we conclude the paper and
give an outlook on future work in Section VIII.

II. SYSTEM OVERVIEW
A. Distributed CEP System

A distributed CEP system consists of an operator graph,
incorporating event sources, operators, and event consumers
that are interconnected by event streams. An event e contains
a tuple of attribute-value pairs (the payload of the event),
a unique sequence number within its stream and a time
stamp. Events of different streams inherently possess a well-
defined global order by their time stamps, sequence numbers
and source. Each operator processes events in-order on its
incoming streams and emits events on its outgoing streams to
its successors in the graph. The set of events in all incoming
or outgoing streams of an operator w is denoted I, or O,
respectively.

B. Data Parallelization Architecture

In our data parallelization middleware, each operator in the
operator graph is executed in a data parallelization framework
(cf. Figure 1): A splitter is partitioning [, into independently
processable partitions, a number of operator instances process
in parallel the assigned partitions and produce new events, and
a merger orders the events emitted by the operator instances
into a deterministic sequence O,,. In doing so, the framework
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Fig. 1. Data parallelization framework.

dynamically adapts the number of operator instances, labeled
the parallelization degree.

1) Splitter: Events arriving on the incoming streams are
stored in-order in a queue. The splitter assigns the events ac-
cording to a partitioning model to different operator instances.
The instances process the events of the assigned partitions,
and acknowledge them as soon as they are processed. When
an event has been acknowledged by all operator instances
which it has been assigned to, the event is consumed, i.e.,
discarded from the splitter queue. This way, the queue grows
or shrinks depending on the ratio of acknowledged events
to newly arriving events. We assume that the complexity in
splitting the event streams is by magnitudes lower than the
complexity in the event detection, so that the splitter does
not become the bottleneck in the operator. This assumption
is proven to be realistic by our evaluation results which show
a high throughput in the splitter of up to 380,000 events per
second, even on commodity hardware (cf. Section VI-D).

2) Operator Instances: The execution of an operator in-
stance is controlled by a runtime environment (RE). This
comprises for the main part the management of partitions and
communication with the splitter. The RE receives information
about the bounds of the assigned partitions and the correspond-
ing events, and manages the operator execution so that the
assigned partitions are processed. When an event is processed,
the RE acknowledges it at the splitter.

3) Merger: The merger ensures that an ordering between
all produced events is established, if such an ordering is
required at subsequent operators or event consumers. Further-
more, the merger assigns consecutive sequence numbers to the
ordered events.

C. System Model

The middleware is deployed on an infrastructure that
consists of a number of computing nodes that are considered
failure-free and provide a homogeneous computing capability
in terms of CPU and memory”. The number of hosts used
by the data parallelization middleware is flexible. A sufficient
number of hosts is available, so that new hosts can be allocated
for the deployment of operator instances as well as deallocated

2To work with heterogeneous nodes, the methods we developed in this paper
can be extended to take into account individual computational capabilities of
nodes by utilizing operator profiles for all available node types (cf. Section
V-B). However, homogeneous capabilities are a common case in virtualized
computing environments, so that the assumption is practical to focus on the
main challenges that are tackled in this paper.



when they are not used any more. The allocation of a new
host and deployment of an operator instance is assumed
to take TH (Time Horizon) time units from the allocation
request until the instance is available. The hosts are connected
by communication links which guarantee eventual in-order
delivery of data.

III. PROBLEM DESCRIPTION

For each operator w, the following guarantees must be
provided: Given a correct prediction of the probabilistic dis-
tribution of inter-arrival times of events TH time units in the
future, the parallelization degree is adapted so that a user-
defined buffering limit BL,, of buffered events in the queue
of the splitter will be kept with a user-defined probability
P, oquirea- For example, if the buffer limit is 100 with Pycqyireq
= 95 %, then the filling level of the queue at the splitter will
be below 100 events with a probability of 95 % when checked
at an arbitrary point in time.

This requires solutions to two subproblems: Consistent
stream partitioning (Problem 1) and the adaptation of the
parallelization degree to fluctuating workloads (Problem 2).

a) Problem 1: Consistent stream partitioning: Many
applications utilizing CEP systems require that detected events
capture the status of the monitored entities in the real world in
a consistent way, so that no events of interest to the consumer
are disregarded (false-negative) as well as no events that have
not occurred are signaled (false-positive) [22]. It is therefore
important for the splitter to find consistent partitioning points
in the incoming event streams, so that operator instances
produce exactly those events that would be produced in a
sequential execution of the operator. For instance, consider a
CEP operator applied in traffic monitoring that controls a no-
passing zone for vehicles between two control points. A false-
positive detection of a truck passing another road user would
cause an unjustified ticket, while a false-negative detection
would leave the transgressor unpunished.

To increase the processing rate of an operator, stream parti-
tioning in the splitter must happen independently of processing
the partitions in the operator instances. Furthermore, the opera-
tor instances must process the assigned partitions while sharing
only minimal state amongst each other and needing only
minimal synchronization effort. Consistent stream partitioning
must be supported for a wide range of operators. In doing so,
the splitter should work with a simple model that only requires
minimal knowledge about the operator logic that is needed in
order to partition the incoming streams. Executing the operator
in the parallelization framework should be possible without
interference with the operator logic.

b) Problem 2: Adaptation of the Operator Paralleliza-
tion Degree: It would be possible to determine the optimal
number of instances with a simple mathematical equation if the
inter-arrival times of events at the splitter and the processing
rates of events at operator instances were fixed and well-
known. However, often the workload and also the processing
rates fluctuate. For instance, in the traffic monitoring scenario,
between night time and rush hour a huge difference in the
average rate of vehicles on the road can be observed, and also
at a constant average rate, the number of vehicles per time unit
is bursty. To keep the parallelization degree minimal instead

1: int nextStart = 0, slideT'ime, windowSize

2: bool Ps (Event e) begin

3: if e.timestamp > nextStart then

4: nextStart = etimestamp + slideTime - (e.timestamp %
slideTime)

5: return TRUE

6: else

7 return FALSE

8: end if

9: end function

10: bool Pc (Event e, Selection s) begin
11:  if e.timestamp > (s.startTime + windowSize) then
12: return TRUE

13:  else
14: return FALSE
15:  end if

16: end function

Fig. 2. Predicates for the time sliding window operator.

of always providing for a worst case workload, it must be
continuously adapted. The adaptation method has to take into
account TH, the time needed to deploy a new instance.

IV. STREAM PARTITIONING

To find partitions in the event streams that yield consistent
processing results in the operator instances without requiring
any adaptations of the operator logic, we first analyze how an
operator works on the event streams and describe it in a general
event processing model. Then we develop a partitioning model
that is capable to partition the streams in such a way that the
operator instances produce consistent streams according to the
event processing model.

A. Event Processing Model

Generally, a property of CEP operators is that they perform
a sequence of independent correlation steps on the events of
the incoming streams [22]. In each step, a finite, non-empty
set of events denoted selection o is correlated and a finite
tuple of events is produced and emitted to the merger. This
can be represented by a mapping of tuples of incoming events
E;, to tuples of outgoing events E,,;, which is denoted by the
correlation function f,, : E;, — E,.;. When correlating events
of a selection, the instance executes computations on the events
in 0. Such computations can be as simple as applying a filter
rule or as complex as running a face recognition algorithm on a
set of video frames that are contained in the event payload. As
the correlation function is a mapping, between two correlation
steps no computational state is maintained.

B. Partitioning Model

The idea of our partitioning model is to split the incoming
event stream by selections which by definition contain all
events needed to detect the comprised event patterns, so that we
refer to the model as pattern-sensitive stream partitioning. That
means that each partition must comprise one or more complete
selections, i.e., all events that are part of the selection(s). As no
computational state is maintained between the processing of
different selections, executing two different correlation steps
on two different operator instances is possible without any
need to share state between the two operator instances.




TABLE 1. SUPPORT OF CONSISTENT PARTITIONING. ‘X’ DENOTES

SUPPORTED, ‘—" DENOTES NOT SUPPORTED.

Ti | Ta |V |; | AN]A|P
Pattern-sensitive | X X X | X | X | X | X
Run-based - | x X | —|x | = |-
Key-based - |- |x|-]|x|=-]-

To ensure that a selection is completely comprised in a
partition, all events between the first and the last event of the
selection must be part of that partition. Thus, to partition 1,
the points where selections start and end must be determined.
For each event in I,, one or more out of three possible
conditions are true:

(6)) The event triggers that a new selection is opened.
(i1) The event is part of open selections.
(iii) The event triggers that one or more open selec-

tions are closed.

To evaluate which condition is true, the splitter offers an
interface that can be programmed according to the operator
functionality and that provides the ability to store variables
that capture internal state, e.g., about window start times. The
interface comprises two predicates: Ps; : e — BOOL and
P, : (0open,€) — BOOL. For each incoming event e, P is
evaluated to determine whether e starts a selection, and P,
is evaluated with each open selection o to determine whether
e closes 0. Depending on the order of the evaluations of Pk
and P, on a newly arrived event, different semantics can be
realized with respect to whether the start and close events are
part of the selection or not.

In Figure 2, we showcase the predicates for a time-based
sliding window operator [23]. Selections are spanned over all
events within a time window that moves by a sliding parameter
for each new selection.

C. Runtime Environment

A runtime environment (RE) manages the execution of
an operator instance. It receives the partitions assigned by
the splitter and ensures that exactly those correlation steps
are executed that correspond to the assigned partitions. In
particular, when assigned partitions have an overlap in the
set of comprised events, the RE prevents the operator in-
stance from detecting patterns of partitions that have not
been assigned to it, but enforces an isolation between the
processing of the different partitions. This is done in the
following way: When the operator instance processes an event
that potentially starts a new correlation step, a function in
the RE isAssigned (startevent) is called that signals
whether it is a start event of an assigned partition or not.
Further, when an event has been processed in all assigned
partitions it is comprised in, the RE sends an acknowledgment
to the splitter.

D. Expressiveness

To analyze the operators for which consistent stream parti-
tioning is supported, we consider different categories of event
processing operators from the literature. The following cate-
gories are considered: Sliding window operators (time-based
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Fig. 3. Workflow of the adaptation of the parallelization degree.

(Ti) and tuple-based (Tu)) [23], disjunction (V), sequence (;),
conjunction (A), aperiodic (A) and periodic (P) operators (all
[19]) utilizing an unrestricted consumption mode [24], i.e.,
events can be used in several partitions without restrictions.
Table I compares our pattern-sensitive stream partitioning, the
run-based approach proposed in [1] where event streams are
partitioned into batches of a fixed size, and the key-based
approaches like [11]-[14], [16], [17] where event streams
are partitioned by a key contained in the events. Run-based
partitioning cannot work consistently with operators for which
the maximal amount of events comprised in a partition depends
on the occurring events and thus is unknown before run-time,
which is the case for (Ti), (;), (A) and (P) operators. Key-
based partitioning is even less expressive, not allowing for the
consistent partitioning of event streams based on any other
information than keys contained in every single event, so that
the context of an event cannot be considered as it would be
needed in (Ti), (Tu), (;), (A) and (P) operators. Pattern-sensitive
stream partitioning does not suffer from those limitations. For
(Ti) (cf. Figure 2), (Tu), (;), (A) and (P), the internal state
in the splitter can store the necessary information about the
selection start event. The predicates for (V) and (A) are based
on the simple comparison of event types.

V. ADAPTING THE PARALLELIZATION DEGREE

In this section, we describe how to find and automatically
adapt the parallelization degree at changing workloads. We
aim to always deploy the optimal parallelization degree, which
is the minimal degree that allows the operator to keep the
assigned buffer limit with the required probability. To achieve
this goal, we rely on Queuing Theory (QT) [25] to deduct
a stationary distribution of the splitter queue length for a
given parallelization degree. According to QT, we model the
workload and processing time of an operator by probabilistic
arrival and service processes of events. According to the
arrival process, the events in I, determine the workload of
w. They are streamed from the predecessors of w, resulting
in a process of inter-arrival times of events. According to the
service process, the processing time of an instance of w is
described as the time it takes to process an event. This way,
it is possible to dimension the operator solely based on the
observed arrival and service processes without interference to
the internal operator logic.

This allows us to generate the following workflow in
our approach (cf. Fig. 3): Models of the predicted future
workload and of the corresponding processing times are used
for continuously calculating the optimal parallelization degree
with QT methods. The calculated degree is established by an
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Fig. 4. Workload of an operator in time slices. The highlighted time slice
shows an exponential distribution of inter-arrival times x.

adaptation algorithm that allocates and deallocates operator
instances.

A. Workload Monitoring and Prediction

A typical workload is characterized by three parts [26]:
Seasonal behavior, trends and noise. To account for short term
fluctuations around an average value, i.e., noise, as well as
medium or long term changes, i.e., seasonal behavior and
trends, we divide the time scale into fime slices (cf. Figure
4) and denote by ¢, the time slice that ends at a point in
time n. To this end, we utilize a sliding time window with
a length of slength time units that for each new time slice
moves by sfreq time units. In each time slice, the inter-arrival
time of arriving events follows a probabilistic distribution.
Parameters of the distribution, for example, the mean value
or the variance, can change over subsequent time slices. In
Figure 4, the distribution of inter-arrival times X in a time
slice t,, is depicted, reflecting an exponential distribution.

The splitter logs the inter-arrival times of events. In order
to automatically match the logged data set of a time slice to a
probabilistic distribution of inter-arrival times, we have devel-
oped a workload classification algorithm that comprises three
basic steps [27]: The algorithm iterates over a set of possible
distributions (exponential, deterministic, normal, uniform, and
Pareto distributions), the parameters of the selected distribution
are estimated, and the goodness of the match with respect to
the log is determined. The distribution that fits best to the
logged data is chosen.

To estimate the parameters of the selected distribution, the
algorithm chooses between two approaches, depending on the
selected distribution. When the parameters can be described
as a function of the moments of the distribution function, the
method of matching the distribution moments [27] is applied.
This method is chosen when no higher moments are needed,
i.e., for the exponential, deterministic, normal or uniform
distribution. Otherwise, the maximum likelihood method [27] is
applied. With this method, the parameters are calculated such
that they would, when sampled from the selected distribution,
lead to the given logged data with the highest probability.

To check the goodness of the selected distribution, sta-
tistical tests are applied [27], [28]. An important kind of
goodness-of-fit test are tests that utilize statistics based on the
empirical distribution function (EDF) [28]. The downside of
this approach is that the necessary statistic tables are only

1: function calculate_degree (W L) begin

2: ¢ = current_degree > parallelization degree
3:  while true do

4: P= Zf:Li” P(Q(t) =n) > applying QT formulas
5: if P < Prcquireq then

6: c=c+1

7 else

8 if P> Prequired AND last_P < Prcquireqa then

9: return ¢

10: else

11: c=c—1

12: end if

13: end if

14: last_P = P

15:  end while
16: end function

Fig. 5. Algorithm calculating the optimal parallelization degree.

available for standard distributions like the normal or the
exponential distribution. In other more sophisticated cases, the
algorithm utilizes the x? test for homogeneity, where random
samples from the selected distribution are created and checked
against the monitored data [29]. This has the advantage that the
hypothetic distribution is not directly included in the analysis,
but only indirectly through the samples.

In order to predict the future workload T'H time units
ahead, we utilize methods from time series analysis on the
workload monitored in the latest time slices [26]. Depending
on the distribution that has been monitored, a different number
of parameters will be predicted. For instance, when considering
an exponential distribution, only the mean value is relevant,
while in a Normal distribution also the variance is subject to
prediction.

B. Operator Profiling

The processing time of an instance often depends on the
workload: For example, for an operator aggregating values in a
time-based window, higher event rates mean that the processed
windows contain more events, so that the processing time in
the window increases. To account for that, the operator is
profiled before run-time for different workloads on the target
system. To create an operator profile, an operator instance
is instrumented, and for different workload distributions the
distribution of processing times is measured.

C. Degree Calculation

Depending on the predicted workload at time slice ¢, 7r
and the operator profile, the algorithm listed in Figure 5
calculates the parallelization degree that is necessary in order
to keep BL,, in that time slice. The algorithm utilizes methods
from QT to compute the probability to keep BL,, for a given
parallelization degree. Let Q = {Q(t) : t > 0} be the random
process of the queue length Q(t) at time t. Depending on the
workload distribution, the corresponding processing time dis-
tribution and the number of operator instances, the distribution
of Q(t) can settle down for ¢ — oo to a stationary distribution,
so that the queue length probability P(Q(t) < BL,), i.e., the
probability that there are not more than B L, buffered in the
queue, can be calculated. Formulas to calculate P(Q(t) < BL,,)
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Fig. 6. Surveillance of a no-passing zone utilizing two sensors.

are available for M/M/c [30] and M/D/c [31] queuing systems?>.
The algorithm uses the available mathematical formulas to
compute the queue length probabilities P(Q(t) < BL,,) (line
4). This way, it is analyzed whether for a given parallelization
degree c, the queue length keeps the buffering level limit
with a probability that is higher than P,.cgyireq (line 5). c is
changed accordingly, until the minimal ¢ is found for which
the stationary queue length distribution yields P > Prcquired
(line 8), which is returned as the optimal parallelization degree.

However, for many distributions Q(t) does not settle down
to a stationary distribution, and in practice not all predicted
workloads and profiled service time distributions are exponen-
tially or deterministically distributed. In that case, they are
approximated by an exponential or deterministic distribution
such that the cumulative distribution function (cdf) of inter-
arrival times is higher than the cdf of the actual distribution.
That way, the approximation yields smaller inter-arrival times.
When approximating the processing time distribution, it is
done in the opposite way: The cdf of the approximation must
be smaller to yield larger processing times. Note that even
in the presence of such approximations it is still necessary to
have a precise workload and service time classification in order
to make sure the approximation yields smaller inter-arrival
times and higher processing times than the approximated
distribution.

D. Adaptation

Adaptation of the parallelization degree. The adaptation
of the parallelization degree is initiated every sfreq time units.
The new optimal parallelization degree is calculated with the
algorithm from Section V-C based on the predicted workload
in TH time units. If there is a difference dif between the new
degree and the last updated parallelization, the adaption of the
degree in T'H time units is prepared. There are two cases:
(1) dif < 0 and (ii) dif > 0. In case (i), the cancellation
of |dif| instances in TH time units is registered. At the
time of cancellation, the operator instances are unregistered
in the splitter, so that they do not receive new selections. The
instances finish processing the assigned partitions and then shut
down. In case (ii), in order to reduce the number of deployment
operations, it is first checked how many canceled instances are
not shut down yet and can be reused. Those n instances are
registered in the splitter. The rest of the dif — n instances are
newly deployed and registered in the splitter as soon as they
are live.

Analysis of slength and sfreq. slength must be long
enough to capture a sufficient number of events that capture

3We follow Kendall’s notation, A/B/c, A = workload distribution, B =
processing time distribution, ¢ = number of services. M = exponential
distribution / Markovian process, D = deterministic distribution / constant.
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Fig. 7. Operator profiles.

the workload distribution with high confidence, but also short
enough so that workload trends can be detected in time.
For instance, considering the mean value in an exponential
distribution, in order to reach a confidence interval of 95 % that
does not exceed § = 5% of the sample mean, following an
approximation in [32] slength is chosen such that the number
of measurements n is 1600, while for 6 = £10% a value of
n = 400 is sufficient. In setting sfreq, it must be small enough
so that changes in the workload are detected timely, but the
higher it is the less computational overhead is caused. Both
slength and sfreq depend on the queue length requirements,
the operator and the workload, and need to be determined
experimentally (cf. Section VI-B4).

VI. EVALUATION

In this section, we evaluate the proposed method to adapt
the operator parallelization degree by analyzing the queue
lengths at different workloads. We compare the QT-based ap-
proach to an approach based on CPU measurements, building
on a traffic monitoring scenario. Furthermore, we analyze the
effects of approximating given workload and service time
distributions. Finally, we evaluate the performance of the
splitter in partitioning the incoming event streams.

A. System Parameters

All experiments were performed on a computing cluster
consisting of 6 physical hosts with 8 cores (Intel(R) Xeon(R)
CPU E5620 @ 2.40GHz) and 24 GB memory that are con-
nected by 10-Gigabit-Ethernet connections. Up to 4 operator
instances are deployed on one host. We assume that it takes 60
seconds to deploy a new operator instance (7H = 60 seconds),
which corresponds to worst case boot times in the Amazon
EC2 Cloud*.

B. Dynamic Degree Adaptation

1) Traffic Monitoring Scenario: Consider a scenario from
Traffic Monitoring Systems (TMS) as depicted in Figure 6. On
highways, it is often desirable to establish an overtaking ban,
especially in danger spots like road construction sites. Given
two sensors with synchronized clocks deployed at the begin-
ning and end of the no-passing zone (pos_1 and pos_2),
the operator w detects when a vehicle overtakes another one,

“http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ComponentsAMIs.html
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requiring timeliness and consistency of event detection. Each
time a vehicle passes one of the camera-based sensors, a source
event is created. To detect the violations, w utilizes a selection
window: Whenever a vehicle a passes pos_1, a window is
opened, and when the same vehicle passes pos_ 2, the window
is closed. Another vehicle b that appears in the pos_1 stream
within that window has passed pos_1 after a. When b appears
again in the same window in the pos_2 stream, it has passed
pos_2 before a. If this is the case, b has overtaken a and thus
violated the traffic rules.

Note that the windows span over a dynamic number of
events based on the occurrence of start and end events, which
is only possible with pattern-sensitive stream partitioning. We
assume the following parameters of the setup: Between pos_1
and pos_2 (cf. Figure 6), there is a distance of 15 kilometers.
Following the speed limit, the vehicles will usually drive 60
kilometers per hour in average; however, there is a ratio of 10
% of faster vehicles on the road which drive between 60 and 72
kilometers per hour (uniformly distributed). It has been shown
in a number of measurement studies that the distribution of
vehicles on a road is best modeled using a Poisson process
[33], thus resulting in exponential distribution of inter-arrival
times of vehicles at the checkpoints.

2) Operator Profiles: Fig. 7 shows the measured operator
profiles with regard to our infrastructure. We only consider
events of type pos_2, because events of type pos_1 are just
added to a list which is a negligible operation while events
of type pos_2 are compared to all events of type pos_1
that have occurred in the selection, leading to noticeable
processing times. The processing time grows polynomially
with the event rate. For utilizing QT, we approximate the
profile with the deterministic values of the 99-percentile and
model the queuing system as an M/D/c queue.

Taking into account the operator profiles, the requirements
on the queue length for the following evaluations are set to
BL,, = 15 and Piequirea = 95%, yielding buffering delays of
less than 20 seconds in 95% of the time even at the highest
traffic density, which allows for instance for direct feedback
to a driver who violated the traffic rules. In our experiments,
we choose sfreq = slength.

3) Fixed average inter-arrival time: Figure 8(a) shows the
measured queue sizes of our QT-based approach compared to
a reactive approach that adapts the parallelization degree de-
pending on the average CPU load of active operator instances:
Following Fernandez et al. [20], we add a new instance once
the average CPU load over two subsequent time frames of 5
seconds is higher than 70 % and remove one instance when it
is less than 50 %. In the QT approach, we used naive forecast
[26], using the latest measured workload distribution as the
predicted one. In the scenario, the inter-arrival time of cars
has an average of 200 ms and the queue sizes are measured
in 10 seconds intervals over a run time of more than 8 hours.
As can be seen in Figure 8(a), QT reaches a 95-percentile of
8 events, so that in 95 % of the time the queue length is 8 or
lower and BL,, is kept. The CPU based approach fails to keep
BL,,; the 95-percentile is at more than 17,000 events.

Furthermore, we measured the parallelization degree that is
generated in the different adaptation approaches (Figure 8(b)).
In the QT-based approach, a stable degree of 8 is kept, as the

workload classification reliably detects the workload distribu-
tion. The CPU-based approach however does not stabilize the
degree. Instead, it is gradually increased to a certain level and
then suddenly drops, taking another 30 minutes to increase it
again. One reason is that the traffic monitoring operator works
on large, overlapping partitions. The processing effort per event
depends on the number of partitions that comprise the event as
well as the number of events that already have been processed
within a partition, as a new event from pos_2 needs to be
compared to a growing number of events from pos_1 in a
growing partition. Initially, the CPU based approach assigns
many partitions to a small number of instances, because the
CPU load in the beginning of processing a partition is still
small. When the CPU load grows, it is already too late to add
new instances, because the partitions that cause the overload
are already assigned to the small number of instances. The al-
gorithm adds more and more instances, and finally overshoots.
Then, the same cycle starts again. This is an inherent problem
of the CPU based approach in the scenario and similar results
are observed for other CPU threshold values.

4) Dynamic average inter-arrival time: In the second sce-
nario, the average inter-arrival time of events grows and shrinks
over time to simulate a rush hour. The system is set up with
an initial parallelization degree of 8. Within 2 hours, the traffic
density grows from 0.5 cars per second to 5 cars per second,
stays at that peak level for 2 hours and then gradually decreases
over the next 2 hours back to 0.5 cars per second. All other
assumptions and requirements are the same as in the previous
scenario. When applying QT, we have evaluated different sizes
of the time slices containing n measurements (denoted QT-n).

Figure 8(c) shows the cdf of the queue sizes for the QT-
400, the QT-1600 and the CPU approach, where the 95-
percentile is at 14, 17 and 3,900 respectively. Looking into
the logs of the QT-1600 approach, higher queue sizes than 15
mostly happen while scaling up, as it takes some time until all
1600 measurements for a time slice are available. Utilizing a
smaller number of measurements diminishes the problem while
still giving a good estimation of the workload distribution. In
Figure 8(d), the parallelization degree of the QT and CPU
approaches is depicted. Similarly to the static scenario, we
can observe in the QT approach a stable development of the
degree that follows the workload while a heavily fluctuating
degree occurs in the CPU approach.

C. Approximating distributions

Recap that according to the considerations in Section V-C,
workload and processing time distributions that do not yield
a stationary queue length distribution in a queuing system are
approximated by exponential or deterministic distributions. To
analyze the effects of such approximations, we consider two
distributions: The Pareto distribution representing heavy tailed,
skewed distributions and the uniform distribution representing
short tailed distributions. We run two experiments for each
distribution: In the first experiment, the workload follows
the approximated distribution while the service time follows
an exponential distribution. In the second experiment, the
workload follows an exponential distribution while the service
time follows the approximated distribution.

1) Uniform distribution: For the uniform distribution, we
set the interval to [100,200]. In the first experiment (Uniform



Workload), the given service time is exponentially distributed
with an average value of 300 ms. For the inter-arrival time,
we approximate the uniform distribution with an exponential
distribution such that its cdf is higher than the uniform cdf
for the values < 0.99, which is the case at a mean value
of 43.21 ms. This results in an optimal parallelization degree
of 10. In the second experiment (Uniform Service), the given
inter-arrival time is exponentially distributed with a mean value
of 40 ms. For the service time, we approximate the uniform
distribution with a deterministic distribution of 199 ms. This
results in an optimal parallelization degree of 6.

2) Pareto distribution: For the Pareto distribution, we set
Tmin = 90 ms and k = 2. In the first experiment (Pareto
Workload), the given service time is exponentially distributed
with an average value of 300 ms. For the inter-arrival time,
we approximate the Pareto distribution with an exponential
distribution such that its cdf is higher than the Pareto cdf for
the values < 0.99, which is the case at a mean value of 66.67
ms. This results in an optimal parallelization degree of 6. In the
second experiment (Pareto Service), the given inter-arrival time
is exponentially distributed with a mean value of 66.67 ms. For
the service time, we approximate the Pareto distribution with a
deterministic distribution of 500 ms. This results in an optimal
parallelization degree of 10.

BL,, is kept in all experiments (cf. Figure 8(e)), so that the
approximations show good results.

D. Splitter Throughput

In the splitter, the predicate logic for typical operators
consists of only a fixed number of parameter comparisons that
are done for each event in Ps and P.. What scales up the effort
in evaluating the predicates is the number of concurrently open
selections, as for each open selection, P, is evaluated on each
event. We analyze this effect by evaluating the sliding tuple-
based window of 10,000 events with an increasing number
of overlapping windows between 1 and 10,000. Figure 8(f)
shows that the Splitter yields high throughput that degrades
proportionally to the number of overlapping selections.

VII. RELATED WORK

In the following, we discuss the state of the art in two
categories: (i) Operator parallelization approaches and (ii)
approaches that aim to adapt operator configurations to keep
a buffering limit.

A. Operator parallelization

In intra-operator parallelization, internal processing steps
that can be run in parallel are identified by deriving operator
states and transitions from the query [1], which offers only
a limited achievable parallelization degree depending on the
number of variables in the query. In the field of data par-
allelization through stream partitioning [18], where incoming
event streams are split into independently processable parts
that are processed in parallel by replicated instances of the
operator, two different partitioning models have been proposed:
key-based and batch-based. Key-based partitioning, that is
partitioning by a key that is encoded in an event, is applied
in almost all current data parallelization approaches [10]-
[17]. To allow for consistent partitioning, the parallelization

degree is limited to the number of different key values, if
a common key is available at all, and the membership of
a distinct event to a certain pattern must not depend on the
occurrence of other events, which limits the expressiveness of
the model. Batch-based stream partitioning, as proposed in the
run-based parallelization approach in [1], proposes to split the
streams into batches that are large enough to fit any match to
a queried pattern. This can cause communication overhead, as
the partitions are always set for the largest possible pattern, and
the approach is insufficient to support consistent partitioning
for operators that detect patterns of an unknown size, as given
for example in aperiodic, periodic and sequence operators [19].
None of those parallelization approaches are suitable for the
traffic monitoring scenario in our evaluations.

B. Keeping a buffering limit

The reactive scale-out approach in [20] proposes scaling
out based on the current CPU load of operator instances.
However, the approach does not offer any guarantees on
meeting a specific buffering level, as our evaluation results
also have shown. In [21], a more sophisticated parallelization
degree adaptation algorithm is proposed that bases on the
parameters congestion and throughput. However, it does not
guarantee buffer limits on bursty workloads and does not
account for the problem of large selections that have a delayed
effect on the operator, as is the case in our traffic monitoring
operator. Balkesen et al. [34] try to forecast the exact event
arrival rate and assume a fixed per-tuple processing cost when
determining the optimal parallelization degree, which does not
always hold, as we have shown with the operator profiles in our
traffic monitoring scenario. Performance modeling approaches,
e.g., Queuing Petri Nets [35] or latency estimation metrics like
Mace [36], require a deeper knowledge of and interference
with the operators and do not provide methods to adapt the
parallelization degree in order to yield a limited buffering level
at fluctuating workloads. Heinze et al. [37] tackle the problem
of latency peaks when moving operator state at scaling out,
which does not apply to our approach that splits the streams
into independently processable partitions.

VIII. CONCLUSION

In this paper we have identified two important shortcom-
ings on the way towards timely event detection in CEP sys-
tems. First, the state of the art lacks consistent parallelization
models for a huge class of operators. Second, state-of-the-
art systems are not equipped with a method to adaptively
determine the optimal parallelization degree at fluctuating
workloads in order to guarantee a buffering limit is met.

To this end, the proposed pattern-sensitive stream partition-
ing method supports the consistent parallelization of a wide
class of important CEP operators. Furthermore, the proposed
degree adaptation method is able to meet probabilistic buffer-
ing limits at highly fluctuating workloads. Future work will
aim at developing a latency model for operators comprising
also communication and processing delays and tackling the
dependencies between operators in operator graphs.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers as well as
B. Ottenwilder and S. Bhowmik for their helpful comments.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

REFERENCES

C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul, “Rip: run-based
intra-query parallelism for scalable complex event processing,” in
Proceedings of the 7th ACM international conference on Distributed
event-based systems, ser. DEBS 13, 2013, pp. 3—14.

B. Ottenwiilder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “Mcep: A mobility-aware complex event processing
system,” ACM Trans. Internet Technol., vol. 14, no. 1, pp. 6:1-6:24,
Aug. 2014.

B. Ottenwilder, B. Koldehofe, K. Rothermel, and U. Ramachandran,
“Migcep: Operator migration for mobility driven distributed complex
event processing,” in Proceedings of the 7th ACM International Con-
ference on Distributed Event-based Systems, ser. DEBS 13, 2013, pp.
183-194.

B. Ottenwilder, B. Koldehofe, K. Rothermel, K. Hong, and U. Ra-
machandran, “Recep: Selection-based reuse for distributed complex
event processing,” in Proceedings of the S8th ACM International Con-
ference on Distributed Event-Based Systems, ser. DEBS ’14, 2014, pp.
59-70.

B. Koldehofe, B. Ottenwiilder, K. Rothermel, and U. Ramachandran,
“Moving range queries in distributed complex event processing,” in
Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, ser. DEBS *12, 2012, pp. 201-212.

S. Srinivasagopalan, S. Mukhopadhyay, and R. Bharadwaj, “A complex-
event-processing framework for smart-grid management,” in 2012 IEEE
International Multi-Disciplinary Conference on Cognitive Methods in
Situation Awareness and Decision Support (CogSIMA), March 2012,
pp. 272-278.

G. G. Koch, B. Koldehofe, and K. Rothermel, “Cordies: Expressive
event correlation in distributed systems,” in Proceedings of the Fourth
ACM International Conference on Distributed Event-Based Systems, ser.
DEBS ’10, 2010, pp. 26-37.

G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Comput. Surv., vol. 44,
no. 3, pp. 15:1-15:62, Jun. 2012.

C. Clark. (2014) Improving speed and transparency of market data.
Http://exchanges.nyx.com/cclark/improving-speed-and-transparency-
market-data.

A. Martin, A. Brito, and C. Fetzer, “Scalable and elastic realtime
click stream analysis using streammine3g,” in Proceedings of the Sth
ACM International Conference on Distributed Event-Based Systems, ser.
DEBS ’14, 2014, pp. 198-205.

T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “Mapreduce online,” in Proceedings of the 7th USENIX
conference on Networked systems design and implementation, ser.
NSDI'10, 2010, pp. 21-21.

A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert, and
C. Fetzer, “Scalable and low-latency data processing with stream mapre-
duce,” in Proceedings of the 2011 IEEE Third International Conference
on Cloud Computing Technology and Science, ser. CloudCom *11, 2011,
pp. 48-58.

D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: a programming model and execution framework for
web-scale analytical processing,” in Proceedings of the 1st ACM sym-
posium on Cloud computing, ser. SoCC 10, 2010, pp. 119-130.

(2014, September) Storm. Http://storm-project.net/.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining Workshops, ser. ICDMW ’10, Dec.,
pp. 170-177.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, ser. EuroSys "07, 2007, pp. 59-72.

S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu, “Auto-parallelizing
stateful distributed streaming applications,” in Proceedings of the 21st
international conference on Parallel architectures and compilation
techniques, ser. PACT *12.  New York, NY, USA: ACM, 2012, pp.
53-64.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

for Advanced Applications - Volume Part I, ser. DASFAA’11.

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog
of stream processing optimizations,” ACM Comput. Surv., vol. 46, no. 4,
pp. 46:1-46:34, Mar. 2014.

S. Chakravarthy and D. Mishra, “Snoop: An expressive event specifica-
tion language for active databases,” Data Knowl. Eng., vol. 14, no. 1,
pp. 1-26, 1994.

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD 13,
2013, pp. 725-736.

B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1447-1463, June 2014.

B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, and M. Vélz,
“Rollback-recovery without checkpoints in distributed event processing
systems,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems, ser. DEBS 13, 2013, pp. 27-38.

A. Arasu, S. Babu, and J. Widom, “The cql continuous query language:
Semantic foundations and query execution,” The VLDB Journal, vol. 15,
no. 2, pp. 121-142, Jun. 2006.

R. Adaikkalavan and S. Chakravarthy, “Seamless event and data stream
processing: Reconciling windows and consumption modes,” in Pro-
ceedings of the 16th International Conference on Database Systems
Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 341-356.

D. Gross, J. Shortle, J. Thompson, and C. Harris, Fundamentals of
Queueing Theory, ser. Wiley Series in Probability and Statistics. Wiley,
2011.

N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive
workload classification and forecasting for proactive resource provision-
ing,” Concurrency and Computation: Practice and Experience, vol. 26,
no. 12, pp. 2053-2078, 2014.

D. G. Feitelson, “Workload modeling for computer systems perfor-
mance evaluation,” book draft, to be published by Cambridge University
Press in 2015. Version 1.0.1, typeset on April 8, 2014.

M. A. Stephens, “Edf statistics for goodness of fit and some compar-
isons,” Journal of the American statistical Association, vol. 69, no. 347,
pp. 730-737, 1974.

T. M. Franke, T. Ho, and C. A. Christie, “The chi-square test: Often
used and more often misinterpreted,” American Journal of Evaluation,
vol. 33, no. 3, pp. 448-458, 2012.

S. K. Bose. (2014)
Http://nptel.ac.in/courses/117103017/6.

H. Tijms, “New and old results for the m/d/c queue,” {AEU} -
International Journal of Electronics and Communications, vol. 60,
no. 2, pp. 125 — 130, 2006.

V. Guerriero, “Power law distribution: Method of multi-scale inferential
statistics,” Journal of Modern Mathematics Frontier (JMMF), vol. 1, pp.
21-28, 2012.

R. Mao and G. Mao, “Road traffic density estimation in vehicular
networks,” in Proceedings of the 2013 IEEE Wireless Communications
and Networking Conference, ser. WCNC 13, April 2013, pp. 4653—
4658.

C. Balkesen, N. Tatbul, and M. T. Ozsu, “Adaptive input admission and
management for parallel stream processing,” in Proceedings of the 7th
ACM International Conference on Distributed Event-based Systems, ser.
DEBS ’13, 2013, pp. 15-26.

S. Kounev, “Performance modeling and evaluation of distributed
component-based systems using queueing petri nets,” IEEE Transac-
tions on Software Engineering, vol. 32, no. 7, pp. 486-502, 2006.

B. Chandramouli, J. Goldstein, R. Barga, M. Riedewald, and I. Santos,
“Accurate latency estimation in a distributed event processing system,”
in Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ser. ICDE ’11, 2011, pp. 255-266.

T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-
aware elastic scaling for distributed data stream processing systems,” in
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, ser. DEBS *14, 2014, pp. 13-22.

M/m/m/inf queue.



