Concepts for Execution Time Prediction
of 3D GPU Rendering

Stephan Schnitzer*, Simon Gansel,
Frank Diirr* and Kurt Rothermel*
*Institute of Parallel and Distributed Systems, University of Stuttgart, Germany
Email: lastname <at> ipvs.uni-stuttgart.de
TSystem Architecture and Platforms Department, Mercedes-Benz Cars Division, Daimler AG, Germany
Email: firstname.lastname <at> daimler.com

Abstract—The relevance of graphical functions in vehicular
applications has increased significantly during the last years.
Modern cars are equipped with multiple displays used by
different applications such as speedometer, navigation system,
or media players. The recent trend towards hardware consol-
idation to reduce hardware cost, installation space, and energy
consumption, causes graphical 3D applications of different safety-
criticality to share a single GPU. This requires effective real-
time GPU scheduling concepts to ensure safety and isolation
for 3D rendering. Since current GPUs are not preemptible, a
deadline-based scheduler must know the GPU execution time of
GPU commands in advance. In this work, we present a novel
framework to measure and predict the execution time of GPU
commands using OpenGL ES 2.0. We present prediction models
for the main GPU commands relevant for 3D rendering, namely,
FLUSH, CLEAR, and DRAW. For the DRAW command we propose
to use the 3D bounding box of the rendered model and apply the
vertex shader projection to heuristically estimate the number of
fragments rendered. We finally present the implementation and
evaluation of our framework, which demonstrates its feasibility
and shows that good prediction accuracy can be achieved. In our
evaluation using realistic scenarios the absolute prediction error
of the DRAW command did not exceed 260 yus.

Keywords—GPU-scheduling, 3D-rendering, real-time, embedded
systems, execution time prediction

I. INTRODUCTION

Innovations in cars are mainly driven by electronics and
software today [1]. In particular, graphical functions and appli-
cations enjoy growing popularity as shown by the increasing
number of displays integrated into cars. For instance, the
head unit (HU) uses the center console screen to display the
navigation system, or displays integrated into the headrests of
the front seats to display multimedia content. Another recent
trend in modern cars is to replace the analog instruments of
the instrument cluster (IC) by digital displays, for instance, for
displaying speed information or warning messages.

Although in the beginning graphical output was mainly 2D
content like movies or 2D maps, the amount of 3D graphics
is steadily increasing [2, 3]. For instance, modern navigation
systems display 3D city models, the instruments of the vehicle
are rendered 3D objects with reflections and shadows to imitate
physical instruments as close as possible, or a “bird’s eye view”
with a virtual 3D model of the car and its surrounding assists
the driver during parking. To render such complex scenes with
high frame rates graphical processing units (GPUs) are inte-
grated into cars. Traditionally, each system like the HU or IC

uses dedicated GPUs for rendering. However, multiple GPUs
increase cost, energy consumption, and space requirements.
Therefore, there is a strong incentive to consolidate hardware,
and ultimately share a single GPU between several applications
like displaying instruments [2], navigation system, parking
assistant, third-party applications from an app store [4—6], etc.

Similar to hardware sharing in classic domains such as
server virtualization, sharing hardware between several appli-
cations in a car requires isolation properties to avoid inter-
ference between applications. However, in contrast to classic
domains the automotive domain has very stringent safety
requirements due the fact that failures might lead to substantial
financial loss, e.g., due to the damage of the vehicle, or even
injuries of passengers and other traffic participants. These
safety requirements also involve the sharing of GPUs. For
instance, it must be guaranteed that a warning message like a
warning about insufficient oil pressure or a too short distance to
the car ahead is displayed in time (seconds to sub-seconds) to
react properly. The safety aspect of displaying information in
vehicles is considered by different standards. For instance, an
ISO standard [7, ISO 26262] regulates that the level of safety-
criticality of each functionality has to be assessed and suitable
methods must be implemented to minimize the risks caused
by malfunctions. Concerning graphical representations that use
safety-critical 3D rendering, it must be ensured that they are
displayed or updated within certain time limits. Besides safety-
criticality, updating displays in real-time is also important for
usability and aesthetic reasons. For instance, unsteady updates
of pointers of instruments are deemed to be unacceptable.

Non-technical approaches to guarantee real-time graphical
output such as certification of software by a central authority
like the OEM are not scalable since many apps are not
implemented by the OEM himself but sub-contractors or
even a large number of untrusted third-party developers of
an app store. Therefore, technical concepts for GPU sharing
with real-time guarantees are required, in particular, GPU
scheduling [8]. However, the prevalent application domains for
GPUs like gaming or general purpose computing on GPUs
(GPGPU) did not require and therefore did not implement
sufficient isolation and scheduling concepts since typically one
application has exclusive access to the hardware. Therefore, the
essential concept of preemption which could ease scheduling
significantly is still not available for GPUs.

Consequently, we focus on an alternative scheduling con-
cept in this paper, namely, deadline scheduling with execution

Published in 9th IEEE International Symposium on Industrial Embedded Systems (SIES), 2014, pp.160-169, 18-20 June 2014

© IEEE 2014
http://dx.doi.org/10.1109/SIES.2014.6871200

Administrator
Textfeld
Published in 9th IEEE International Symposium on Industrial Embedded Systems (SIES), 2014, pp.160-169, 18-20 June 2014
© IEEE 2014
http://dx.doi.org/10.1109/SIES.2014.6871200

time prediction at runtime, which was first proposed for GPUs
by Bautin et al. [9]. The basic idea is to predict the execution
time of non-interruptible batches of GPU commands—so-
called command groups—, before they are sent for execution to
the GPU. Command groups that would prevent the command
group of a high-priority application from finishing in time are
not admitted to access GPU resources.

Obviously, for this mechanism to be effective, a good
prediction of the execution time of command groups is re-
quired. Kato described a history-based prediction algorithm
[10] that measures the execution time of command groups
during runtime and can then predict the execution time for
the next execution. However, this is only effective for exactly
the same command group in the exactly same context, e.g.,
same rendering scene. Moreover, it is also ineffective for the
first execution of a command group.

Due to these significant limitations, we propose a different
prediction concept for real-time GPU scheduling in this paper.
The basic idea is to predict the individual execution time of
graphics commands using models that are calibrated during
runtime. In particular, we propose models for the main three
commands relevant for 3D rendering, namely, FLUSH, CLEAR,
and DRAW, using the Open Graphics Library for Embedded
Systems (OpenGL ES) standard [11]. FLUSH has constant
execution time independent of the context. The execution time
of CLEAR essentially depends on the render buffer size. The
DRAW model is based on the number of vertices and the
number of fragments (possible pixels of triangles). Therefore,
to predict the DRAW execution time, we need a concept
to estimate the number of fragments and time to shade the
vertices of the fragments using the given shader program. We
achieve this by emulating the vertex shader on a bounding box
of the 3D model in constant time. To calibrate the execution
time of these commands on the specific GPU and to execute
the emulation, we instrument the GPU command groups in
kernel space on the fly.

In summary we make the following contributions: 1) A
system architecture and framework for predicting the execution
time of GPU commands and calibrating the underlying models
through runtime measurements. 2) Models of the GPU execu-
tion time for the three OpenGL ES 2.0 commands FLUSH,
CLEAR, and DRAW. 3) An implementation of the framework
and the proposed prediction model. 4) An evaluation showing
the accuracy of measurements and of the predicted execution
time. In our evaluations the absolute prediction error of CLEAR
and DRAW commands never exceeded 260 us, supporting our
claim that our heuristic is good.

The rest of this paper is structured as follows. In Sec. II we
discuss related work. In Sec. III we present our system model
and explain our concept in Sec. IV. In Sec. V we explain our
implementation and evaluate it in Sec. VI. We conclude with
a summary and an outlook on future work in Sec. VII.

II. RELATED WORK

Real-time GPU scheduling as targeted by our approach and
classic real-time scheduling for CPUs [12—14] share a common
goal, namely, to guarantee the timely execution of code. How-
ever, the underlying system model is fundamentally different
since CPU scheduling can be based either on preemption or a

known execution time of commands. Preemption mechanisms
are not available for GPUs so far. Although the Windows
Display Driver Model (WDDM), which was introduced with
Windows Vista, supports GPU preemption since version 1.3
[15], preemption is an optional feature and not supported by
current drivers. Moreover, the model does not provide any
guaranteed maximum delay between preemption request and
completion. Therefore, WDDM is currently not sufficient to
achieve real-time GPU scheduling, leaving GPU execution
time prediction indispensable.

To enable real-time GPU scheduling, prediction mecha-
nisms for GPU command groups were proposed in several
works. Bautin et al. [9] designed a system for GPU multi-
tasking including a priority-based scheduler, called Graphics
Engine Resource Manager (GERM). To this end, GERM
collects statistics of the execution time of GPU command
groups to calculate an average execution time per command
group. However, in contrast to our approach, prediction does
not consider the OpenGL context nor the actual set of GPU
commands of individual command groups resulting in inaccu-
rate predictions and violations of real-time constraints.

Kato et al. present another real-time GPU scheduler called
TimeGraph [10] using user-defined scheduling policies. The
scheduling policies assign GPU resources based on GPU
execution time contingents of periodic intervals. For their a
priori enforcement policy, they provide isolation of different
3D applications, given that GPU execution time prediction is
accurate. For prediction, the authors propose a history-based
approach that uses the recorded execution time of previously
executed commands. The prediction algorithm checks whether
a record for the (exactly) same command group binary code
exists. In this case, the recorded execution time is used as
prediction; otherwise the maximum execution time is assumed.
To rely solely on history-based prediction means that unknown
command groups cannot be predicted. Using the maximum
observed execution time instead might lead to drastic over-
estimation of the execution time. Furthermore, history-based
prediction is not aware of the execution context. For instance
two glClear commands may result in binary equivalent GPU
instructions, although they refer to render buffers of different
sizes and thus different execution times. As shown by the
authors, this leads to significant prediction errors for complex
dynamic scenes, which occur in many rendering applications
today. Therefore, we based our prediction model on more
complex models including context information.

In [16], Yu et al. propose a resource management frame-
work called Virtualized GPU Resource Isolation and Schedul-
ing (VGRIS) targeted at cloud gaming systems. VGRIS pro-
vides three scheduling algorithms for different kinds of GPU
computation tasks, namely, Service Level Agreement (SLA)-
aware scheduling, proportional-share scheduling, and hybrid
scheduling that combines the former two. The SLA policy
aims to provide a stable average frame latency. To this end, the
computation time of the Present command (similar to eglSwap-
Buffers command in EGL), which represents the execution
of one frame on the GPU, has to be predicted. Similar to
Kato [10] the authors use history information about the last
Present commands of the application. More precisely, they
use the average time of the last twenty Present commands
to predict the next Present command. Hence, VGRIS is

actually less accurate than [10], since only fully rendered
frames are measured and scheduled rather than GPU command
groups (typically, a frame is rendered using multiple command
groups). Furthermore, they assume that the applications are
well known and have a specified rendering behavior. Therefore,
an application never calling the Present command would be
granted infinite GPU execution time, possibly blocking all
other applications.

III. SYSTEM MODEL

Before we present our technical contributions, we first in-
troduce our system model and assumptions. For the sake
of a concrete description, we consider a specific state-of-
the-art graphics API, operating system, and graphic system
architecture, namely, OpenGL ES 2.0 [11], Linux, and the
Nvidia Nouveau architecture [17], respectively. However, the
basic prediction concepts proposed in this paper are generic.

The components and interfaces of our system are depicted
in Fig. 1. Basically, the system consists of components of
three layers, namely, application-layer components, user-space
driver components, and kernel-space components.

Graphic application
& EGLAPI ™ 1
User space

driver

Pushbuffer

user space

kernel space

Linux kernel

@ "’V

Figure 1. Nouveau pushbuffer architecture

The graphic application uses EGL as interface to the win-
dowing system and the OpenGL ES 2.0 API for rendering (@
in Fig. 1). From the OpenGL commands, the user-space driver
creates GPU commands. We classify the relevant OpenGL
commands used for 3D rendering into the following classes:

e FLUSH flushes the rendering pipeline and is caused by
OpenGL calls like glFlush, glFinish, or eglSwapBuffers.

o CLEAR is caused by glClear and assigns the background
color, typically at the beginning of the rendering loop.

e DRAW initiates the rendering pipeline to draw primitives
using glDrawArrays or glDrawElements.

Consecutive batches of GPU commands are called command
groups and are added to the so-called pushbuffer. The push-
buffer resides in shared memory accessible from user space
and kernel space (@ and @). Eventually, the driver flushes
the pushbuffer to notify the kernel space driver of the added
command group using a system call (®). Coordinated by the
GPU scheduler, the kernel space driver puts references to
command groups into a ring buffer (®). The GPU uses the ring

buffer to fetch command groups, execute them, and update the
render buffer if a DRAW or CLEAR command was included in
the command group (® and @). Once the GPU starts execution,
the execution of command groups cannot be preempted.

It is important to note that the execution time of OpenGL
commands depends on their context. In particular, the execu-
tion time of the DRAW command is context-dependent. For in-
stance, the application can set so-called shader programs with
glUseProgram that are used by subsequent draw commands for
geometric transformations and the definition of pixel colors.
Depending on the complexity of the shader program and
scene (e.g., number, size, or composition of triangles), draw
commands might take different amounts of time. Therefore,
in order to allow for non-preemptive real-time scheduling
of command groups, their execution time must be predicted
prior to their execution. To this end, we introduce a predictor
component, which implements prediction algorithms based on
context-sensitive prediction models for individual commands.
The scheduler only puts a command group into the ring buffer
if the predicted execution time would not violate given real-
time constraints. The focus of this work is on the prediction
framework and accurate prediction models and algorithms;
scheduling is beyond the scope of this paper.

Next, we describe our prediction framework, prediction
algorithms, and models in more detail.

IV. PREDICTION FRAMEWORK

In this section we describe our prediction framework. We start
with an overview of the architecture and then describe the
mechanisms and concepts for measuring the execution time of
GPU command groups and predicting selected commands.

A. Architecture

Fig. 2 shows an overview of the framework architecture with
its four basic components, namely, OpenGL Context Monitor,
Predictor, GPU Scheduler, and Execution Time Monitor and
their embedding into the overall system. The main component

OpenGL ES 2.0 application

GPU driver l

GPU

Figure 2. Framework architecture

of our framework is the Predictor, which predicts the execution
time of command groups. To this end, it needs two sources of
information:

1) The current OpenGL context, which influences the exe-
cution time of GPU commands as motivated above. All
contexts are traced by the OpenGL Context Monitor.

2) Execution time models which are calibrated for the spe-
cific GPU hardware. In order to calibrate these models,
we use execution time measurements measured by the
Execution Time Monitor at runtime.

The Predictor predicts the execution time of command groups
by predicting the execution time of each single command of
the group and summing up the values. To predict the execution
time of individual commands, the predictor feeds his calibrated
execution time models of the commands with the current
context information. The predictor is notified when calls to the
OpenGL functions of the GPU driver actually emit a command
group. This feature is added to the GPU driver and allows the
predictor to attach the predicted execution time of a command
group to the system call.

Basically, there are two places where to implement the
Predictor: in user-space above the GPU driver or kernel-
space below the GPU driver. We decided to implement the
Predictor in user-space since context information can be de-
termined much easier in user-space than in kernel-space. In
user-space, this context can be inferred from the commands
transmitted through the OpenGL API, whereas in kernel-space
we would need to disassemble the binary GPU code and
interpret hardware-specific GPU commands and data formats.
The predicted execution time of a command group then serves
as input to the GPU Scheduler. Since the process of GPU
scheduling is out of the scope of this paper, we focus on
context monitoring, the prediction models, and execution time
monitoring next.

B. Context Monitoring

As described earlier, the OpenGL context impacts the ex-
ecution time of rendering commands. Therefore, the OpenGL
Context Monitor of our framework intercepts all relevant
OpenGL and EGL API calls to create and maintain a local
copy of the OpenGL state. More precisely, applications create
one or more OpenGL contexts. In order to submit rendering
commands, an application thread must first activate a context
using eglMakeCurrent. Subsequent OpenGL calls all refer to
the active context. To reflect this, we allocate a data structure
for each created context. A thread-local variable holds a
reference to the currently active context. The context data
structure contains all relevant parameters and is updated by
subsequent OpenGL calls by the application. For instance, if
the application calls glBindBuffer, the Context Monitor assigns
the id of the chosen buffer to the currently active context data
structure, thus determining the buffer data source or target for
subsequent OpenGL commands.

C. Prediction Model: FLUSH Command

The FLUSH command pushes the current command group to
the kernel-space driver by using a system call. It is caused by
multiple API calls, e.g., glFlush, glFinish, or eglMakeCurrent.
Since the FLUSH command does not depend on parameters and
has no context dependencies, its execution time is constant for
a given system, i.e., it only depends on the specific speed of the
system. Therefore, the execution time tg,s, can be modeled
by the following simple equation:

tush = Clush (IV'C 1)

where cqysn 1S a system-specific constant execution time which
has to be defined through calibration. To this end, the Predictor
initially executes a calibration function on the otherwise idle
system calling glFlush in a loop, measures the execution times,
and calculates cqysn as the average execution time.

D. Prediction Model: CLEAR Command

Next, we consider a more complex prediction model of a
context-sensitive command, namely, the CLEAR command.
The CLEAR command sets the active render buffer to the color
previously specified by the glClearColor command. Moreover,
the CLEAR command takes as parameter a bit mask that
specifies, which one of the three possible buffers color buffer,
depth buffer, or stencil buffer should be cleared. We assume
that the execution time to clear a buffer linearly depends on
the render buffer size in pixels denoted as s;,. Moreover, the
number of bits per pixel influences the amount of data that
has to be transferred to memory per pixel. Since we do not
know this pixel depth for the three buffer types, nor can we
ignore possible side-effects, we calibrate the time to write one
pixel for each possible value of the bitmask (btypes). Each of
these calibrated values is constant for a given system. Namely,
we calibrate Ccolors Cdepths Cstencils Ccolor&depths Ccolor&stencils
Cdepth&stencil> ANd Ceolor&depth&stencil- Then, the predicted time
to clear a certain set of buffers can be modeled as

tclear(btypesv srb) = Cbtypes * Srb (IV'DI)

If no bit is set in the mask btypes, no buffer is cleared,
and we assume the execution time to be zero. Otherwise, we
calculate the clear time for the given set of buffers btypes
using the size of the currently active render buffer, according
to Equation IV-D.1.

E. Prediction Model: DRAW Command

The most challenging command in terms of execution time
prediction is the DRAW command since it depends on various
context parameters and has a complex multi-step process-
ing model. The processing of a DRAW command follows
a pipeline model as depicted in Fig.3. The execution time

Vertex Fragment
shader shader

o 1Y

Y FY
s L
Figure 3. OpenGL draw — main pipeline steps

heavily depends on the shader programs used. The application
uses the OpenGL API to create so-called programs, where
each program is basically one vertex shader and one fragment
shader linked together. Before drawing, an application activates
one of the created programs with glUseProgram. The draw
pipeline takes as input a set of n, vertices, which can be
either provided as vertex buffer object (VBO) or as a vertex
array. At the first stage (@ in Fig. 3), the vertex shader of the
active program is then executed for each of these vertices. The
vertex shader transforms the vertex position, typically, using
a 4 x 4 model view projection matrix, which is multiplied
with each vertex to move, resize, and/or rotate the vertex.
In the second stage (@), the vertices are processed by the
Primitive Assembly (P. A.), which prepares for rasterization,
e.g., by using face culling, the facing of triangles can be used
to skip them if they do not influence the rendered image.

Then, the Rasterizer calculates the pixels (i.e., fragments) of
the renderbuffer that are covered by primitives (e.g., triangles).
The number of fragments created by the Rasterizer is denoted
as np. For each of these fragments, the active fragment shader
program is executed in the third stage (@) to assign colors to
pixels, for instance, using textures. Additionally, the Fragment
Operations step applies a couple of post-processing steps like
the depth test or blending to the fragments. Finally, the output
is used to update the render buffer. In order to predict the
execution time of the DRAW command, we use the following
model:

tdraw(nva ng, VS, FS) = 1lvs (TL\/) + th(TLF) (IV-E.1)

As can be seen from equation IV-E.1, we basically sum up
the execution times of the Vertex Operations using the given
vertex shader (VS) and of the Fragment Operations using
the given fragment shader (FS), which linearly depend on
the number of vertices ny and fragments ng, respectively.
As a simplification, we assume that the execution time of
the Primitive Assembly linearly depends on ny and therefore
is considered as part of tyg. Additionally, we assume that
rasterization and fragment post-processing depend linearly
on tpg. Therefore, our model does not consider them as
explicit terms but as part of the execution times tyg and
trs. These assumptions provide a reasonable abstraction of the
execution time. Typically, OpenGL ES applications implement
their main rendering functionality using sophisticated shaders.
Therefore, the impact of the post-processing steps is usually
comparatively small, cf. Sec. VL.

In order to evaluate the execution time model of the
DRAW command, we need definitions of the vertex processing
and fragment processing functions tyg(ny) and tps(np) as
well as the input parameters ny and ng. If an OpenGL
program is used for the first time (or relevant rendering
pipeline parameters changed), we initially calibrate tvg and
trs. The function that performs the calibration uses a dedi-
cated OpenGL context that is used for calibration only. The
function then compiles copies of the native fragment and
vertex shaders, and determines shader attributes and uniforms
using the respective OpenGL commands. OpenGL ES 2.0 does
not allow to selectively disable fragment processing or vertex
processing. Therefore, the function needs to calibrate using all
rendering pipeline steps. We use two calibration setups: the
first where the Fragment Operations are as minimal as possible
to calibrate the Vertex Operations, and the second where the
Vertex Operations are as minimal as possible to calibrate the
Fragment Operations.

To calibrate tyg the function creates a VBO that contains
triangles which—when rasterized—do not result in any frag-
ment. We use glDrawArrays in a loop and then calculate the
average execution time caused by one vertex.

To calibrate tpg we create another VBO which consists of
triangles of which each covers half of the render buffer used for
calibration. Again, we use glDrawArrays in a loop to estimate
the average execution time caused by one fragment. The
evaluation of the fragment shader function tpg(np) requires
knowledge of the number of input fragments np, which are
dependent on the output of rasterization. Therefore, in contrast
to ny, np is not available a priori when the DRAW function is
called. Theoretically, we could emulate the vertex shader and

rasterization on the CPU to get an exact value of np. However,
this introduces high CPU overhead. Therefore, we use a less
compute-intensive heuristic to estimate nz. The basic idea is
to define a bounding box including all vertices (cf. Fig. 4),
and perform the geometric transformation of the vertex shader

Vertex input data

97\
=)

create BB

Bounding box Projected bounding box

_______________ projected e

w:\' area

Transformatio
&
Rasterization

T
i
(e

IRRE:;

R

Figure 4. Bounding box applied on a horse model

only on the eight vertices of the bounding box. Then, we
calculate the number of pixels that cover the rasterized 2D
area (projection) of the 3D bounding box. This number gives
us the estimation of the upper bound ny for ng since the
pixels of the actual 3D object might not cover the complete
bounding box (cf. Fig. 4). Therefore, depending on the 3D
model and transformation, tpg(fiF) might overestimate the
execution time.

FE Measuring GPU Execution Time

To calibrate our models, we use execution time measurements
of GPU commands as described above. To this end, we need
to know when the GPU execution of a command starts and
when it has finished. Doing these measurements in user-space
without real-time priorities would be inaccurate when the CPU
is loaded. One option to increase accuracy would be to give the
user-space process real-time priority. However, due to context
switches, the measurements would be of limited precision.
Moreover, accuracy would still be limited if many real-time
processes are executed. Therefore we argue that timestamps
should be taken as close to the GPU as possible, i.e., in the
kernel-space driver.

In order to detect in kernel-space when a GPU command
has finished, we use a similar technique as described in [10]:
we let the GPU acknowledge the execution of each command
group. To this end, we attach a GPU instruction to each
command group that makes the GPU create an interrupt each
time a command group has finished execution. Therefore, we
have to distinguish between two cases. In the first case, at
least one other command is in the queue before the command
to be measured. In this case, we measure the finishing time of
the previous command, which is at the same time the starting
time of the command to be measured. In the second case,
the command to be measured is submitted to an empty queue
and starts execution immediately. In order to cover this case,
we additionally take the time, when the command group was
submitted to the queue. If this time is later than the finishing
time of the previous command, the queue was empty and we
take the submission time as starting time; otherwise, we take
the finishing time of the previous command as starting time.

V. IMPLEMENTATION

We have implemented our concept on Fedora 17 running Linux
kernel version 3.2.17-1.rt28.1. The Linux realtime kernel is

optimized for low latency'. Since we perform time measure-
ment within an interrupt service routine, kernel latency directly
affects precision of timestamps.

The framework extends the existing Linux architecture by
three components:

1) LibETP is a shared library that intercepts OpenGL calls
and performs the prediction.

2) A patched version of the drm_nouveau shared library
which always notifies libETP before a command group
is flushed to the kernel.

3) The kernel module drm_etp which measures the execution
time of each command group.

Graphic application
EGL GLESv2 X11

EGL-stub GLESv2-stub

1)
New command group] =¥ bETP
module callback function |
\
‘ user space

| kernel space

______ﬂ Linux
[SAU E7P dh@ LE | kermel

Figure 5. Implemented framework architecture

The architecture of our framework is depicted in Fig.5. To
exchange data between libETP and the kernel module, we use
a shared memory segment (ETP data). This shared memory
is allocated by the kernel module and can be mapped into
user space using a mmap call on the modules’ character
device. The shared memory segment is viewed as an array of
structs where each struct contains the predicted execution time
(assigned in user-space) and the measured values (assigned in
kernel-space). The segment index represents the array index
containing the data for the arriving command group. The user-
space part of the prediction is encapsulated in a shared library
that is binary compatible to the libGLESv2 (for OpenGL ES
2.0) and the ibEGL (for EGL) libraries. It intercepts all API
calls of these libraries and traces them within the prediction
module (@ in Fig. 5) to keep track of the current OpenGL
context and subsequently forwards the calls to the native driver
libraries. Eventually, the native driver wants to flush the current
command group to the kernel which first invokes the callback
function in LibETP (®). The callback function flushes the
execution time prediction and writes it to the next unused
shared memory segment. After the callback function returns,
the system call, which also passes the shared memory segment
index number, is performed (@).

LibETP holds a prediction module which contains esti-
mated values and prediction models for the different OpenGL

'We measured the maximum delay of the kernel using the command
“cyclictest -1100000000 -m -Sp99 -i200 -h200 -q 2” while doing our eval-
uations and measured an average latency of 3 ps and a maximum latency of
40 ps

commands and also the current set of unflushed commands. If
the native OpenGL driver decides to flush, the libraries’ new
command group callback function is called which uses the set
of unflushed commands to calculate the estimated execution
time and chooses the next free shared memory segment index.

Each time the kernel receives a syscall with a new com-
mand group, it forwards that call and the attached shared
memory segment index to drm_etp. Before sending a command
group to the GPU (which is labeled as @), the kernel driver
appends a SERIALIZE and a NOTIFY GPU operation—
like it was proposed in [10]—which causes the GPU to send
an interrupt after that command group has been executed (®).
The interrupt service routine in drm_etp writes the current time
stamp to the appropriate shared memory segment field (®).

Next, we describe more detailed how LibETP is imple-
mented, and especially how the prediction module works.
When the application issues its first EGL/OpenGL command,
libETP performs the following steps:

Initialize measurement traces and log file output
Initialize internal data structures and prediction cache
Map native OpenGL ES 2.0 and EGL symbols

Map the SHM (ETP data) from the drm_etp kernel
module

e Register the callback function at patched libdrm_nouveau

After that ibETP traces all relevant EGL and OpenGL calls
to internally keep the current state.

Since GPU vendors do not provide detailed information
about their hardware architecture, especially an execution time
model, the prediction must be based on an execution time
model and calibrating its parameters using different dedicated
benchmarks. More precisely, to calibrate a parameter libETP
creates a sequence of OpenGL commands that is suitable to
determine the parameter using the measured execution time.
This sequence of commands is passed to the native driver and
finally glFlush is called. This results in a single command
group that contains just these commands. For the sake of
better measurement accuracy, this can be repeated multiple
times. After that, ibETP sleeps until the kernel has finished
all submitted command groups. This is detected by checking if
the kernel has assigned the measured execution time to the last
recently used shared memory segment. After GPU execution
has finished, libETP reads the measured execution time from
the respective shared memory segments of the ETP data.

A call for egllnitialize is used to keep the current EGLDis-
play handle. The call eglChooseConfig contains the number of
bytes per pixel for color, depth, and stencil buffer. When the
application calls eglCreateWindowSurface, before returning to
the application, libETP creates an internal data structure entry
for the native surface. It contains the relevant data, e.g., width
and height of the window, and a pointer to the native window.
Based on these values it calculates the predicted execution time
needed to clear (i.e., assign a specified color to all pixels) that
window. This predicted execution time is used for predicting
subsequent calls of glClear.

The first time eglCreateWindowSurface is called, addition-
ally the calibration of CLEAR is executed in order to obtain the
GPUs memory write speed using glClear. For the calibration
a dedicated window surface and OpenGL context are created.

For the calibration we use a render buffer size of 1200 by 1000
pixels. For this window we call 100 times glClear followed by
a glFlush and measure the execution time for the resulting
command group. Moreover we measured the execution time
for just one glFlush. We executed both measurements (glClear
and glFlush) 20 times, and took the averages respectively.

We have implemented the calibration and bounding box
models presented in Sec.IV. For the calibration we use the
same render buffer size and context as for calibrating glClear.
For the calibration of the execution time of Vertex Opera-
tions ty s we draw 1000000 vertices that are rasterized to
0 fragments. For calibrating the execution time of Fragment
Operations trg we draw 100 triangles, each covering half of
the render buffer, we therefore render 100 x 600000 fragments.
Almost all vertex shaders for OpenGL ES 2.0 multiply the
vertex position by a model view projection matrix, e.g.,
by using gl_Position = ModelViewProjectionMatriz *
vecd(position, 1.0);. This effectively makes emulating the
vertex shader a comparatively simple task, since just a single
matrix multiplication has to be performed on the CPU. The
coverage factor which specifies the expected ratio between the
area covered by the projected bounding box and the number of
fragments processed during rendering on the GPU significantly
influences the measurement accuracy. For many scenarios, a
coverage factor of about 50% seems to be adequate. For
instance, in the example in Fig.4 about 30 % of the projected
bounding box area is covered by a rendered pixel. However,
part of pixels were rendered by multiple fragments, namely,
areas where one part of the horse overlaps another like the legs
or the head areas. In our current evaluations we use a constant
coverage factor of 0.5. We are aware, that this model might
not be accurate enough for all scenarios or prediction accuracy
requirements. Good mechanisms to obtain the coverage factor
need to be developed as part of future work.

VI. EVALUATION

In this section, we present our evaluation setup and the
evaluation results for each of the mentioned GPU commands.

A. Setup

For evaluation we used an Intel Core i7-3770K CPU and a
nVidia Quadro 400 graphics adapter. As mentioned earlier, the
GPU commands relevant for the rendering loop are FLUSH,
CLEAR, and DRAW. In the implementation of our framework
the execution time prediction is performed by libETP.

To allow for an accuracy comparison with libETP, we ad-
ditionally implemented the history-based prediction suggested
in [10]. More precisely, after a command group was executed,
we insert the binary command group data and its measured
execution time into a hash table. For prediction, we look up
the command group content in the hash table. If it is available,
the stored execution time is used as prediction. Otherwise,
the maximum execution time that occurred so far, is used as
prediction. Initially, the maximum is set to 0s. At preliminary
evaluations, we observed that each FLUSH command sequence
contains a sequence number. This sequence number makes
each command group consequently unique. The history-based
prediction would rarely find the same command group content
in the hash table. Therefore, a naive history-based prediction

would almost always predict the worst-case execution time. We
therefore decided to make the history-based prediction ignore
sequence numbers of FLUSH commands for a fair comparison.

B. Measuring Accuracy

In this section, we evaluate the accuracy of execution time
measurements using the proposed concept, since precisely
measuring execution time is key in order to achieve good pre-
diction results. To determine jitter of the measured execution
time, the evaluated command groups should be very fast and of
low complexity. Therefore, we evaluated the execution time of
command groups that contain nothing besides a single FLUSH
command, and, inherently, the SERIALIZE and a NOTIFY
commands explained in Sec. V. To this end, we created a test
program that calls gIFlush() 1000000 times and measured the
execution time on the GPU. To analyze how these measured
values deviate from each other, we depict in Fig.6 their
frequency distribution. From these results, we observe that the

300000

250000

200000

150000 -

Samples

100000 -

50000 - H_‘
0

13000 15000 17000 19000 21000 23000 25000 27000 29000
Execution time [ns]

Figure 6. Flush distribution

peak was at about 18.8 ps with a standard deviation of 864 ns
and more than 95 % of the values are in the interval between
18 s and 20 ps. The reason for the observed fluctuations is
a combination of jitter in GPU hardware, delayed interrupt
processing in the Linux kernel, and DMA delays. However,
the precision of the measurement is good enough for GPU
scheduling, assuming tens of applications displayed at 60 Hz
screen refresh rate.

C. Prediction Accuracy: CLEAR Command

The CLEAR command is used in almost all OpenGL rendering
programs and typically consumes a significant amount of GPU
execution time. In this section, we analyze the prediction
accuracy of the CLEAR command. As mentioned earlier, the
CLEAR command writes a constant color value to all pixels
of a set of buffers. Its execution time therefore depends on
the amount of written data and the GPU memory write speed.
Analyzing the prediction accuracy therefore mainly answers
the question whether the GPU memory write speed is stable
enough in order to precisely predict the execution time of
CLEAR. For our evaluations we used the Clearspd test program
from Mesa [18]. Clearspd uses a large number of CLEAR and
FLUSH commands, making it a good choice to measure the

prediction accuracy of CLEAR. For compatibility reasons, we
changed the initialization code of Clearspd to the OpenGL
ES 2.0 APIL In Fig.7 we depict the cumulative distribution
function of the measured execution time for the first 10000
command groups. For libETP, the deviation was within the

10000 f-v - : - - - . . . —

8000 -

6000 [

Samples

4000

2000 |- - : - - - - - .
- - Total number of samples
- libETP prediction
. History-based prediction — —
0 = i i 1
-100 -50 0 50 100
Error [us]
Figure 7. Clearspd CDF

interval —80 ps and +55 ps. This is small, since on average
a command group took 23.4ms to execute. However, at the
history-based prediction, 64 command groups were not found
and the worst case execution time was assumed for them. This
basically means that for all of the 10000 command groups in
our evaluations, only 64 different command groups occurred.
This is due to the fact that Clearspd initializes the clear color
always with black and then iterates it sequentially. Therefore,
many command groups are binary equivalent to some other
command group that already was submitted. Thus, the original
Clearspd program represents a fully deterministic program
with lots of repetitions.

Therefore, to better reflect the non-deterministic behavior
of GPU accelerated programs, we also evaluated a modified
version of Clearspd where the number of glClear loops (i.e.,
the number of consecutive glClear() calls before glFinish()
is called) was chosen randomly between 1 and 500. From
the results depicted in Fig.8, we observe that the number
of command groups which could not be predicted correctly
by the history-based prediction has increased to 2538. This
was due to the fact, that the diversity of the glClear loops
significantly increased compared to the original version of
Clearspd. Choosing the color randomly, too, would it make
almost impossible for the history-based prediction to predict
anything besides the overall maximum measured execution
time. In a realistic deadline scheduling scenario, drastically
overestimating GPU execution time (which happens with the
history-based prediction if the worst-case GPU execution time
is used) obviously cannot impact other applications with higher
priority. However, the overestimated GPU command might
effectively stop GPU execution for the respective application
if the estimated execution time is too long to fit into time slots
available for scheduling. From our results we conclude that
the GPU memory write speed is stable enough for precisely
predicting the execution time of CLEAR and ibETP fits the
desired prediction requirements for scheduling.

D. Prediction Accuracy: DRAW Command

In this section, we analyze the prediction accuracy of the
DRAW command. We used the bounding box heuristic de-

10000

8000 |- : : : : , : - : .

$ 6000 |- - : - - e - B
=Y -
E S
n /
4000 - - - - - - - - - B
/
/.
s
2000 - - - e - - - - -
- - Total number of samples
e : libETP prediction
0 Z ; ; History-basgd prediction — —
-100 -50 0 50 100
Error [ps]
Figure 8. Clearspd Random CDF

scribed earlier and evaluated two popular Linux OpenGL ES
2.0 demo applications. The benchmark application es2gears
is part of Mesa Demos [18] and renders 3 rotating gears
of different color and size. The OpenGL ES 2.0 benchmark
application glmark2-es2 [19] contains multiple scenes; we used
the scenes “build” and “shading”. For each of these three
evaluations we evaluated the absolute prediction error using the
bounding box heuristic to estimate the number of fragments
np. A wrong estimation of np could significantly impact
prediction accuracy. Therefore, it is important to evaluate if
the heuristic is effective for realistic scenarios.

The cumulative distribution function for es2gears is de-
picted in Fig.9. For each frame, the implementation of

20000

15000

Samples

10000 [

5000

Total number of samples
libETP prediction
History»basgd prediction — —

-100 -50 0 50 100
Error [us]

Figure 9. Es2gears distribution

es2gears uses 1 CLEAR command, 280 DRAW commands, and
1 FLUSH command (eglSwapBuffers). Each DRAW command
only draws 2 to 5 triangles. However, due to the massive
number of calls, the OpenGL driver splits up the commands
that render 1 frame into 5 different command groups. The
history-based prediction works for command groups three
and five. The other command groups contain updates for the
two OpenGL Uniform Matrices used by es2gears. Since the
matrices are not changed in discrete steps, but based on the
current time (in order to have a constant rotation speed of
the gears), for probabilistic reasons it rarely happens that
a rendered frame uses matrices that already occurred in a
previous frame (in our evaluations actually never). The libETP
prediction deviated no more than —60 ps and +5 us.

With glmark2-es2 we evaluated the benchmark scenes
“build” and “shading”. The “build” scene renders a rotating

horse sculpture, its results are depicted in Fig. 10. The “shad-
ing” scene renders a rotating blue cat sculpture, the results
are depicted Fig. 11. In contrast to es2gears, both scenes of

14000

12000

10000

8000

Samples

6000

4000

2000 - -- - - - - - Total number of samples
libETP prediction
I-‘iistory—base‘d predictio‘n - -

0 ! ! ! !
-100 -50 0 50 100 150 200 250 300

Error [ps]

Figure 10. Glmark2-es2 “build” benchmark

9000

8000

7000

6000 |- - i R - o S

5000 |- : : : : : : :]

Samples

4000 |- --- - - - - - - - B
3000 |- -- - E S - - e

2000 -

Total number of samples
1000 |- -- - B s libETP prediction y
ﬁistory-basgd predictiqn - -

0 I I I I

-100 -50 0 50 100 150 200 250 300
Error [ps]
Figure 11. Glmark2-es2 “shading” benchmark distribution

glmark2-es2 use a single DRAW command for each frame,
therefore MESA submits all GPU commands of a frame in a
single command group. Since all command groups contain the
matrices data, which—as with es2gears—is different for every
frame, the history-based prediction could not predict a reason-
able value for any command group. For the “build” scene our
results show that the bounding box heuristic of libETP tended
to overestimate, on average about 134 ys. To render a single
frame took on average 745 us while 879 us were predicted by
libETP on average. The overestimation of about 18 % is due
to the fact that the actual number of fragments of the rendered
horse is less than the assumed 50 % of the area covered by
the bounding box. For the “shading” scene our results show
again that the bounding box heuristic tended to overestimate
the execution time. Since the scene is more complex, each
frame took on average 1099 us to render. On average the
prediction of ibETP was 9% above the measured real ex-
ecution, so the relative error is still comparably low. After
OpenGL initialization, the absolute prediction error was within
the interval +20 ps and 4260 ps. These results show, that the
bounding box heuristic is an effective approach to estimate the
number of fragments. Since the number of fragments is one
of the key factors for the execution time, it clearly depends
on the rendered scene how adequate our heuristic actually is.
Moreover, it must be noted, that the current implementation
could be deceived by malicious applications that are aware
of the used heuristic and submit DRAW commands that are

either highly overestimated or underestimated. Further steps
are needed to detect such malicious application behavior or at
least ensure that the absolute prediction error is limited.

E. Influence of OpenGL Context

In Sec.Ill, we explained our assumption that the OpenGL
context affects the execution time of GPU commands. How-
ever, this does not necessarily imply that GPU command
groups are context sensitive. For instance, if each command
group would contain all state-relevant parameters, it could be
adequate to ignore the OpenGL context but use the command
group data for prediction, as the history-based approach does.
In this section we therefore analyze whether using different
OpenGL contexts affects the content of the command group
data. To this end, we created another version of Clearspd using
two contexts. This version of Clearspd creates two window
surfaces and OpenGL contexts (instead of one as the original
version does). The first window—using the first context—has
a resolution of 640x480 and the second window—using the
second context—has a resolution of 1920x1080. The main loop
uses always black color, 300 loops and alternates between the
two contexts. The expected result is that a CLEAR command
in the second context takes significantly longer than for the
first context, since the render buffer to clear is much bigger.
Moreover, just 3 different command group contents occur in
this scenario:

A Enable context 1 (104 bytes) and perform 170
glClear operations (28 bytes each)

B Enable context 2 (104 bytes) and perform 170
glClear operations (28 bytes each)

C Perform a postponed FLUSH (20 bytes), perform

130 glClear operations (28 bytes each), finally
perform a FLUSH (20 bytes)

The sequence of command groups in this evaluation is
A,C,B,C,A.C,B.C, etc?. From the results depicted in Fig. 12 we

3500

3000 ---

2500 - --

2000 - --

Samples

1500 - --

1000 - - - BRI .
500 f~--- - B R - e Total number of samples —
libETP prediction
; ; ; I‘-iistory—bas‘ed predictiqn - -
0
-200 -150 -100 -50 0 50 100 150 200

Error [us]

Figure 12. Clearspd Alternating Context CDF

observe, that the history-based prediction predicted completely
wrong values for about 50 % of the command groups. This is
due to the fact, that the command group C is assumed to have
always the same execution time. However, its execution time
actually depends on the active OpenGL ES context, a fact
that is completely hidden from the history-based prediction.

In that sequence, as well as in the presented results, we omitted command
groups that only consist of a single FLUSH operation for the sake of readability.

Therefore, the assumption that the history-based prediction
never clearly underestimates the execution time turned out
to be wrong. Furthermore, the assumption that history-based
prediction improves its accuracy the longer it runs turned out to
be wrong, as well. Since libETP intercepts the eglMakeCurrent
calls, it gets aware of context changes and to which window
surface each of the glClear calls refer to. Although the execu-
tion of a single command group took up to 307 ms to execute,
the prediction error of libETP was never outside the range
between —74 us and +130 us. Thus, adding a small safety
margin on the predicted value, we could ensure that libETP
never underestimates execution time, while still providing a
small overestimation. From our evaluations we clearly observe,
that using different OpenGL contexts can result in command
groups that—although being binary equivalent—have different
semantics, i.e., have different execution times caused by the
different render buffer sizes. Since IibETP is aware of the
OpenGL context, it supports execution time prediction also
for scenarios that use multiple OpenGL contexts.

VII. SUMMARY AND FUTURE WORK

In this paper we have motivated that realtime GPU scheduling
is necessary to run automotive 3D applications of different
safety-criticality on a single platform using a shared GPU.
Due to the non-preemptive nature of current GPUs, execution
time prediction of GPU rendering commands is required in
advance to the scheduling decisions. Our presented framework
measures and predicts the execution time of GPU command
groups using the OpenGL ES 2.0 API. We presented prediction
models for the main GPU commands relevant for 3D render-
ing, namely, FLUSH, CLEAR, and DRAW. Our results show
that the execution time for FLUSH and CLEAR commands
can be predicted with high precision. The DRAW command
is inherently more challenging to predict, since the number
of processed fragments is unknown in advance. We therefore
use a 3D bounding box of the rendered model and apply the
vertex shader projection to heuristically estimate the number of
fragments rendered. In our evaluations the absolute prediction
error of the DRAW command did not exceed 260 ps, which
shows that our model is an effective way to estimate the
number of fragments. In contrast to existing approaches, our
framework is fully aware of the OpenGL context. Furthermore,
our evaluations show that using a history-based approach on
GPU command group level is insufficient for deadline-based
GPU rendering.

As part of future work we will analyze how the bounding
box heuristic can be improved, especially how the coverage
factor can be reasonably used to improve the prediction accu-
racy. Moreover, we will in-depth investigate the fragment post-
processing steps in order to improve the accuracy of our model.
Moreover, we will increase prediction accuracy by using live
adaptation, i.e., use live measurements to improve slightly
wrong calibration measurements later. Furthermore, we will
implement a GPU scheduler that uses the predicted values for
realtime scheduling of GPU rendering commands.

ACKNOWLEDGMENT

We thank Robert Krutsch from Freescale Semiconductor for
his support. This paper has been supported in part by the Auto-
motive, Railway and Avionics Multicore Systems (ARAMIiS)

project under the research grant of the German Federal Min-
istry of Research and Education (BMBF), project number
01IS11035R.

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts,
figures, and future,” Computer, vol. 42, no. 4, pp. 42—
52, April 2009.

[2] “Nvidia automotive driving innovation,” 2013.
[Online]. Available: http://www.nvidia.com/docs/IO/
116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf

[3] (2014) Audi R8 Concept Car. [Online]. Available:
http://www.audi.com/content/com/brand/en/vorsprung_
durch_technik/content/2014/01/showcar-ces.html

[4] Ford, “Software development kit (SDK),” 2013. [Online].
Available: https://developer.ford.com/develop/openxc/

[5] “New Version of QNX CAR Platform...” 2013. [Online].
Available: http://www.qnx.com/news/pr_5602_1.html

[6] “Mercedes-Benz integration of iPhone App in A-Class,”
2013. [Online]. Available: http://www.iphone-ticker.de/
mercedes-benz-iphone-integration-a-klasse-30952/

[7] ISO 26262, Road vehicles — Functional Safety.
Geneva, Switzerland, Nov. 2011.

[8] S. Gansel et al., “Towards Virtualization Concepts for
Novel Automotive HMI Systems,” in Proceedings of
IESS, ser. IFIP LNCS. Springer Berlin Heidelberg, 2013.

[9] M. Bautin, A. Dwarakinath, and T.-c. Chiueh, “Graphic
engine resource management,” in Proc. SPIE, 2008.

[10] S. Kato et al., “TimeGraph: GPU scheduling for real-time
multi-tasking environments,” in Proc. of USENIX Annual
Technical Conference, Berkeley, CA, USA, 2011.

[11] “OpenGL ES; The Standard for Embedded Accelerated
3D Graphics.” [Online]. Available: http://www.khronos.
org/opengles/

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J.
ACM, vol. 20, pp. 46-61, Jan. 1973.

[13] K. Roussos, N. Bitar, and R. English, “Deterministic
batch scheduling without static partitioning,” in Proc. of
the Job Scheduling Strategies for Parallel Processing,
ser. IPPS/SPDP "99/JSSPP "99. London, UK: Springer-
Verlag, 1999, pp. 220-235.

[14] M. B. Jones, D. Rosu, and M.-C. Rosu, “CPU Reser-
vations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities,” in Proc. of the
16th ACM Symp. on Operating Systems Principles, ser.
SOSP, New York, USA, 1997.

[15] Microsoft WDDM GPU preemption. [Online]. Avail-
able: http://msdn.microsoft.com/en-us/library/windows/
hardware/jj553428.aspx

[16] M. Yu et al., “VGRIS: Virtualized GPU Resource Isola-
tion and Scheduling in Cloud Gaming,” in Proceedings of
the 22nd International Symposium on High-performance
Farallel and Distributed Computing, ser. HPDC ’13.
New York, NY, USA: ACM, 2013, pp. 203-214.

[17] Nouveau project. [Online]. Available: http://nouveau.
freedesktop.org/wiki/

[18] The Mesa 3D Graphics Library. [Online]. Available:
http://www.mesa3d.org

[19] glmark2-es2: OpenGL ES 2.0 benchmark. [Online].
Auvailable: https://launchpad.net/glmark2

ISO,

