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ABSTRACT

The relevance of graphical functions in vehicular applica-
tions has increased significantly during the few last years.
Modern cars are equipped with multiple displays used by
different applications such as speedometer or navigation sys-
tem. However, so far applications are restricted to using ded-
icated displays. In order to increase flexibility, the require-
ment of sharing displays between applications has emerged.
Sharing displays leads to safety and security concerns since
safety-critical applications as the dashboard warning lights
share the same displays with uncritical or untrusted applica-
tions like the navigation system or third-party applications.
To guarantee the safe and secure sharing of displays, we
present a formal model for defining and controlling the ac-
cess to display areas in this paper. We prove the validity of
this model, and present a proof-of-concept implementation
to demonstrate the feasibility of our concept.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls; H.5.2
[User Interfaces|: Windowing systems
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1. INTRODUCTION

Innovations in cars are mainly driven by electronics and soft-
ware today [6]. In particular, graphical functions and appli-
cations enjoy growing popularity as shown by the increasing
number of displays integrated into cars. For instance, the
head unit (HU)—the main electronic control unit (ECU) of
the infotainment system—uses the center console screen to
display the navigation system, or displays integrated into the
headrests of the front seats together with the center console
screen to display multimedia content. Displays connected
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to the instrument cluster (IC) replace analog indicators dis-
playing speed information or warnings. Additionally, head-
up displays are used for displaying navigation instructions
or assistance messages on the windshield.

Moreover, as demonstrated by advanced use cases already
implemented in concept cars [1], there is a trend to share
the different available displays flexibly by displaying content
from different applications on dynamically defined display
areas. For instance, while parking, applications can out-
put information on any display including, in particular, the
IC display. For example, this allows for playing full-screen
videos on the IC display while the car is not moving. More-
over, the window size can be configured dynamically, for
instance, to reduce the size of the speedometer in favor of a
larger display area of the navigation software. Note that the
flexible and dynamic usage of displays allows applications
running on different ECUs to access all available displays.
Even third-party applications downloaded from an app store
[12, 3] and running in isolated execution environments—e.g.,
an Android partition within QNX [3] or on the mobile phone
of the user [2]—can be granted access to these displays.

Although these use cases are very attractive for the user,
they come with a great challenge: ensuring safety. Dif-
ferent standards and guidelines consider the safety aspect
of displaying information in vehicles. For instance, current
standards regulate that the level of safety-criticality of each
function has to be assessed and suitable methods must be
implemented to minimize the risks caused by malfunctions,
c.f., ISO 26262 [15]. Moreover, automotive design guide-
lines (e.g., [9]) require that safety-critical content must be
displayed in defined display areas and while driving poten-
tially distracting content (like video playback) must not be
displayed to the driver. Additionally, country-specific laws
must be fulfilled, e.g., as regulated by German law (StVZO
§57 [17]), in a moving car the speedometer must be visible.

Since display sharing results in scenarios where safety-
critical applications, share the same display with uncritical
applications, concepts for the safe sharing of displays be-
tween applications are required. Specifically, display areas
have to be isolated such that it is guaranteed that the out-
put of different applications does not interfere. For instance,
the brake warning light may indicate a potentially severe hy-
draulic problem in the brake system and being covered by
other application windows could be critical to the safety of
the driver. Therefore, the output of safety-critical applica-
tions must be guaranteed to be always visible if required by
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the status of the car or traffic conditions. Since this also
applies to third-party applications, it is the responsibility of
the OEMs to ensure that graphical outputs from different
applications do not interfere. One approach to ensure this
is to test and certify the correct behavior of all applications
by the OEM. However, such a certification process is ex-
pensive and cumbersome. Therefore, technical solutions are
required to ensure the isolation of display areas.

A naive approach is to provide isolation for window place-
ment by defining a static mapping in which the IC applica-
tions only access the IC display and the HU applications ac-
cess the HU display and, additionally, the IC display within
a reserved area. However, this approach lacks flexibility
since only a predefined number of applications can be sup-
ported, and sharing is restricted to pre-defined display areas.
Therefore, more flexible dynamic display sharing is required.

In this paper, we present a novel access control model for
sharing graphical displays to offer flexibility without com-
promising safety. Basically, our model grants applications
dynamic permissions to draw to certain display areas. To
support the decentralized software development process in-
volving OEMs and subcontractors and possibly third-party
developers, permissions are managed based on a delegation
hierarchy such that applications can pass permissions to sub-
components, e.g., third-party or subcontractor components.
In detail, we make the following contributions in this paper:
1. A formal definition of the access control model and the
required properties such as isolation. 2. A formal proof of
correctness for this model. 3. A proof-of-concept implemen-
tation to show the feasibility of this approach.

The rest of this paper is structured as follows. In Sec. 2
we present our system model and requirements. Sec. 3 de-
fines our access control model and presents properties for
the model with the proof in Sec. 4. We present our imple-
mentation in Sec. 5, and related work in Sec. 6. We conclude
with a summary and an outlook on future work in Sec. 7.

2. SYSTEM MODEL & REQUIREMENTS

In this section, we describe the components, assumptions
and requirements of our system for display access control in
an automotive HMI system.

2.1 System Model

The components of our system are depicted in Fig. 1. First
of all, we assume that the available display surface consists
of multiple displays. The display surface is shared between
all applications. We define a display area as a subset of the
pixels of the display surface. Each pixel of the display sur-
face is indexed by x and y coordinates and is unambiguously
identifiable by its position.

[ Appl | [ App2 | [ App2 | -

Access Control Manager
Access control layer
\ Shared displays |

Figure 1: System model

Applications communicate with an Access Control Layer
to get access to display areas. We assume that all applica-
tions can be unambiguously identified, e.g., by using Univer-
sally Unique Identifiers (UUID). Moreover, the usage of the
displays by applications is restricted by the context of the

car. For instance, video playback is permitted only if the
car is not in motion. Applications can be deployed or re-
moved dynamically during runtime. Applications provided
by the OEM or third-party developers are stored on a back-
end server infrastructure (cf. Fig. 2, [20]). To deploy or
update an application in the car, the vehicle establishes a
secure connection to the backend server to download bina-
ries, a list of permissions, and certificates from the server.

-

Apps

Apps
(third-party) (OEM)
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updates

Figure 2: App deployment

The Access Control Layer restricts access to the display
surface. Since there is no static mapping between applica-
tions and display areas, the mapping is performed by the
Access Control Manager. Before an application can access a
display area, it needs a permission from the Access Control
Manager that centrally manages all granted permissions.

2.2 Requirements

In the following, we present our requirements targeting ac-
cess control of the display surface which need to be fulfilled
to ensure safety in automotive HMI systems.
Req. 1 — Dynamic permissions: An application shall
be allowed to access a display area if, and only if, there
exists a corresponding permission. A permission shall be
grantable and revocable during runtime of the system to
meet the different demands of the applications which can be
influenced by the status of the car or traffic conditions.

Req. 2 — Priorities: Applications shall have priorities as-

signed. Priorities can depend on importance, urgency, crit-

icality, and legal requirements for displaying graphical con-
tent. If multiple applications want to access the same display
area, access shall depend on their priorities.

Req. 3 — Safe access: Each pixel shall be mapped to

exactly one application. This requirement consists of the

following two sub requirements.

Req. 3.1 — Exclusive access: Each pixel shall be mapped to
at most one application. Thus, an application that has
access to a pixel is guaranteed to be visible.

Req. 3.2 — Completeness: Each pixel shall be mapped to at
least one application. For each pixel there exists an
application that has a permission to set its content and
can grant access to it, and “dead” pixels are avoided.

Req. 4 — Delegation: To facilitate the software devel-

opment process, the OEM may pass usage permissions for

display areas to software development companies or even
individual developers, which again can pass usage permis-
sions to others. Passing usage permissions must happen in

a way that the OEM can ensure to meet all safety-relevant

requirements without being a central certification author-

ity for all applications. For instance, as depicted in Fig. 3,

the OEM passes different usage permissions to Company 1.

Company 1 decides to pass a subset of its permissions to
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Company 2. This example of permissions requires a delega-
tion relation between the parties for exchanging permissions.
More precisely, we assume a decentralized development pro-
cess as it is commonly applied in today’s car industry, e.g.,
by service-based software development [18]. This process in-
volves different departments of the OEM, subcontractors, as
well as third-party developers like application developers for
a (future) app store for vehicular apps. In the scenario de-
picted in Fig. 3, the OEM software development is done by
different departments and subcontractors. The OEM pro-
vides the HMI base system, interface definitions, and certi-
fication policy. Company 1 is independent from the OEM
and provides an Android partition—running isolated from
the OEM applications, e.g. within QNX [3]—with an auto-
motive app menu which is compatible and certified for the
OEM’s HMI system. This app menu uses display areas ded-
icated by the OEM to display Android applications. Com-
pany 2 sells automotive Android applications that enhance
the features of the car. For instance, an application which
display relevant information about service stations nearby
the current position of the car.

As becomes obvious from this scenario, our system has to
support the delegation of permissions to access display areas
between the involved parties to facilitate the decentralized
development process.

3. ACCESS CONTROL MODEL

We now present the first main contribution of this paper: an
access control model for automotive HMI systems. We first
give an overview of the model, before we formally define the
model and verify its properties.

3.1 Overview

In general, an access control mechanism controls which sub-
jects can access which objects. In our context, subjects cor-
respond to applications and objects to display areas whose
pixels are modified by the application. We use permissions
to define that a certain application is granted access to a cer-
tain display area. Since permissions can be granted and re-
voked dynamically, we need a formal model that can express
this dynamic behavior. To this end, we introduce states that
model the mapping of permissions to applications at a cer-
tain point in time. Transitions between states are triggered,
whenever a permission is granted or revoked, i.e., whenever
the mapping of permissions to applications changes. The
state transitions over time can be modeled as a graph, where
states correspond to vertices and transitions to edges.

We introduce the notion of a safe state. A safe state obeys
all requirements of Sec. 2.2. A system is safe, if it starts in
a safe state and every transition that occurs over time leads
to a safe state. In order to ensure that only safe states can
occur, we define which transitions are allowed. As stated
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Figure 4: Entities: Pixels and display areas

in our requirements, our system should support granting of
permissions where an application passes on a permission for
a display area to another application. In order for a transi-
tion to be valid, an application can only pass a permission
for a display area if it owns the permission for this area.

To further control the transfer of permissions, we intro-
duce a delegation relation between applications. This rela-
tion is defined based on the decentralized development pro-
cess where the OEM might delegate the development of a
certain application component to a contractor, contractors
might delegate parts of the application to subcontractors,
etc. In order to show the GUI of a component, the actual
developer can receive the permission to draw into a certain
display area if he is in a delegation relation with the grantor.
If a permission has been granted, the grantor cannot access
the display area anymore. However, he can revoke a granted
permission to get access to the corresponding display area
again. Based on the rules to transfer permissions, we can
then prove the correctness of our model by complete induc-
tion showing that the initial state is valid and each transition
from a valid state leads again to a valid state.

Next, we present formal definitions of our model and an
outline of the proof.

3.2 Subjects and Objects

A display area is defined as a set of pixels as depicted in
Fig. 4. The smallest possible area consists of a single pixel,
i.e., an atomic object. The complete display area is called
the display surface and consists of all pixels.

Definition 1. AO = {ao1,...,a0,} is a finite set of pizels
(atomic objects). A display area is a subset of the set of pix-
els, formally a display area o is an object o € O = P(AO)\0
with O representing the set of all display areas.

Definition 2. S = {s1,...,n} is a set of applications (sub-
jects) with n > 1.

3.3 States

Each state of our model is represented by the currently valid
permissions and delegation relations.

Definition 3. A permission grants an application access to
a certain display area. Formally, P = P(S x O) represents
the set of all possible combinations of permissions.
B ={f:5 — PxP} maps to each application in S two sets
of sets of permissions (P X P), representing the permissions
an application has received from other applications and per-
missions it has granted to other applications.

Let b € B,s € S. Set received(b,s) := {r|(r,g) € b(s)}
denotes the set of permissions that application s has re-
ceived. And set granted(b,s) := {g|(r,g) € b(s)} denotes
the set of permissions application s has granted. Accord-
ingly, (s,0) € received(b,s’) indicates that application s’
has received the permission to access display area o from
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Figure 5: Example for a set of received, granted,
and used display areas of an application

application s. (s,0) € granted(b, s’) indicates that applica-
tion s’ has granted the permission to access display area o
to application s.

We distinguish between received permissions for display
areas and actually used display areas. A display area o is
used by an application if it is setting the graphical content
of o. A display area is in the set of used display areas of an
application if the display area is in the set of received dis-
play areas and it must not be granted to other applications.
Applications can only set the graphical content of display
areas which are part of their set of used display areas.

Definition 4. used : B x S — P(O) is a function which
returns the set of display areas used by an application.
Let o € O,s € S,b € B. We define o € used(b, s) <

3(8,0) € S x O :(8,06) € received(b,s) No C o A (4.1)
V(s',0') € S x O:(s',0") € granted(b,s) = oNo' =0 (4.2)

In Fig. 5 we depict an example of the sets of received, granted,
and used display areas. The application received the display
areas o1, 02, and o3 and decided to grant oz and part of o2
to another application. Therefore, the display areas 0o and
o3 are in the set of granted display areas. Hence, 01 and os/
are in the set of used display areas and the application can
set their graphical content.

We say an application s’ that received a display area o
from another application s depends on that application since
it can revoke display area o at any time. If display area o
will be granted by s’ to another application s, then s’ also
depends on application s since revoking of display area o
by s will recursively revoke o from application s”. Fig. 6
depicts the hierarchical dependencies between applications.
Application s; granted part of its display area o1 to the
applications sy and ss keeping only a small display area
in the upper left corner to set its graphical content. The
applications s4 and s5 received each a part of the display area
s2 received from s;. Similarly, sg received part of the display
area which ss received from s;. Hence, the applications sy,
s5, and sg indirectly depend on s; since revoking of the
display areas granted to s2 and s3 would also revoke the
display areas of these applications.

We introduce the operator <, that denotes if an applica-
tion depends on another applications directly or indirectly
according to a display area. More precisely, s <, s’ means,
application s has received o either directly from s’ or by us-
ing a chain of intermediate applications, i.e., s depends on
s’ according to 0. The formal definition is in Sec. A, Def. 10.

For instance, in Fig. 6 application ss3 depends on s; ac-
cording to display area o3, i.e., s3 <o, s1. Hence, application
s¢ depends on s3 and s; according to o, i.e., s <og S3 and

Figure 6: Example for permissions dependencies

S6 <o S1. Let 5,8 € S. We define s #, s & Jo € O :
s <, 8 Vs <, s That is, application s and s’ do not have
a dependency due to any display area o € O. For instance,
in Fig. 6 the applications sz and s3 do not have any display
areas granted directly or indirectly, i.e., so #, s3.

Applications will only grant permissions to or receive per-
missions from applications they are in a delegation relation
with. Each application can be in a delegation relation with
one or more other applications. To prevent granting of
permissions from non-safety-critical applications to safety-
critical applications a delegation relation is only established
if a mutual agreement between the applications exists.

Definition 5. We map to each application the set of ap-
plications it allows to be in a delegation relation with. This
mapping is performed by a function dr € DR = {dr : S —
P(S)}. Applications s and § are in a delegation relation with
each other if, and only if, s € dr(8) and 5 € dr(s).

The delegation relations correspond to the development hi-
erarchy, cf. Sec. 2.1. Hence, the delegation relations be-
tween applications restrict the propagation of permissions.
To support dynamic deployment of applications during run-
time, applications are allowed to dynamically declare with
which applications they want to be in a delegation relation.

After we introduced permissions and delegation relations,
we formally define states.

Definition 6. A state consists of active permissions and
delegation relations between applications. Formally, v € V
is a state in V = B X DR.

3.4 Properties of States

States have properties that represent the requirements of
Sec. 2.2. First, we define €2,s.q as the union set of all pixels
in the sets of used display areas in b. 2yseq represents all
display areas whose graphical content is set by applications.

Definition 7. Qysea : B — P(O) is a function which re-
turns a set of all used areas according to b € B. We define

Qusea(d) & U{o € 0|3s € S:0 € used(b,s)}

Additionally, set ®(b,s) := |Jused(b, s) denotes the union
set of all pixels in the sets of used display areas of an appli-
cation s in b.

Next, we define three properties that determine the con-
sistency of our model and correspond to Req. 3 and Req. 4
introduced in Sec. 2.2. A state is called safe, if, and only if,
it satisfies all three properties.

Exclusive Access Property (EAP): In a state that sat-
isfies EAP, each display area is used by at most one
application. Let v = (b,dr) € V. v satisfies EAP <
Vs,s' € S:s# s = ®(b,s)NP(b,s") =0.

This means, the sets of used display areas of all applications

are intersection-free. Therefore, competing access to display

areas is precluded and Req. 3.1 fulfilled.
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Figure 7: Example of a transition from state v to v’

Completeness Property (CP): In a state that satisfies
CP, each pixel is used by at least one application. Let
v = (b,dr) € V. v satisfies CP < Qysca(b) = AO.
All pixels must be in Qyseq(b) which represents all pixels of
all used display areas. That is, for each pixel there exists an
application that sets the pixels color, which fulfills Req. 3.2.
Delegation Property (DP): In a state that satisfies DP,
permissions are only granted between applications hav-
ing a delegation relation. Let v = (b,dr) € V.
v satisfies DP <

Vs,s' € S,Yo €O :s5# s Ns<,8 = (DP.1)
350, s Sni1 €8 1850 =8 ASpi1 =8 A (DP.2)
Vi € {0,..., C No: 8; <o Si+1A

1 {0} C o si <o sia (DP.3)

S; € dr(5i+1) N Sit1 € dT(Si)

(DP.1) implies that for all applications which depend on an-
other application according to a display area, a chain of
applications exists (DP.2), for which every application is
in a delegation relation with its predecessor and successor
(DP.3). Since permissions are only granted if a delegation
relation exists, Req. 4 is fulfilled.

3.5 Transitions

Transitions between states are triggered by application re-
quests. In more detail, four requests might trigger state
changes: Requests for granting or revoking permissions, and
requests for adding or deleting an application to or from a
delegation relation. Next, we define these four requests.

Definition 8. A transition is triggered by a request to add

or delete permissions or delegation relations. The operation
mode is determined by RA = {append, discard}. To alter
permissions the set of requests RO is used. A requestr € RO
consists of operation mode, grantor, grantee and the display
area; formally, RO = RA x S x S x O.
To alter delegation relations the set of requests RD 1is used.
A request r € RD consists of operation mode and the two
applications of which the first wants to establish or withdraw
a delegation relation with the second; formally, RD = RA X
S x S. The set of all requests is the set R = RO U RD.

Next, we formally define transitions between states.

Definition 9. trans : V X R — V is a function which
represents the transition from one state to another state ini-
tiated by a request r € R.

As described in Sec. 3.4, states must fulfill all three proper-
ties to be safe states. A transition changes from one state to
another. Transition rules ensure that the new state is also a
safe state. Therefore, we say a sequence of transitions from
safe state to safe state is called safe state sequence.

Since applications can request to trigger a transition to
add or delete permissions or delegation relations, we need
four rules to restrict transitions for the two operation modes
on permissions and delegation relations.

In the following, we define Rule 1.1 and Rule 1.2 to describe
how permissions can be changed, and Rule 2.1 and Rule 2.2
to describe how delegation relations can be changed.

Rule 1.1 If application s’ wants to have a permission for
display area o from application s, this is expressed by the
request 7, € RO with r, = (append,s,s’,0). If applica-
tion s decides to grant a permission, trans(v,r.) is exe-
cuted as depicted in Fig. 7. In detail, trans calls a function
addso(b, s,s',0) (cf. Def. 11 in Sec. A), which adds o to the
set of granted permissions of s, and adds it to the set of
received permissions of s if the following condition for R1.1
is satisfied. Condition cond; is satisfied, if
(1) request r is in RO and operation mode ra is append.
(2) different s and s’ have a delegation relation.
(3) the application s’ does not receive a permission for a
display area which is part of a display area granted by
s’, thus, preventing cyclic grants.
(4) display area o is in the set of used display areas of s.
Formally, we define

1

2
3
4

cond; =r € RO A ra = append/\
s#s Ns' edr(s)nsed(s)A
36 € O : 6 € used(b,s) Ao C 6N
#(5,6) € granted(b,s") : 0 C 6

AA,_\,_\
L = —

Rule 1.2 An application s can revoke a permission for dis-
play area o from another application s’. This is expressed by
the request 74 € RO with r = (discard, s, s, 0) as depicted
in Fig. 7. In this case, trans calls a function dels, (b, s, s’,0)
(cf. Def. 12 in Sec. A), which removes o from the set of
granted permissions of s and removes it from the set of re-
ceived permissions of s” with trans(v’,rq) = v if the follow-
ing condition for R1.2 is satisfied. Condition conds is satis-
fied if (1) request r is in RO, operation mode ra is discard,
and (2) revoking of display area o was previously granted by
application s to s’ and s # s’. Formally, we define

condz =1 € RO Ara = discard A (1)
s# s A(s',0) € granted(b, s) A (s, 0) € received(b,s’) (2)

If s’ has granted permissions that contain part of o, the
function dels, will recursively revoke all these permissions.
Therefore, dels, removes all permissions with display areas
that are part of o from the sets of granted and received
permission if the applications depend on s. Furthermore,
the permission which s granted to s’ is removed from the
set of granted permissions of s. The sets of permission of all
applications that do not depend on s will not be changed.

Rule 2.1 The set of delegation relations DR can be changed
by using transitions. If application s wants to be in a dele-
gation relation with application s’, this is expressed by the
request 7 € RD with r = (append, s,s’). Then trans calls
function addg,(dr, s, s’) (cf. Def. 13 in Sec. A), which adds
the new relation s — s’ to dr if the request r is in RD,
the operation mode ra is append, and s # s’, i.e., no self-
referencing delegation relation can be created. Formally,
Condition conds=r € RD Ara = append A s # s'.

Granting of permissions is restricted to applications which
are in a delegation relation. For instance, in Fig. 6 applica-
tion S has to be in a delegation relation with application
S2 before permissions can be granted between them.



Rule 2.2 Similarly, if application s no longer wants to be
in a delegation relation with application s’, this is expressed
by the request 7 € RD with r = (discard, s, s"). In this case,
trans calls function delg,(dr,s,s’) (cf. Def. 14 in Sec. A),
which removes the delegation relation s — s’ from dr if the
following condition is satisfied. Condition condy is satisfied
if (1) request r is in RD, operation mode ra is discard, and
(2) application s revoked or returned all permissions granted
between s and s’ beforehand and s # s’. Formally, we say

conds =r € RD Ara = discard A (1)
s#5 AYo€O:5+#,5 (2)

Next, we formally define trans using the four rules. Let
v = (b,dr) € V, and r € R with r = (ra,s,s’,0) € RO or
r = (ra,s,s’) € RD. We define

(addso (b, s,8',0),dr) if cond; (R1.1)
(delso(b, s,8',0),dr) if conds (R1.2)
trans(v,r) = < (b, addq,(dr, s, s’)) if conds (R2.1)
b, delg,(dr, s,s’)) if conds (R2.2)
v otherwise

If none of the conditions of Rule 1.1, Rule 1.2, Rule 2.1, and
Rule 2.2 are fulfilled, then the state v does not change.

4. SYSTEM VERIFICATION

In this section, we verify our model against the requirements
in Sec. 2.2. Req. 1 (Dynamic permissions) is directly given
by the granting and revoking of permissions by applica-
tions. The hierarchical dependencies between applications
represent priorities according to Req. 2. The three prop-
erties Exclusive Access, Completeness, and Delegation (cf.
Sec. 2.2) correspond to Req. 3.1 (exclusive access), Req. 3.2
(completeness), and Req. 4 (delegation), respectively.

While Req. 1 and Req. 2 are given by design of the model,
Req. 3 and 4 are properties which we prove using complete
induction. In this section we describe the main steps of our
proof using Lemmas whose proofs can be found in Sec. B.

First, we define a system that consists of sequences of
states and requests. We use this system to define proposi-
tions which we prove by using complete induction over the
states. Finally we prove that a system is safe if the initial
state fulfills the properties EAP, CP, and DP.

4.1 System

We prove the correctness of our system using complete in-
duction over a sequence of transitions. Therefore, we define
a system which represents all possible sequences of transi-
tions between states reachable from a given initial state.
First, we denote a sequence of n — 1 requests as x, :=
(ro,...,rn—1) and a sequence of n states as x, := (vo, ..., Un)
with n € Ng. A system ¥(vp) consists of all possible tran-
sitions between states using requests, starting with initial
state vg. That is, in such a system each sequence of states
x, triggers n—1 transitions traversing the states x,, denoted
as (zr,xy) € U(vg). Furthermore, we denote (v, Tz, vy) >
U(vo) if a sequence of states and requests beginning from
state vp exists in the system, and contains the state v,
where, using request r, a transition to v, is performed. The
formal definition can be found in Sec. A, Def. 15 to 18.

A system is safe if all states in that system are safe states.
That is, a system consists only of states that satisfy the
properties EAP, CP, and DP.

4.2 Propositions

Since the states and transitions of our model consist of math-
ematical formulations we can define propositions that corre-
spond with our properties defined in Sec. 3.4. We define
three propositions that correspond to the properties and
help us to prove the safety of our model. Let v,v",v0 € V;
v = (b,dr'); v=(b,dr) and r € R.

Proposition 1: All sequences in ¥(vg) satisfy EAP for any
vo which satisfies EAP < V(v,7,v') € VX RXV :
(v,7,0") > U(vo) = v, v satisfy EAP

Proposition 2: All sequences in ¥(vo) satisfy CP for any
vo which satisfies CP < VY(v,7,v") € V. x Rx V :
(v,7,v") > U(vo) = v, v satisfy CP

Proposition 3: All sequences in W(vg) satisfy DP for any
vo which satisfies DP < V(v,m,0v") € VX Rx V :
(v,7,v") > ¥(vo) = v, v satisfy DP

Proposition 1 says that all sequences in a system W(vo) sat-

isfy EAP if, and only if, for all states v’ which can be directly

generated from any state v with one request, implies that
states v and v’ also satisfy EAP. Proposition 2 and Propo-
sition 3 are similar to the Proposition 1 but they target CP,
and DP. By proving these three propositions we can con-
clude that every system ¥(vo) is a safe system if state v
satisfies our properties in Sec. 3.

4.3 Proof by Complete Induction

To prove the correctness of Proposition 1, Proposition 2,
and Proposition 3, we define a lemma for each of them.
Additionally, we define Lemma 1 and 2 for the similar proofs
of Lemma EAP and CP. Finally, we use complete induction
over the system states to prove the propositions. We present
the formal proofs of Lemma 1, Lemma 2, Lemma EAP in
Sec. B. Due to space restrictions the proofs of Lemma CP
and Lemma DP are published in [13].

We first define Lemma 1, which states that after a tran-
sition using (R1.1) with adds.(b, s, s, 0) the display area o
moved from the used display areas of application s to s’.
Lemma 1: Let vo € V, ¥(vo) be a system and (v,7,v") €
V x R x V with (v,r,v") > ¥(vg). Let v = (b,dr) satisfy
EAP and ra = append and condy = trans(v,r) = (V/,dr) €
V with b’ = adds(b, s, s',0).

o', s) = o(b,s)\o
o', s") = ®(b,s") U{o}

(L1.1)
(L1.2)

The following Lemma 2 says that after a transition using
rule (R1.2) with dels, each display area o’ (being a subset of
the display area o) moves from the set of used display areas
of application s’ to that of application s.

Lemma 2: Let vo € V, ¥(vo) be a system and (v,r,v") €
V x Rx V with (v,r,v") > ¥(vg). Let v = (b,dr) satisfy
EAP and ra = discard and condz = trans(v,r) = (V',dr) €
V with b’ = delso(b, 5,5, 0):

Vs € S\{s} : used(V', 5) = used(b, 8)\
{0’ €0l Cons <, s}
(b, 5) = ®(b,s)Uo

(L2.1)

(L2.2)
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Figure 8: Implemented architecture

Lemma 1 and 2 say that a transition with an adds, or a
delso do not modify the union set of used display areas of
all applications. The proofs are in Sec. B.

Next, we define the Lemma EAP, which states that a tran-
sition from a state which satisfies EAP will always end in a
state which also satisfies EAP.

Lemma EAP: Let vg € V, ¥(vg) be asystem and (v, r,v") €
V x R xV with (v,7,v") > ¥(vg). v = (b,dr) satisfies EAP
= v = (V/,dr’) satisfies EAP. The proof is in Sec. B.

The following Lemma CP states that a transition from a
state which satisfies CP and EAP will always end in a state
which also satisfies CP.

Lemma CP: Let vp € V, ¥(vo) be a system with (v,r,v") €
V x RxV and (v,r,v") > ¥(vg): v = (b,dr) satisfies CP,
and EAP = o' = (b, dr’) satisfies CP.

Next, we define the Lemma DP, which states that a tran-
sition from a state which satisfies DP will always end in a
state which also satisfies DP.

Lemma DP: Let vg € V and ¥(vo) be a system. Let
(v,7,v") € VX RxV with (v,7,v") > ¥(vg): v satisfies DP
= v’ satisfies DP.

Finally, we prove Proposition 1, 2, and 3 by complete
induction. Without loss of generality, we assume initial state
vo € V with vo = ({(8root, ({(Sroot, A0)},0))},0). That is,
vo maps the permission to access the whole display area
to the root application S,.0t. Since the permission has not
been granted by another application, we set both, grantor
and grantee, to Sroot and no delegation relation exists.
Base: vy satisfies EAP and CP, since only sroot has a per-

mission, and has access to all pixels. DP is satisfied,
since fis,s’ € S: s # s As <, s (cf., DP.1).
Induction hypothesis: v; satisfies EAP, CP, and DP—
with (zr,z,) € ¥(vo) and v; a state of sequence .
Induction step: Let v; satisfy EAP, CP, and DP. From the
Lemmas EAP, CP, and DP follows vi4+1 = trans(vs, ;)
satisfies EAP, CP, and DP. O
We follow that W(vo) is a safe system, i.e., our rules do not
violate EAP, CP, or DP.

S. IMPLEMENTATION

We implemented a proof-of-concept prototype which demon-
strates the feasibility to implement our access control sys-
tem. First, we introduce our system architecture.

5.1 Implemented Architecture

The system architecture of our Linux-based implementation
is depicted in Fig. 8. To demonstrate the functionality of
our access control system we used typical Instrument Clus-
ter (IC) and Head Unit (HU) Applications. The Commu-
nication Layer provides session-based FIFO communication
between applications, Access Control Manager (ACM), and
Window Manager (WM). The access control layer contains

the two components ACM and WM. The ACM is the access
control unit that performs access decisions in the access con-
trol layer. The WM is responsible for creating, destroying,
and positioning of windows. Applications that want to cre-
ate, modify, or move a window send a request to the WM.
We implemented a client API for access control management
and window management that can be used by the applica-
tions to interact with the ACM and the WM. We imple-
mented the Compositing Layer that provides an API which
allows for resizing and mapping of windows. Each time the
WM applies changes to windows it updates the screen by
initiating the respective API call to the compositing layer.
The implemented compositing layer uses the driver API of
the Image Processing Unit (IPU) provided by the i.MX6
board for bit-blit operations in framebuffers. The Install
Manager is responsible for the deployment of applications,
XML-based permissions, and delegation relations.

We deployed our implementation in the cockpit demon-
strator depicted in Fig. 9. As HCI devices the demonstra-
tor uses two automotive 12” displays each with a resolution
of 1440 x 540 pixels, which are connected to an embedded
i.MX6 platform from Freescale Semiconductor. We also con-
nected the steering wheel buttons and the central control
knob, which are used to control the applications.

Next, we describe the main system components in detail.

5.2 Applications

To demonstrate automotive scenarios, we use 15 applica-
tions like speedometer, tachometer, check engine indicator,
phone, and navigation software. In addition, we use two
Linux applications that represent an Android menu and an
Android application. Each application has a unique id called
Appiq and an application class AppClassiq (e.g., an applica-
tion class for indicators or video playing applications). Ap-
plications receive notifications about event changes, e.g., if
the car starts moving. The deployment of an application
includes the deployment of an application certificate to the
ACM which is required to verify the authenticity of the ap-
plication. The certification authority is either the OEM or
a trusted third-party company, e.g., hosting an automotive
Android app store. A certificate contains information about
the application, i.e., the Appiqa, AppClass;q, company, pub-
lic key, certification authority, and issue date (cf. X.509
[16]). The ACM stores the certificate of each application.
An application can request a connection to the ACM via
the Communication Layer. This requires the authentication
of the application against the ACM which can be done by
using a certificate-based authentication technique like de-
scribed in ISO/IEC 9594-8 [16]. Each application has a set
of XML files which contain the App;q and the AppClass;q
of the applications they want to be in a delegation relation
with. In addition, the XML files can contain restrictions
according to the display area an application shall get. For
instance, the IC shall only grant a small display area to the
requesting phone application which wants to display infor-
mation like phone number in case of an incoming phone call.
We determined the hierarchical dependency of applications
in two steps. First, we assigned each application to one of
the three classes IC, HU, and Android. Class IC contains
IC applications which are normally safety-critical like the
indicators and therefore have the highest priority. Class HU
contains OEM applications like navigation. Class Android
contains third-party applications which have the smallest



Figure 9: Cockpit demonstrator

priority. As second step, we determined the hierarchical
dependency within a class according to given requirements
(e.g., automotive ISO standards [9], legal restrictions [17]) or
designed the dependencies between the applications accord-
ing to HMI usability. In order to deploy an application, it
is passed to the Install Manager. The deployment of an ap-
plication consists of the application binaries, the XML files,
and updates to XML files of already existing applications
(e.g., to establish a delegation relation to an existing ap-
plication). To prevent malicious modifications of the XML
files, these are digitally signed, cf. [16].

5.3 Access Control Manager

According to our access control concept, permissions are cen-
trally managed by the ACM. Each application is connected
to the ACM and can send requests which the ACM for-
wards to the application specified in the request or which is
responsible for the requested display area. If the receiving
application grants a permission to the requesting applica-
tion, it sends it to the ACM. The ACM denies all requests
in case the application is not authenticated or the receiving
and requesting applications are not in a delegation relation.
Otherwise, the ACM checks if the granted permission is valid
and does not violate existing permissions. Then it updates
its permission mapping tables and notifies the client. All
permissions are only valid if they can be derived from a root
permission by a chain of grants. The root permission covers
the whole display surface and is initialized by the ACM at
startup of the system. This initial state is safe, since it fulfills
the properties in Sec. 3.4, cf. Sec. 4. The ACM has always
a consistent view of all granted permissions and can ensure
consistency by preventing invalid permission exchanges.

In the following we describe the four access control API
functions which correspond to the rules of our model.
Grant a permission (R1.1) Applications can grant per-

missions to other applications by using the request
GrantPermissions(DisplayArea o, Appiq id). The re-
questing application specifies the display area o for
which the application with id shall get a permission.
Revoke a permission (R1.2) For revoking a permission,
RevokePermissions(DisplayArea o, Appiq id) is used.
The requesting application specifies the display area o
for which the permission shall be revoked from id.
Create a delegation relation (R2.1) To create a dele-
gation relation to another application id, an applica-
tion uses the request CreateDelegationRel(App;q id)
and is implicitly pending while waiting for the confir-
mation from the ACM. The ACM stores id in a table
of the requesting application. If application id did not
request a delegation relation, yet, the ACM notifies it
with DelegationRel Pending(Appiq id). A delegation
relation is only established if both applications have
requested the delegation relation. The ACM sends

ConfirmDelegationRel(App;q id), where id is the ap-
plication a delegation relation is established with.
Delete a delegation relation (R2.2) An application re-
quests the deletion of a delegation relation by calling
DeleteDelegationRel(Appia id). If there exists any
granted permission between those two applications the
ACM denies the request. Otherwise it deletes the entry
in the according table and notifies both applications.

5.4 Window Manager

The WM is the only process that can access the compositing
layer. Thus, the WM checks, by calling the ACM, if the a
request for creating a window by an application matches ex-
isting permissions of the requesting application and initiates
the creating or moving of the window by performing respec-
tive API calls to the compositing layer. Next, we describe
the three API functions for interaction with the WM.

Create a window Applications need a window mapped to
the screen to display graphical content. To this end, af-
ter receiving a permission an application can issue the
request CreateWindow(Window w) to map a window
to the display area it previously received a permis-
sion for. The parameter w specifies the size and the
position of the window. The WM sends the request
Verify(Window w, App;q id) to the ACM, which ver-
ifies that a permission of application id matches win-
dow w and responds with ResponseVerify(Ack ack).
If an appropriate permission exists the WM sends an
acknowledgment and the window id in response with
ResponseCreateWindow(Ack ack, Window;q id).

Modify a window Furthermore, permission changes can
require applications to modify windows using the re-
quest Modi fyWindow(Window w) with new window
parameters w. The WM also verifies if a permission ex-
ists by sending a request Verify(Window w, App;q id)
to the ACM which replies ResponseVerify(Ack ack).
Finally, the WM confirms the modify request with
ResponseM odi fyWindow(Ack ack).

Delete a window Applications can delete their windows
by using the request DeleteWindow(Window w). In
case the necessary permission to display a window is
revoked, the ACM notifies the application by sending
Delete Permission(DisplayArea o) and it sends the
WM a notification about the permission change by us-
ing NotifyPermChanged(DisplayArea o, Appiq id).
Then, the WM starts a timeout. If the application does
not have any further permissions or does not modify
the window to switch to another permission by using
the request ModifyWindow(Window w), the window
will be deleted by the WM after the timeout expires.
The WM notifies the application about the deleted
window by sending Window Deleted(Window w).

Implemented Scenarios

Next, we describe two implemented scenarios where an ap-
plication uses—depending on the current state—either a dis-
play area on the IC display or the HU display.

In the first scenario, we demonstrate granting and revok-
ing of permissions to display an application Media. The
required request-response calls are depicted in Fig. 10. If
the car reaches parking position @, the (yet hidden) appli-
cation Media gets notified and, in order to display the last
presented video in full-screen on the HU display, requests



[Instrument Cluster|[Head Unit[Media]
I

Event: Car is parking Reqﬁftpe’mi'YS[O”iQW )

-t Ll
o RequestPermission (0, ,id y.,)

GrantPermission (o, id ©edia)

CreatePermission (0,)

CreateWindow (w,) .
Verify (w,, g’l/lu/m)

ResponseVerify (ack

__ResponseCreateWindow (ack ,id ,,)

-«

Event: Button pressed GrantPermission (0, id /)

P S

>
T Lt
CreatePermission 0,)

GrantPermission (0, id yq.)
RevokePermission (0, id y.,)
) o

} >
DeletePermission (0,)
CreatePermission (0,) | NotifyPermC hanged (01 id yreaia)
| >
ModifyWindow (w',) ‘l L»Timeout

. el canceled
Verify (w "id v, dm)

ResponseVerify ( acé )

_ ResponseModify Window (ack ,id )
-¢

Event: Caris moving  RevokePermission (0, id mm)‘

PN >

T Ll
DeletePermission (0,) | NotifyPermChanged (0, id y.4,)
< i

o

_ WindowDeleted (id ;) Timeout:
v v A 2l v | Deletew,

Figure 10: Sequence of operations for scenario 1

a permission for display area o1 (RequestPermission(oy))
from the ACM. RequestPermission(o1, idpredia) is then for-
warded to the HU application which grants a permission to
Media (GrantPermission (o1, idredia)) since the car is not
in motion. The ACM checks if the HU application has a
valid permission which covers o1 and creates a permission
for Media by using CreatePermission(o1). Then, Media
sends CreateWindow(w1) to the WM to create a window.
With Verify(wi,idmedia) the WM lets the ACM check if
w1 matches a permission of Media. Then, the WM confirms
the creation of the window and sends back the window id
idy,. Now, Media has a valid window and can present the
video in full-screen on the HU display.

Then, the driver decides to shift Media to the IC display
and to watch the video in full-screen. This requires the mod-
ification of the window position and therefore the granting
of a new permission for the IC display. To perform the shift,
the driver presses a button ® which triggers the IC to grant
a permission (GrantPermission(oz,idnv)) for its display
area to the HU since no car related content like speedometer
needs to be displayed while the car is not moving. Then, the
ACM creates a permission with CreatePermission(oz) for
the HU. The HU replaces the permission previously granted
to Media by a new one which covers the display area of
the IC using the calls GrantPermission(oz,idnredia) and
RevokePermission (o1, idredia). The ACM in response cre-
ates a new permission and deletes the old one by using
CreatePermission(oz) and DeletePermission(oy).

Deleting a permission requires a notification of the WM
(NotifyPermChanged(o1,idnedia)) since the window wq
has no valid permission anymore. Therefore the WM hides
the window and starts a timeout after which the window will
be deleted if still no appropriate permission exists. Since
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Figure 11: Sequence of operations for scenario 2

Media got a new permission for o2, it modifies its win-
dow idw, by sending the request ModifyWindow(w}) to
the WM. In response the WM stops the timeout and lets
the ACM check with Verify(w], idaedia) if the wy is cov-
ered by a permission of Media. Finally, the WM confirms
the modification with ResponseModifyWindow(ack, idw, ).
Now, the video is presented in full-screen on the IC display.

After watching part of the video, the driver starts the en-
gine and accelerates the car. Therefore, Media is no longer
allowed to present the video. The IC receives a notifica-
tion about that state change . Since Media belongs to
an application class known to display videos, the IC calls
RevokePermission(oz, idnedia) to revoke the current per-
mission. In addition, the IC would now grant the permis-
sions to IC applications like speedometer, tachometer, and
indicators, which is not depicted in Fig. 10. The ACM
deletes the permission with Delete Permission(oz2) and sends
NotifyPermChanged(o2, idpredia) to the WM. Finally, the
WM deletes the window id,,, after the timeout.

In the second scenario we focus on the deployment of the
new application AndroidApp. As described in Sec. 2 we
assume Company 1 provides an Android partition for the
OEM infotainment system and implemented an application
AndroidMenu designed for usage in vehicles. Company
2 implemented an application AndroidApp which shall be
deployed on a vehicle. Company 2 negotiates with Com-
pany 1 about a permission for displaying the AndroidApp
which shall be selectable in AndroidMenu. Company 1
defines an XML file which contains the information about
the AndroidApp and the display area that shall be granted
to it. Company 2 also defines an XML file which con-
tains the information about AndroidMenu and creates a
certificate for AndroidApp. The XML files, the binary of
AndroidApp, and its certificate are uploaded on the ve-
hicle backend server and get deployed on the vehicle by
the Install Manager on request of the user. As soon as
AndroidApp is loaded it sends a request for authentica-
tion to the ACM. The ACM can verify the authenticity
by using the certificate of AndroidApp and applying an
authentication procedure as described in ISO/IEC 9594-8
[16]. Then the Android App requests a delegation relation to
AndroidMenu by sending CreateDelegationRel(idnenu)-
The ACM sends DelegationRel Pending(idapp) since the
AndroidMenu did not send a delegation request, yet. As
soon as AndroidM enu receives the XML file, it also requests
the creation of a delegation relation to AndroidApp. Then,
the ACM calls Con firmDelegation Rel with the parameters
idapp and idpreny to confirm the delegation relation. Now,
AndroidMenu can grant permissions to AndroidApp.



6. RELATED WORK

So far, there exists no fine-grained access control for displays
or graphics resources. Feske et al. provide a concept for
overlay management [10] of application windows executed in
different virtual machines and a minimized secure graphical
user interface called Nitpicker [11] with focus on low-level
mechanisms to address security issues caused by spyware
or Trojan horses. Hansen proposes a display system called
Blink [14] which allows multiplexing of graphical content
from different virtual machines safely onto a single GPU.
However, both works neglect restrictions in window man-
agement. Similarly, Epstein et al. address security issues
like weak authentication, unlimited sharing of X resources,
between applications or overlapping windows in X11 [8] and
propose mechanisms [7] to prevent them. However, they do
not enforce permission based display access restrictions.

Protection of shared resources by using access control has
been researched almost since the beginnings of operating
systems [19]. Although later work (e.g., [22]) is based on hi-
erarchical permissions, related work does not support prio-
rity-based access control using hierarchical granting and re-
voking of permissions. Birget et al. [5] unify a user and
a resource hierarchy based on access relations into a sin-
gle one which simplifies access control management but this
technique is only applicable when the system changes slowly.

Bell and LaPadula [4] defined a model for secure infor-
mation sharing and information flow control. The model is
defined as a state-based system for enforcing access control
and uses an access control matrix for restricting access to
data in order to provide confidentiality of information. Re-
strictions are enforced for access of users or applications to
files or resources concering the sensitivity level and security
level. Therefore, their model does not guarantee exclusive
access on resources. Additionally, it does not support decen-
tralized permission management and consequently cannot
be used for a decentralized development process. Related
work [21]—based on the Bell and LaPadula model—extends
the model for hierarchical organizations and distinguishes
between read access and write access. They therefore tar-
get the flow of information, but do not support permission
granting with exclusive access.

7. SUMMARY AND FUTURE WORK

In this paper, we presented an access control model which
can be used for safety-critical automotive HMI systems. Our
model supports hierarchical granting of display permissions
and allows applications to be dynamically added and re-
moved during runtime without modifying the access control
layer. We proved the correctness of our model and showed
that it fulfills all requirements we consider to be relevant
for safe automotive HMI systems. Finally, we described our
proof-of-concept implementation showing its feasibility in an
automotive cockpit demonstrator. In future work we want
to extend our model for context handling and constraints.
Additionally, we want to improve our implementation by
using a virtualized Android partition which is running ap-
plications using our API. Furthermore, we want to analyze
overhead and performance of our implementation.
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APPENDIX
A. FORMAL DEFINITIONS

Definition 10. We define the transitive operator <, that
denotes whether an application has granted a given display
area to another application.

Let s, € S;0€ O; b€ B. We define s <, s &

ds1,...,8n € S;301,...,0n—1 € O :

s1 =58 Asn =5sAN0Con_1AN
Vi:l<i<mn:(si0;) € received(b, siy1)A
Vi:1<i<n—2:0i11Co;

Definition 11. Function adds, : B x S xS x O — B 1is
defined as follows. Let b,b’ € B;s,s’ € S;0 € O. We define
b = addso (b, s,s',0) &

b'(s) = (received(b, s), granted(b, s) U {(s’,0)HA  (11.1)

b'(s") = (received(b, s') U {(s,0)}, granted(b,s"))A (11.2)

[Vs3 € S\{s',s} : V' (s3) = b(s3)] (11.3)

Definition 12. Function dels, : B xS xS x O — B 1is
defined as follows. Let b,b’ € B;s,s’ € S;0 € O. We define

b = delso(b,s,8,0) < [V3€ S:5<,5= (12.1)
received(b’, 8) =received(b, 5)\
{(50') € S xOlo' CoAd <y A
granted(b’, 8) =granted(b, )\
{(50)€ S x0|o CoAs<y 5HA
b'(s) = (received(b, s), granted(b, s)\{(s’, 0)HA  (12.4)
Vs" € S\{s',s};Vo' €0 :0 CoNs" #y s
Vs <os =b(s")=0b(s")

(12.2)

(12.3)

(12.5)

Definition 13. Function addg. : DR x S x S — DR 1is
defined as follows. Let dr,dr’ € DR;s,s' € S. We define
dr’ = addg,(dr,s,s'’) & dr'(s) =dr(s) U{s'} AV5€ S :5+#
s = dr'(8) = dr(5)

Definition 14. Function delg, : DR x S x S — DR 1is
defined as follows. Let dr,dr' € DR;s,s’ € S. We define
dr’ = delgy(dr,s,s') < dr'(s) = dr(s)\{s'} AV§ € 5:5#
s = dr'(8) = dr(3)

Next, we give formal definitions for the sequence of states
and the system. We define I C No with I" = {0,1,2,...,n}.

Definition 15. Operator = denotes whether an element is
part of a sequence of states. The set of sequences of states
is a set of n-tuples defined as X" = {(20, ..., Tiy ..., xn)|@s €
XNniel"Nay= f(3) with f: I" — X}.

(zo, 1, ..., Tn) € X" s a sequence with zo = zo € X,
1 =a] € X,..., Tp = 1:%") € X. Let (x0,%1,...,%n) €
X, We define x = (z0,T1,...,xn) < H €I : x = z5.

Based on Def. 15, we next define the sequences of requests,

the sequences of states and a distinct mapping between these
sequences by using transitions.

Definition 16. For a sequence of requests (ro,...,Tn—1) €

R the sequence of states generated by (ro,...,Tn—1) s
gwen as (Vo, Vi, ..., Vn) € VI with
Vie I vy = trans(vi,r;).

Definition 17. A system generated by vo € V is stated
as ¥(vg) C R x VI, Let 2, = (10, ey Th—1) € Rlnil,
Ty = (V0, ..., vn) € VI". We define (x,,1.) € U(vy) < Vi €
I"\{0} : v; = trans(v;_1,7mi—1). Let (v,7,0') €V X RxV,
vo € V. We define (v,r,v") > ¥(vo) &

3w, € R 3w, € VI 3i € IM\{0} : (17.1)
(Tr,Tv) € U(v0) A Vi = Ty AVig1 = Tp AT = 2o\ (17.2)
(v,m,v") = (vie1, Tio1,vi). (17.3)

(v,7,0") is part of a system if a sequence of requests and
states (17.1) exists of which v,r and v’ are part of (17.2),
and, a transition from state v to v’ by request r (17.3) exists.

Definition 18. v € V is a safe state < v satisfies EAP
and CP and DP. (vo,...,vn) € V" is a safe state sequence
< Vi e I :v; is a safe state. A system ¥(vo) C vI" x R
with x, € RIH?1 and Ty = (Vo, ..., Un) € VvI"isa safe system
< V(zr, zv) € U(v0) : Ty 1S a safe sequence.

B. PROOFS

Proof for Lemma 1

We first show (L1.1): Let 6 € used(b, s) be the display area
in (condi) with o C 6. We have to prove:

oZ o, s) (i)
(0\0) € (V') (i)
Due to 6N o = o, for (i) we only have to show 6 € ®(¥’, s).
(i): Due to (11.1), we know (s’,0) € granted(t', s) after a
transition to state v’. Since o C 4, it follows 6 No =
0 # (. Thus, the condition (4.2) is no longer valid for
b’ which proves (7). This means, all subsets of 6 are not
in the set of used display areas of application s in b’.
(ii): To prove statement (i7) we have to show that display
area (6\o0) fulfills the condition of Def. 4. Therefore we
prove the following two conditions:

(\o) S A(t',s) (a)
(3\o) NT(t',5) =0 (b)
(a): Due to 06 C ®(b,s), we know 6 C A(b,s). After
a transition with adds, to v' we conclude with (11.1)
A(b,s) = A(b', s). Hence, (6\o) C 6 C A(b,s) = AV, s)
and therefore (a) is true.
(b): We know that 6 € used(b,s) is true. Since we
assume EAP is satisfied in v = (b, tr) we conclude 6 N
I'(b,s) = 0. With (11.1) we conclude F(b', s) =T (b, s)U
o and therefore (b) is true in state v’.
(0\o) NT(t', 5) = (6\o) N (T'(b,s) Uo) (6.1)
= ((8\0) N (T(b, 9))U
((6\o) No) (Distr. law)
:@U((é\o)ﬂo) =0 (6nT(bs)=0)
Therefore, we conclude statement (ii) (6\o) C ®(b', s).
We show (Ll 2): We need to prove that the display area o
fulfills the conditions of (Def. 4) for b’. Therefore we show in
a similar approach like in the proof of 1.1 that the following
two conditions are satisfied:
0o C A, s") (1)
oNT(,s) =0 (ii)



(i): We directly follow received(b’,s’) = received(b,s’) U
{0} due to (11.2).

(if): We know that I'(b, s) No = () is valid in b. We conclude
['(b, s'YNo = 0 from the following: We assume I'(b, s")N
0 # (. Then we conclude o C A(b,s") which leads to
I'(b,s)No # 0. But this is in contradiction to I'(b, s") N
0= 0. Hence, T'(b,s') No =0 is valid. With Def. 11.2
we know I'(b,s") = T'(b, s’) and we conclude TI'(', s") N
o="T(b,s") = 0N o. The sets of granted and received
display areas of all other applications are unmodified
due to (11.3).

Hence, the conditions of Def. 4 and therefore (L1.2) are sat-

isfied. [

Proof for Lemma 2

We first prove (L2.1): Let s # s’ and state v satisfies EAP.

In Def. 12 all display areas o’ which are a subset of o are

removed from the sets of received display areas of all ap-

plications depending on s according to o’. We follow V3 €

S\{s} : AV, 8) = A(b, 3)\|U{0' € Ol CoA 5 <, s}. This

means, (4.1) is violated and the display area o are no longer

in the set of used display areas of the according applications.

Hence, we can directly conclude statement (L2.1).

We prove (L2.2): Due to (R1.2), we know that (s’,0) €

granted(b, s) which leads to o C A(b,s). Hence, (4.1) is

satisfied. With (12.1) we conclude I'(¢/, s) = I'(b, s)\o.

Next, we show oNI'(b', s) = @), which means (4.2) is satisfied:

oNT(b,s) =on (T(b,s)\o) (7.4)
= (oNT(b,s))\(eNo) (Distr. law)
=(oNT(b,s))\o=0  (since oNT(b,s) C o)

Hence, we conclude statement (L2.2). [

Proof for Lemma EAP: The request r is either in RD or

in RO (Def. 9). The case r € RD is trivial, since b’ = b due

to v = v’ (Def. 9 Rule 2) and changes of dr do not affect

Lemma EAP. In case r = (ra, s, s’,0) € RO, there are the

following three subcases:

(R1.1): Let ra = append and cond; be fulfilled. It follows

trans(v,r) = (V',dr) € V with b’ = addso(b, s, s, 0).
The set of permissions and used display areas of all
applications beside s and s’ do not change in v’ (11.3).
Hence, Vs € S\{s,s'} : (used(t/,3) = used(b,3)) due
to b'(8) = b(3).
Since v satisfies EAP, we conclude V3,5 € S\{s,s'} :
§#£ 5= ®W,8Ne®,3) = (. This means we only
have to prove EAP in v for s and s’. To this end, we
show the following statements:

O, s)Nd(,s") =0 (i)
Vi e S\{s,s}:®0,s)N®W,5) =0 (ii)
V3 e S\{s,s'}:0,s)N®®,5) =10 (iii)
We prove (i), (ii) and (iii) by using Lemma 1 and 2.
(): @', s)Nn@W,s")

= (®(b,s)\o) N OV, s") (L1.1)
= (®(b, s)\o) N ((b,s") Uo) (L1.2)
= ((®(b,5)\0) N ®(b, ")) (Dist. law)
U ((2(b,s) No)\(eNo))
= ((®(b,5)\0) N ®(b,s")) U (o\o)
= ((®(b,5)\0) N @(b,s)) (R1.1)

= (®(b,s) N®(b,s")\(0N®(b,s"))  (Dist. law)
=MN\(oN®(b,s)) =0 (EAP)
(ii): Let s” € S\{s, s’} be arbitrary, then follows:

o, s)Nd®,s")

= (®(b,5)\o) NO(,s") (L1.1)
= (®(b,s)\o) N D(b,s") (11.3)
= (®(b, 5)\®(b,s" )\ (0N D(b,s"))  (Dist. law)
=M\ (on®(b,s") =0 (EAP)

(iii): Let " € S\{s, s’} be arbitrary, then follows:

o, s YN, s")

= (®(b,s)\o)N @, s") (L1.2)

= (®(b,s")\o) N ®(b,s")

= (®(b,s)\®(b,s")) U (oN®(b,s")) (11.3)

=QU(oN®(b,s")) =0 (Dist. law, EAP)

(R1.2): Let ra = discard and conds be satisfied. Hence,

trans(v,r) = (V',dr) € V with b’ = delso(b, ', s,0). In
this case, we have to consider those applications which
are in relation according to a display area o’ C o (12.5).
We know with (L2.1) that V5 € S\{s} : ®(¥',3) C
®(b, §). Since state v satisfies EAP we only have to
prove EAP for applications s and s’ in state v’, namely:

o, s)NdW,s) =0 (i)

Vi€ S\{s,s'}: ®(b,s)NDW,3) =10 (ii)

Vie S\{s,s'}: o, sNNdW,8) =0 (i)
(i): @b, s") NP, s)

= (®(b,s")\o) N OV, 5) (L2.1)
= (2(b,5")\o) N (®(b,5) Uo) (L2.2)
= ((2(b,s")\0o) N D(b, 5))
U((®(b,s") No)\(0No0)) (Distr. law)
= ((2(b,5")\0) N (b, 5)) U ((2(b,s") N 0)\0)
= ((2(b,5)\o) N (b, 5)) ((®(b,s") N0) C 0)
= (®(b,s") ND(b,5)\(D(b,s) No) (Distr. law)
= O\(®(b,5) No) =0 (EAP)
(ii): Let 8 € S\{s, s’} be arbitrary then follows:
O, s)N O, 3)
= (®(b,5)\o) N O, 3) (L2.2)
= (®(b, s)\o) N ®(b, 5) (12.2)
= (®(b,s)\P(b, 5))\(oN P(b,8))  (Distr. law)
=MN\(oN®(b,5)) =0 (EAP)

(iii): Let § € S\{s, s’} be arbitrary then follows:
o, s )NdY,3)
= (®(b,s")\o) N B(V', 3) (L1.2)
= (®(b,5")\o) N (b, 8) (12.1)
= (B(b, s")\®(b,3)) U (0N ®(b,5))  (Distr. law)
=QU(oN®(b,8)) =0 (EAP)

(otherwise): Since v = v and v satisfy EAP, v’ also satisfies
EAP. O





