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Abstract

Today, data from different sources and different
phases of the product life cycle are usually analyzed in
isolation and with considerable time delay. Real-time
integrated analytics is especially beneficial in a
production context. We present an architecture for
data- and analytics-driven exception escalation in
manufacturing and show the advantages of integrating
unstructured data.

1. Introduction

Manufacturing companies are collecting large
amounts of structured and unstructured data about
products, processes and quality. This is facilitated by
ongoing trends (cf. [21]) such as

e increased automation of  production
technology, especially sensor technology
availability of fast connections for data
transmission and large, affordable data storage
easy access to computing devices, often
mobile, for recording, organizing and
analyzing data

Still, data from different sources and different
phases of the product life cycle are usually analyzed in
isolation and with considerable time delay [5,46]. The
majority of unstructured data, which constitute 50 to
80% of data within an organization [34], are not
accessed through analytics at all. Knowledge discovery
is thus severely restricted and data-driven optimization
of processes is conducted slowly if at all [12]. This
means that complex, un-anticipated exceptions in real-
time production which lead to flawed products or
missed deadlines and thus to revenue loss may not be
handled quickly and appropriately or may not even be
discovered on time. With the technology and data
available today, it is possible to amend this and
develop analytics which greatly benefit the factories of
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the future. In this paper, we present MaXCept, a
conceptual architecture for data- and analytics-driven
Manufacturing Exception Escalation on and beyond
the factory shop floor. We discuss in detail the data
types, data sources, data needs and analytics potential
for each component and each step of the exception
escalation process. We present software components to
be re-used or developed further in a prototypical
implementation. The remainder of this paper is
structured as follows: In ch. 2, we motivate
unstructured data integration as a crucial step towards
the smart factory of the future and present exception
escalation as an important application scenario. In ch.
3, we give an overview of the MaXCept architecture
and the exception escalation process which it supports.
In ch. 4, we detail the data integration layer of
MaXCept; in ch. 5, we discuss the individual
components for exception escalation. In ch. 6 we
review related work and existing components used for

our prototypical implementation, ch.7 contains
conclusions and future directions.
2. Motivation

To motivate our architecture, we address

developments towards a smart shop floor environment
(2.1.) and present contexts for unstructured data
analytics in exception handling (2.2.). We also

introduce the case study we use as a working example
(2.3)).

2.1. The Smart Factory and the Human Factor

Production today is under pressure to become even
more flexible and easily adaptable, due to global
megatrends [21] such as more complex products,
higher demand for customization and faster, more
global markets. The development of manufacturing
towards more automation, knowledge-driven and data-
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driven decentralized planning and the incorporation of
smart technologies has been described as the fourth
industrial revolution [21]. At its core lies the concept
of the smart factory [50], characterized by

e cyber-physical production systems “capable of
autonomously exchanging information,
triggering actions and controlling each other
independently” [21]
flexible, de-centralized task assignment
real-time analytics and feedback loops
a high degree of automation

Unlike its predecessors in the era of computer-
integrated manufacturing (CIM), the smart factory is
not intended to be empty of human workers. Instead,
uniquely human skills will become more important.
Today, human workers spend much of their time
performing simple, repetitive manual tasks. With
increased automation, human workers move on to tasks
which tax their uniquely human skills such as flexible
and creative problem-solving and decision-making
[21,41]. They will always excel over machines at
making decisions under uncertain and unpredictable
conditions [1]. The factory is a very data-rich
environment, and the information available on the shop
floor will drastically increase in the near future. In the
office environment, this has already happened and is
subject to research (e.g. [31,42]). Additionally, the
factory requires physical tasks to be performed on a
tight schedule, thus positing an unprecedented
challenge. Sophisticated filtering and assistant systems
are therefore needed to maintain productivity and
innovation in a fast-paced, flexibly changing and
complex environment and to enable the human worker
to make optimal decisions.

2.2. Exception Handling with Unstructured
Data

We define an exception in the production context as
any deviation from the production plan (similar to
[24]), either directly through failure to fulfill a process
step or indirectly through minor deviations which add
up to a failure to complete a process under optimal
conditions, e.g. a delay in time or a sloppily
manufactured work piece. Humans communicate
information in the form of unstructured data, e.g.
written failure reports. Thus, most knowledge about
flexible exception solution on the shop floor is at
present available in unstructured form. To ensure that
exceptions are discovered and solved in a timely
fashion, we need to use both structured data — machine
messages, historical errors, workflows and
unstructured data image, audio and video
documentation of known or discovered problems, text
descriptions of best practices for solutions. The
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exception handling IT infrastructure which we describe
can be realized in (1) real-time, online analytics and
problem solving in a smart, connected shop floor
context with immediate automated feedback for the
smart factories of the near future and in (2) exception
escalation in production-near contexts such as remote
machine maintenance and off-site customer support,
which does not require immediate feedback and can be
implemented with the tools and infrastructure of today.

2.3. Case Study

Company SUP is a supplier of motor parts for car
motors, producing gears and cogs in factory FC.
Company MACH is the provider of machines for this
factory, in particular, a cutting machine CM, a transfer
robot CR and a quality control station CQ involved in a
short process with three steps: (1) cog cutting, (2)
transfer to a storage area and (3) subsequent quality
scans. The following workers are involved in the
production process and machine support respectively:

e A (SUP) — worker in cog quality control CQ at
the storage area, listed as quality expert in the
SUP social network
B (SUP) — worker at cog cutting machine CM
C (SUP) - surveillance worker at transfer
robot, formerly worked at machine CM and
contributed a tutorial on how to calibrate the
tool for new work pieces
E (MACH) — worker in technical support for
machines CM and CR
F (MACH) - informally interested in robot
CR, has contributed to troubleshooting and
documentation in intranet forums

Information about the manufacturing process
structure and past process instances is stored in
structured form, documentation for the machines and
tutorials exist in unstructured form. The two companies
have intranets with user profiles and forums for
discussion and troubleshooting.

3. An Architecture for Manufacturing
Exception Escalation (MaXCept)

In this chapter, we present MaXCept, an
architecture for decision support through automated
exception escalation. We give a general overview of
the architecture in 3.1. and describe the exception
escalation process in 3.2.



3.1. Architecture Overview

The

MaXCept architecture, shown in Fig.l,

consists of four layers:

(1)

2)

)

4)

The execution layer, which is equivalent to the
shop floor environment — containing machines
/ CPPS with their controlling units and sensors;
human workers with their scheduled tasks and
tool equipment; and smart devices with sensors
and apps.

The integration layer, where data from
different sources and product life cycle phases
are integrated into a knowledge repository as
well as into a computational model of the shop
floor. The knowledge repository also houses all
processes runnable in the factory and
corresponding workflow representations.

The analytics layer, which contains the central
IT components necessary for the exception
escalation process, as well as other analytics
components, scheduling / managing and
notification / communication tooling.

The presentation layer, which provides the
human user with access to analytics results,
communication  tools and exception
notifications. The user interface can take the

shape of an app on a mobile device, a user
terminal connecting to a machine or cyber-
physical unit, or a wearable / augmented reality
component.

3.2 Exception Escalation Process

The exception escalation process has three core
phases, with four associated solution and matching
tasks (cf. Fig. 2). The core phases are the following:

)

2

3

Exception  Recognition:  Exceptions  are
automatically recognized due to explicit alerts
or as the result of data mining on integrated
manufacturing data. Known exceptions
designated by a unique error code may be
resolved  automatically ~ without  human
decision-making.

Exception  Classification:  Exceptions are
automatically assigned a number of features in
preparation for solution discovery.

Exception Escalation: Based on these features,
one of the following three steps is taken:
Automatic solution if the features of the
exception match up with a known exception
Solution recommendation if the exception
resembles several known exceptions.
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Figure 1. MaXCept architecture for Manufacturing Exception Escalation
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e If no solution can be recommended, experts on
the topic of the exception are determined
through a matching process.
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Figure 2. Exception Escalation Process

The associated solution and matching tasks are
initialized at different steps in the process depending
on the type of exception:

(1) Solution Execution can be started either after
error recognition, after recommendation-based
solution selection, or after solution design. It is
handled by the exception resolver component,
which assigns process steps to machines (e.g.
automatically exchanging a worn-out tool) and
human workers (e.g. fetching spare parts or
conducting complex repairs).

(2) Solution Selection is initialized when several
potential ~ solutions  are automatically
recommended. It must be carried out by a
human worker.

(3) Solution Design is evoked when no solution
could be recommended. This task is carried out
by a human.

(4) Wherever humans are involved, the fask and
the human participant must be matched to each
other based on appropriate parameters.

4. Data Integration

The data integration layer comprises data sources,
integration components and warehousing and modeling
components. Data sources are diverse and contain
structured and unstructured data. Structured data are
produced by sensors on the shop floor, which record
for instance temperature, humidity, tool abrasion, or
location of mobile components. Manufacturing
execution systems (MES) and enterprise resource
planning systems (ERP) as well as machine control
systems also contribute structured data. Unstructured

data originating on the shop floor are typically
produced by humans. They mainly include error
documentation in text format as well as possibly voice
or noise recordings, photographs or video recordings
of failing machines or flawed work pieces and
components. For the purpose of our research, we focus
on unstructured text data. Tutorials and handbooks for
human workers also come in unstructured form. Other
unstructured data sources from outside the production
phase are complaints in customer relationship
management (CRM) systems or reviews from social
media. The holistic knowledge repository is a data
warehouse integrating structured and unstructured data
as well as analytics results, e.g. mining models for error
detection or solution recommendation and worker
expertise data. We base the design of the knowledge
repository on the concept put forth by [14]. To be
integrated into the knowledge repository, data must be
preprocessed — structured data with standard Extract-
Transform-Load (ETL) techniques, unstructured data
with generic natural language processing (NLP) to be
enriched with structure (cf. [Author, 2014]). In the
course of analytical processing, semantic links between
structured and unstructured data are established and
extracted information is stored in new configurations.

The real-time shop floor model contains
representations of

® stationary objects such as machines, rooms or
buildings

® mobile objects such as vehicles, robots and
human workers

® environment variables such as temperature,
humidity or velocity

® tasks and assigned agents,
messages
The model is similar in concept to the one
developed by [16]. We also adopt their distinction of
static and dynamic data.

events and

5. Decision Support Components for
Exception Escalation

In this chapter, we describe the architecture
components of the exception escalation process. We
discuss the exception recognizer in 5.1., the exception
classifier in 5.2., the exception escalator in 5.3. and the
solution recommender and task-expert matcher in 5.4.
and 5.5. Application examples are provided from the
context of the case study.

5.1 Exception Recognizer

The exception recognizer component deals with the
discovery of exceptions (Fig. 3). Exception
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discoverability is based on two feature dimensions:
knownness and complexity. An exception is known if it
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Figure 3. Exception Recognition

has been anticipated during process design or has
occurred before. Its complexity depends on the number
of process steps involved. An exception which is
known and simple can easily be recognized via sensor
technology, e.g. when the cutting tool of machine CM
must be exchanged because of abrasion. Typically,
these exceptions also have straightforward solution
processes retrievable by an unique error code, which
can then be started automatically. An exception can
also be known but complex, e.g. production steps are
slightly delayed at machine CM because of permissible
tool abrasion and at the quality control station CQ
because of an inexperienced worker, such that an
overall delay beyond the tolerance limit for timely
production must be expected. To recognize this sort of
exception, we require more sophisticated recognition
mechanisms, e.g. computing a deviation score from
several sentinel values or recognizing equivalence to
previously seen exceptions through predictive analytics
on historical process data (for an example with
structured process data only, see [13]). These
exceptions may also have straightforward solution
processes that can be selected and started
automatically. If an exception is unknown because it
has neither occurred before nor been anticipated during
process design — i.e. a true exception according to [35]
-, it may still be automatically discoverable through
data mining on real-time process data without pre-
selected sentinel values. For example, jagged cog
edges can be measured and recognized as deviant from
previously seen edges during quality control without a
predefined jaggedness threshold. Today, sensor
technology is not as ubiquitous as it will be in the
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smart factories of the future, and manufacturers are still
successfully running machines built several decades
ago. This means that the human observer will play a
large role in detecting exceptions on the shop floor for
a while, and that alerts sent to exception recognition
will be in the form of unstructured data.

The tasks of the exception recognizer component
thus encompass the following (cf. Fig. 3):

e Catching structured alerts thrown by humans

or machines for known and simple exceptions

e Decoding unstructured alerts thrown by
humans
e Watching sentinel values and computing

deviation scores for known and complex
exceptions

e  Watching processes and applying data mining
to compare them to historical data to detect
known and unknown complex exceptions

e Assigning error code (if applicable) and
knownness, similarity and complexity features
to the discovered exception

5.2. Exception Classifier
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Figure 4. Assigning Additional Features

In order to recommend solutions for complex and
possibly unknown exceptions, several additional
features are of interest. They can be clustered into four
categories:

(1) Topic: Which machines, machine parts, work

pieces or workers are affected in which way?
This information can be extracted from
unstructured exception alerts, such as worker C
sending an alert message via smartphone
“transfer to storage area stopped because robot
arm CR is stuck in palette”. Comparison of the



detected topic to historical topics can also lead
to the assignment of an available error code for
retrieving a known solution.
Time: Does the exception need to be resolved
immediately or within a specific time window?
This can be determined by consulting records
for known exceptions or considering signal
words and expressions in the text (“cutting tool
at machine CM is broken and needs to be
exchanged immediately”).
(3) Location: Is the exact location of the exception
known? Are several locations involved? Is
there remote access to the affected components
(e.g. for software problems) or do they need to
be treated on-site (physical repairs)?
Complexity: Further complexity measures can
be derived from the topic features: the affected
components give clues as to whether special
training is needed to carry out the solution.
These features are assigned by the exception
classifier component with the help of data mining and
text mining (Fig. 4).

2

“4)

5.3. Exception Escalator

The exception escalator component uses the
exception features to decide how the exception is to be
solved. This automatic decision process uses hand-
crafted or data-mined decision models retrieved from
the knowledge repository and has three possible
outcomes, mentioned already in 3.2:

(1) Automatic assignment and triggering of a
solution process

(2) Recommendation of  several
solutions to a human worker

(3) Alerting a human expert to the exception who
will then design a solution process.

potential

5.4. Solution Recommender

The solution recommender draws on the following
data:

e Similarity measures of the current exception to
previously seen ones, for example, surface
roughness or jag size in damaged work pieces,
temperatures at the failing machine, etc.
Exception features determined in the classifier
Solution processes assigned to known and
complex exceptions
Atomic tasks, such as solution steps assigned
to known and simple exceptions

There are two strategies which the recommender
can follow, based on data availability and exception
features (illustrated in Fig. 5):
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(1) Recommending existing solutions based on
similarity to other exceptions

(2) Tailoring new solution
classifier features
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Figure 5. Solution Recommendation

The first strategy is straightforward: The solutions
associated with similar exceptions can be ranked
according to the similarity scores. For example, delays
in the current process execution may be similar to
several historical examples, one of which was solved
by substituting an experienced worker at the quality
control station and one of which was solved by simply
speeding up the cutting machine. There will also be
cases where similarity is low, low-confidence, non-
existent. In such cases, the second strategy is pursued:
Based on topic features such as affected machine part
(e.g. “robot arm”) and nature of failure (e.g.
“jammed”), a reasoner using domain-specific concept
hierarchies and relations can recommend a series of
atomic tasks.

5.5. Task-Expert Matcher

The matching of the right human worker to a
particular task is necessary at several points in the
exception escalation and solution process. The task-
expert matcher component (Fig. 6) makes use of

(1) Exception features

(2) Task features of

decision/design tasks

(3) Features of human workers, such as areas of

expertise, current location, availability (e.g.
current  task, scheduled breaks) and

solution step or



reachability (e.g. via text message, phone call,
or video conference)
We have discussed (1) and will now shed some
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Figure 6. Task-Expert Matching

light on how to collect and organize (2) and (3).
Solution tasks can be assigned topic, time, location
and complexity features, which will differ from the
associated exception features. For example, solving a
complex exception such as the delay caused at two
interdependent machines by inexactly calibrated robot
arm motions at CR and a highly eroded tool at CM can
involve simple steps requiring high mobility and little
expertise, such as fetching a new tool from a
designated storage area, which can be carried out by
worker B, and complex steps requiring no mobility but
high expertise, such as re-calibrating the robot arm via
remote access, which can be carried out by support
technician E. Decision and design tasks are marked as
high-complexity and assigned topic, time and location
features in accordance with the exception and
potentially the set of solutions under investigation. The
features of human workers which we need to know
in order to match them to tasks split into dyramic and
near-static features: Location, current task, availability
and reachability are subject to quick changes, whereas
areas of expertise are stable over time. The dynamic
data are present in the real-time shop floor model; their
original data sources range from work assignment
schedules within ERP systems and login information
from stationary machine terminals to location and
reachability data transmitted by smart devices. These
are all structured data sources, whereas the near-static
expertise data is derived from structured and
unstructured data sources:

e Employees can assign themselves topics of
expertise and interest in company-internal
social networks, and have them endorsed by
others to create a confidence score.
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Authorship of documentation and tutorial texts
on certain topics also indicates expertise — for
example, worker F would be found as a
candidate for recalibrating the robot arm based
on troubleshooting documentation authorship.
Unstructured descriptions and  structured
metadata on fasks an employee has previously
accomplished can be mined to derive
competence profiles, e.g. worker C’s
experience with machine CM can be retrieved
from past work schedules.

Finally, an employee can be the designated
contact person for a specific task or the explicit
requester of information, e.g. worker C
sending an exception alert about robot CR and
wanting to retrieve a solution.

Once the best fit between a task and a worker has
been determined, the worker is informed of the
assignment and given the necessary information for
fulfilling it via one of the available media.

6. Towards an Implementation

In this chapter, we discuss the technology needed
for an implementation of the Manufacturing Exception
Escalation system. We first point out central challenges
in 6.1., then discuss related work and existing
components in 6.2.

6.1 Central Challenges

The main challenge is the integration of very
diverse data which are structured and unstructured,
frequently noisy and underspecified, into the
knowledge repository as well as into the shop floor
model. While the integration of legacy data into the
knowledge repository and the data mining for potential
solutions of known historical problems can happen off-
line, the integration of data into the shop floor model
and the exception escalation pipeline have to run in or
near real-time. This is slightly more difficult for
unstructured data because there is more preprocessing
involved. NLP components have to robustly process
text and speech data which are dissimilar to the
standard written language usually employed to train
statistical NLP models. Recent work on real-time
natural language processing and question answering
[7] makes a valuable contribution towards solving this
problem.

6.2 Existing Components and Related Work

Approaches towards the realization of a smart,
connected factory can be found e.g. in [39], an



implementation of an engineering service bus for data
and service integration on the shop floor which has
been realized in a small-scale model of a smart factory.
The design and a proof of implementation for a
manufacturing knowledge repository have been put
forth by [14], which provides a detailed meta model for
manufacturing processes and a model for structured
and unstructured insights which can be used for
process optimization. While the focus is not on real-
time exception handling but on predictive analytics and
while the meta model only makes mention of
exceptions (‘failures’) but does not attempt to resolve
them, the structure of the knowledge repository still
provides a very useful basis for the corresponding
component in the MaXCept architecture. We are
currently researching methods for the generation and
maintenance of semantic links between structured and
unstructured insights within the knowledge repository
for a use case from the automotive industry [Author,
2014]; these links will be of central importance for data
mining, solution recommendation and task-expert
matching. Both [14,39] constitute the basis for
components in our implementation of the MaXCept
architecture.

[47,48,49] have developed methods to integrate
context information — e.g. from sensors — into a real-
time workflow model of processes in a shop floor
environment. This work may be taken as a starting
point for the implementation of the MaXCept shop
floor model, but must be extended to support
unstructured data sources as input to the workflow
model. [30] is conceptually valuable for the
development of MaXCept because it computes
similarities of processes, subprocesses and activities
to optimize processes at design time by suggesting
appropriate process step sequences. These similarity
measures are mainly based on the linguistic labels of
activities, but comparable similarity measures can be
computed with the features of tasks, exceptions and
persons which we discussed in this paper. They can
then be used at run time in the MaXCept solution
recommendation component.

[29] treat automated process step decisions on
the basis of integrated process and operational data as a
classification problem and successfully test this
approach on structured integrated data. While they
remark that unstructured data are also relevant, they do
not address the question of how to integrate them, and
the setting is not a factory context with real-time
requirements. We will investigate in how far the real-
time solution recommendation task can also be treated
as a classification problem and what the impact of
including unstructured data sources will be.

[17] integrates collaboration tools for decision
processes with workflow systems, addressing the
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need to “identify situations where formalized solutions
do not exist” in order to contact humans who will
cooperate to informally solve the problem but
providing no clear strategy to do so. It constitutes a
relevant starting point for designing the user interface
of the MaXCept architecture, as do [11,15] which have
developed a worker information and communication
dashboard (in the form of a mobile app) that may be
integrated into our implementation.

[1] addresses exception handling in business
process management with a focus on general
exception types and task types which we have taken as
a starting point to develop our notions of exception
discoverability and exception and task features. [26]
develop a case-based reasoning architecture for
exception handling in a workflow system which may
serve as a basis for implementing the exception
handling pipeline in MaXCept but needs to be adapted
to the new context of the integrated, data-rich factory
environment.

For the processing and integration of unstructured
text data, both generic and domain-specific NLP tools
and resources will be necessary. For generic NLP,
standard pipeline components such as the Stanford
Core NLP package [9,45] or OpenNLP [2] can be
used; domain-specific components will be developed
on this basis. The Apache UIMA standard [8] is
adhered to throughout the implementation of
MaXCept, especially within the data analytics
components. It offers integration of most standard NLP
components, it is modular and has high scale-out
capabilities which make it ideal for real-time analytics.

Topic identification is a major focus in exception
escalation with unstructured data. We predict that a
simple statistical approach will handle the noisy non-
standard data we are confronted with on the shop floor
slightly better than a sophisticated rule-based approach.
Topics can be organized and clustered with the help of
taxonomies or ontologies. Examples of generic world-
knowledge ontologies include WordNet for English [6]
and GermaNet for German [19]. For the shop floor
environment, domain-specific ontologies will need to
be used. Examples of manufacturing-specific
ontologies exist for design [40] and assembly [10].
While ontologies and taxonomies can be costly if they
need to be hand-crafted, there also exist approaches to
automating their generation [4,23,32,44]. Initial
experimentation in research and real-life industry
settings suggest that a shallow custom taxonomy (such
as used in [36]) is sufficient for classification and topic
markup tasks. Since the shop floor is a “hands-busy,
eyes-busy, and mobility required situation[...]” [38],
speech-to-text components such as described in [43]
and topic identification on spoken text [27] are also of
interest.



Data-driven expert identification has already been
addressed in [22], which integrates structured and
unstructured data from various internet resources into
an expert search portal with sophisticated focused
search — on the basis of taxonomy-like keyword graphs
— and pattern recognition for person and expertise
identification. [20] presents an interactive, self-
improving expert search mechanism with natural
language interfaces which is integrated into a social
network and finds experts to answer users’ questions
on a wide range of topics based on user-created texts,
explicitly specified interests/areas of expertise, and
user-to-user recommendations. [25] compare a range of
similarity measures for matching up expert profiles
with each other; these can also be used to match expert
profiles to task profiles. These and similar approaches
can be applied to data sources from the manufacturing
context such as company-internal social networks,
handbooks and tutorials with authorship information,
and insights from the knowledge repository associated
with their creators as in [14]. Lacking from these
approaches so far is the integration of real-time context
data, which we will include in our development of

MaXCept.
Choosing optimal modalities for information
presentation, teamwork, innovation and

communication has been well researched for the office
context, e.g. [3,28,37,42]. In particular, decision
support for the context-sensitive choice of
communication medium such as [33] may be of
relevance for communicating task assignments.

Data mining is crucial in several components of
the MaXCept architecture: It will be needed for the
recognition of exceptions from raw data, for the
classification of exceptions according to the features
we listed, and for the discovery of potential solutions
and experts. We will use a freely available toolkit such
as [18], which has been successfully employed
throughout the scientific community.

7. Conclusions and Outlook

We have shown that exception handling in
manufacturing,  especially  real-time  exception
escalation on the factory shop floor, can greatly benefit
from data-driven analytics tools for decision support
throughout the process of exception escalation, and
that the integration of unstructured data is crucial for
tapping into existing knowledge about solution
processes. We have described an architecture for
supporting exception escalation with comprehensive
data integration, discussed each component and
process step in detail and shown that there exists a rich
research context for all technologies relevant for its
implementation. After finalizing the protoype of the
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MaXCept architecture, we will proceed to evaluating it
in a realistic smart factory context.
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