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Abstract 
Today, data from different sources and different 

phases of the product life cycle are usually analyzed in 
isolation and with considerable time delay. Real-time 
integrated analytics is especially beneficial in a
production context. We present an architecture for 
data- and analytics-driven exception escalation in 
manufacturing and show the advantages of integrating 
unstructured data.  

1. Introduction  

Manufacturing companies are collecting large 
amounts of structured and unstructured data about 
products, processes and quality. This is facilitated by 
ongoing trends (cf. [21]) such as  

� increased automation of production 
technology, especially sensor technology 

� availability of fast connections for data 
transmission and large, affordable data storage  

� easy access to computing devices, often 
mobile, for recording, organizing and 
analyzing data 

Still, data from different sources and different 
phases of the product life cycle are usually analyzed in 
isolation and with considerable time delay [5,46]. The 
majority of unstructured data, which constitute 50 to 
80% of data within an organization [34], are not 
accessed through analytics at all. Knowledge discovery 
is thus severely restricted and data-driven optimization 
of processes is conducted slowly if at all [12]. This 
means that complex, un-anticipated exceptions in real-
time production which lead to flawed products or 
missed deadlines and thus to revenue loss may not be 
handled quickly and appropriately or may not even be 
discovered on time. With the technology and data 
available today, it is possible to amend this and 
develop analytics which greatly benefit the factories of  

the future. In this paper, we present MaXCept, a 
conceptual architecture for data- and analytics-driven 
Manufacturing Exception Escalation on and beyond 
the factory shop floor. We discuss in detail the data 
types, data sources, data needs and analytics potential 
for each component and each step of the exception 
escalation process. We present software components to 
be re-used or developed further in a prototypical 
implementation. The remainder of this paper is 
structured as follows: In ch. 2, we motivate 
unstructured data integration as a crucial step towards 
the smart factory of the future and present exception 
escalation as an important application scenario. In ch. 
3, we give an overview of the MaXCept architecture 
and the exception escalation process which it supports. 
In ch. 4, we detail the data integration layer of 
MaXCept; in ch. 5, we discuss the individual 
components for exception escalation. In ch. 6 we 
review related work and existing components used for 
our prototypical implementation; ch.7 contains 
conclusions and future directions.  

2. Motivation 

To motivate our architecture, we address 
developments towards a smart shop floor environment 
(2.1.) and present contexts for unstructured data 
analytics in exception handling (2.2.). We also 
introduce the case study we use as a working example 
(2.3.).  

2.1. The Smart Factory and the Human Factor 

Production today is under pressure to become even 
more flexible and easily adaptable, due to global 
megatrends [21] such as more complex products, 
higher demand for customization and faster, more 
global markets. The development of manufacturing 
towards more automation, knowledge-driven and data-
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driven decentralized planning and the incorporation of 
smart technologies has been described as the fourth 
industrial revolution [21]. At its core lies the concept 
of the smart factory [50], characterized by 

� cyber-physical production systems “capable of 
autonomously exchanging information, 
triggering actions and controlling each other 
independently” [21] 

� flexible, de-centralized task assignment 
� real-time analytics and feedback loops 
� a high degree of automation 
Unlike its predecessors in the era of computer-

integrated manufacturing (CIM), the smart factory is 
not intended to be empty of human workers. Instead, 
uniquely human skills will become more important. 
Today, human workers spend much of their time 
performing simple, repetitive manual tasks. With 
increased automation, human workers move on to tasks 
which tax their uniquely human skills such as flexible 
and creative problem-solving and decision-making 
[21,41]. They will always excel over machines at 
making decisions under uncertain and unpredictable 
conditions [1]. The factory is a very data-rich 
environment, and the information available on the shop 
floor will drastically increase in the near future. In the 
office environment, this has already happened and is 
subject to research (e.g. [31,42]). Additionally, the 
factory requires physical tasks to be performed on a 
tight schedule, thus positing an unprecedented 
challenge. Sophisticated filtering and assistant systems 
are therefore needed to maintain productivity and 
innovation in a fast-paced, flexibly changing and 
complex environment and to enable the human worker 
to make optimal decisions.  

2.2. Exception Handling with Unstructured 
Data 

We define an exception in the production context as 
any deviation from the production plan (similar to 
[24]), either directly through failure to fulfill a  process 
step or indirectly through minor deviations which add 
up to a failure to complete a process under optimal 
conditions, e.g. a delay in time or a sloppily 
manufactured work piece. Humans communicate 
information in the form of unstructured data, e.g. 
written failure reports.  Thus, most knowledge about 
flexible exception solution on the shop floor is at 
present available in unstructured form. To ensure that 
exceptions are discovered and solved in a timely 
fashion, we  need to use both structured data – machine 
messages, historical errors, workflows – and 
unstructured data – image, audio and video 
documentation of known or discovered problems, text 
descriptions of best practices for solutions. The 

exception handling IT infrastructure which we describe 
can be realized in (1) real-time, online analytics and 
problem solving in a smart, connected shop floor 
context with immediate automated feedback for the 
smart factories of the near future and in (2) exception 
escalation in production-near contexts such as remote 
machine maintenance and off-site customer support, 
which does not require immediate feedback and can be 
implemented with the tools and infrastructure of today. 

2.3. Case Study 

Company SUP is a supplier of motor parts for car 
motors, producing gears and cogs in factory FC. 
Company MACH is the provider of machines for this 
factory, in particular, a cutting machine CM, a transfer 
robot CR and a quality control station CQ involved in a 
short process with three steps: (1) cog cutting, (2) 
transfer to a storage area and (3) subsequent quality 
scans. The following workers are involved in the 
production process and machine support respectively:  

� A (SUP) – worker in cog quality control CQ at 
the storage area, listed as quality expert in the 
SUP social network 

� B (SUP) – worker at cog cutting machine CM 
� C (SUP) – surveillance worker at transfer 

robot, formerly worked at machine CM and 
contributed a tutorial on how to calibrate the 
tool for new work pieces 

� E (MACH) – worker in technical support for 
machines CM and CR 

� F (MACH) – informally interested in robot 
CR, has contributed to troubleshooting and 
documentation in intranet forums 

Information about the manufacturing process 
structure and past process instances is stored in 
structured form, documentation for the machines and 
tutorials exist in unstructured form. The two companies 
have intranets with user profiles and forums for 
discussion and troubleshooting. 

3. An Architecture for Manufacturing 
Exception Escalation (MaXCept) 

In this chapter, we present MaXCept, an 
architecture for decision support through automated 
exception escalation. We give a general overview of 
the architecture in 3.1. and describe the exception 
escalation process in 3.2. 
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3.1. Architecture Overview 

The MaXCept architecture, shown in Fig.1, 
consists of four layers:  

(1) The execution layer, which is equivalent to the 
shop floor environment – containing machines 
/ CPPS with their controlling units and sensors; 
human workers with their scheduled tasks and 
tool equipment; and smart devices with sensors 
and apps. 

(2) The integration layer, where data from 
different sources and product life cycle phases 
are integrated into a knowledge repository as 
well as into a computational model of the shop 
floor. The knowledge repository also houses all 
processes runnable in the factory and 
corresponding workflow representations. 

(3) The analytics layer, which contains the central 
IT components necessary for the exception 
escalation process, as well as other analytics 
components, scheduling / managing and 
notification / communication tooling. 

(4) The presentation layer, which provides the 
human user with access to analytics results, 
communication tools and exception 
notifications. The user interface can take the 

shape of an app on a mobile device, a user 
terminal connecting to a machine or cyber-
physical unit, or a wearable / augmented reality 
component. 

3.2 Exception Escalation Process 

The exception escalation process has three core 
phases, with four associated solution and matching 
tasks (cf. Fig. 2). The core phases are the following: 

(1) Exception Recognition: Exceptions are 
automatically recognized due to explicit alerts 
or as the result of data mining on integrated 
manufacturing data. Known exceptions 
designated by a unique error code may be 
resolved automatically without human 
decision-making. 

(2) Exception Classification: Exceptions are 
automatically assigned a number of features in 
preparation for solution discovery.  

(3) Exception Escalation: Based on these features, 
one of the following three steps is taken: 

� Automatic solution if the features of the 
exception match up with a known exception 

� Solution recommendation if the exception 
resembles several known exceptions.  
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� If no solution can be recommended, experts on
the topic of the exception are determined
through a matching process.  

The associated solution and matching tasks are 
initialized at different steps in the process depending 
on the type of exception:  

(1) Solution Execution can be started either after 
error recognition, after recommendation-based 
solution selection, or after solution design. It is 
handled by the exception resolver component, 
which assigns process steps to machines (e.g.  
automatically exchanging a worn-out tool) and 
human workers (e.g. fetching spare parts or 
conducting complex repairs). 

(2) Solution Selection is initialized when several 
potential solutions are automatically 
recommended. It must be carried out by a 
human worker.  

(3) Solution Design is evoked when no solution 
could be recommended. This task is carried out 
by a human.  

(4) Wherever humans are involved, the task and 
the human participant must be matched to each 
other based on appropriate parameters.  

4. Data Integration 

The data integration layer comprises data sources, 
integration components and warehousing and modeling 
components. Data sources are diverse and contain 
structured and unstructured data. Structured data are 
produced by sensors on the shop floor, which record 
for instance temperature, humidity, tool abrasion, or 
location of mobile components. Manufacturing 
execution systems (MES) and enterprise resource 
planning systems (ERP) as well as machine control 
systems also contribute structured data. Unstructured 

data originating on the shop floor are typically
produced by humans. They mainly include error 
documentation in text format as well as possibly voice 
or noise recordings, photographs or video recordings
of failing machines or flawed work pieces and 
components. For the purpose of our research, we focus 
on unstructured text data. Tutorials and handbooks for 
human workers also come in unstructured form. Other 
unstructured data sources from outside the production 
phase are complaints in customer relationship 
management (CRM) systems or reviews from social 
media. The holistic knowledge repository is a data 
warehouse integrating structured and unstructured data 
as well as analytics results, e.g. mining models for error 
detection or solution recommendation and worker 
expertise data. We base the design of the knowledge 
repository on the concept put forth by [14]. To be 
integrated into the knowledge repository, data must be 
preprocessed – structured data with standard Extract-
Transform-Load (ETL) techniques, unstructured data 
with generic natural language processing (NLP) to be 
enriched with structure (cf. [Author, 2014]). In the 
course of analytical processing, semantic links between 
structured and unstructured data are established and 
extracted information is stored in new configurations. 

The real-time shop floor model contains 
representations of  
� stationary objects such as machines, rooms or 

buildings
� mobile objects such as vehicles, robots and 

human workers
� environment variables such as temperature, 

humidity or velocity
� tasks and assigned agents, events and 

messages
The model is similar in concept to the one 

developed by [16]. We also adopt their distinction of 
static and dynamic data. 

5. Decision Support Components for 
Exception Escalation 

In this chapter, we describe the architecture 
components of the exception escalation process. We 
discuss the exception recognizer in 5.1., the exception 
classifier in 5.2., the exception escalator in 5.3. and the 
solution recommender and task-expert matcher in 5.4. 
and 5.5. Application examples are provided from the 
context of the case study. 
5.1 Exception Recognizer 

The exception recognizer component deals with the 
discovery of exceptions (Fig. 3). Exception 
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Figure 2. Exception Escalation Process
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discoverability is based on two feature dimensions: 
knownness and complexity. An exception is known if it 

has been anticipated during process design or has 
occurred before. Its complexity depends on the number 
of process steps involved. An exception which is 
known and simple can easily be recognized via sensor 
technology, e.g. when the cutting tool of machine CM 
must be exchanged because of abrasion. Typically, 
these exceptions also have straightforward solution 
processes retrievable by an unique error code, which 
can then be started automatically. An exception can 
also be known but complex, e.g. production steps are 
slightly delayed at machine CM because of permissible 
tool abrasion and at the quality control station CQ 
because of an inexperienced worker, such that an 
overall delay beyond the tolerance limit for timely 
production must be expected. To recognize this sort of 
exception, we require more sophisticated recognition 
mechanisms, e.g. computing a deviation score from 
several sentinel values or recognizing equivalence to 
previously seen exceptions through predictive analytics 
on historical process data (for an example with 
structured process data only, see [13]). These 
exceptions may also have straightforward solution 
processes that can be selected and started 
automatically. If an exception is unknown because it 
has neither occurred before nor been anticipated during 
process design – i.e. a true exception according to [35] 
- , it may still be automatically discoverable through 
data mining on real-time process data without pre-
selected sentinel values. For example, jagged cog 
edges can be measured and recognized as deviant from 
previously seen edges during quality control without a 
predefined jaggedness threshold. Today, sensor 
technology is not as ubiquitous as it will be in the 

smart factories of the future, and manufacturers are still 
successfully running machines built several decades 
ago. This means that the human observer will play a 
large role in detecting exceptions on the shop floor for 
a while, and that alerts sent to exception recognition 
will be in the form of unstructured data.  

The tasks of the exception recognizer component 
thus encompass the following (cf. Fig. 3):  

� Catching structured alerts thrown by humans 
or machines for known and simple exceptions 

� Decoding unstructured alerts thrown by 
humans  

� Watching sentinel values and computing 
deviation scores for known and complex 
exceptions 

� Watching processes and applying data mining 
to compare them to historical data to detect 
known and unknown complex exceptions 

� Assigning error code (if applicable) and 
knownness, similarity and complexity features 
to the discovered exception 

5.2. Exception Classifier  

In order to recommend solutions for complex and 
possibly unknown exceptions, several additional 
features are of interest. They can be clustered into four 
categories:  

(1) Topic: Which machines, machine parts, work 
pieces or workers are affected in which way? 
This information can be extracted from 
unstructured exception alerts, such as worker C 
sending an alert message via smartphone 
“transfer to storage area stopped because robot 
arm CR is stuck in palette”. Comparison of the 
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detected topic to historical topics can also lead 
to the assignment of an available error code for 
retrieving a known solution.  

(2) Time: Does the exception need to be resolved 
immediately or within a specific time window? 
This can be determined by consulting records 
for known exceptions or considering signal 
words and expressions in the text (“cutting tool 
at machine CM is broken and needs to be 
exchanged immediately”). 

(3) Location: Is the exact location of the exception 
known? Are several locations involved? Is 
there remote access to the affected components 
(e.g. for software problems) or do they need to 
be treated on-site (physical repairs)?  

(4) Complexity: Further complexity measures can 
be derived from the topic features: the affected 
components give clues as to whether special 
training is needed to carry out the solution.  

These features are assigned by the exception 
classifier component with the help of data mining and 
text mining (Fig. 4).  

5.3. Exception Escalator 

The exception escalator component uses the 
exception features to decide how the exception is to be 
solved. This automatic decision process uses hand-
crafted or data-mined decision models retrieved from 
the knowledge repository and has three possible 
outcomes, mentioned already in 3.2: 

(1) Automatic assignment and triggering of a 
solution process 

(2) Recommendation of several potential 
solutions to a human worker 

(3) Alerting a human expert to the exception who 
will then design a solution process.  

5.4. Solution Recommender 

The solution recommender draws on the following 
data: 

� Similarity measures of the current exception to 
previously seen ones, for example, surface 
roughness or jag size in damaged work pieces, 
temperatures at the failing machine, etc. 

� Exception features determined in the classifier 
� Solution processes assigned to known and 

complex exceptions  
� Atomic tasks, such as solution steps assigned 

to known and simple exceptions  
There are two strategies which the recommender 

can follow, based on data availability and exception 
features (illustrated in Fig. 5): 

(1) Recommending existing solutions based on 
similarity to other exceptions 

(2) Tailoring new solution processes from 
classifier features 

The first strategy is straightforward: The  solutions 
associated with similar exceptions can be ranked 
according to the similarity scores. For example, delays 
in the current process execution may be similar to 
several historical examples, one of which was solved 
by substituting an experienced worker at the quality 
control station and one of which was solved by simply 
speeding up the cutting machine. There will also be 
cases where similarity is low, low-confidence, non-
existent. In such cases, the second strategy is pursued: 
Based on topic features such as affected machine part
(e.g. “robot arm”) and nature of failure (e.g. 
“jammed”), a reasoner using domain-specific concept 
hierarchies and relations can recommend a series of 
atomic tasks.  

5.5. Task-Expert Matcher 

The matching of the right human worker to a 
particular task is necessary at several points in the 
exception escalation and solution process. The task-
expert matcher component (Fig. 6) makes use of  

(1) Exception features 
(2) Task features of solution step or 

decision/design tasks 
(3) Features of human workers, such as areas of 

expertise, current location, availability (e.g. 
current task, scheduled breaks) and 
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reachability (e.g. via text message, phone call, 
or video conference) 

We have discussed (1) and will now shed some 

light on how to collect and organize (2) and (3). 
Solution tasks can be assigned topic, time, location 
and complexity features, which will differ from the 
associated exception features. For example, solving a 
complex exception such as the delay caused at two 
interdependent machines by inexactly calibrated robot 
arm motions at CR and a highly eroded tool at CM can 
involve simple steps requiring high mobility and little 
expertise, such as fetching a new tool from a 
designated storage area, which can be carried out by 
worker B, and complex steps requiring no mobility but 
high expertise, such as re-calibrating the robot arm via 
remote access, which can be carried out by support 
technician E. Decision and design tasks are marked as 
high-complexity and assigned topic, time and location 
features in accordance with the exception and 
potentially the set of solutions under investigation. The 
features of human workers which we need to know 
in order to match them to tasks split into dynamic and 
near-static features: Location, current task, availability 
and reachability are subject to quick changes, whereas 
areas of expertise are stable over time. The dynamic 
data are present in the real-time shop floor model; their 
original data sources range from work assignment 
schedules within ERP systems and login information 
from stationary machine terminals to location and 
reachability data transmitted by smart devices. These 
are all structured data sources, whereas the near-static 
expertise data is derived from structured and 
unstructured data sources: 

� Employees can assign themselves topics of 
expertise and interest in company-internal 
social networks, and have them endorsed by 
others to create a confidence score.  

� Authorship of documentation and tutorial texts
on certain topics also indicates expertise – for 
example, worker F would be found as a 
candidate for recalibrating the robot arm based 
on troubleshooting documentation authorship. 

� Unstructured descriptions and structured 
metadata on tasks an employee has previously 
accomplished can be mined to derive 
competence profiles, e.g. worker C’s 
experience with machine CM can be retrieved 
from past work schedules. 

� Finally, an employee can be the designated 
contact person for a specific task or the explicit 
requester of information, e.g. worker C 
sending an exception alert about robot CR and 
wanting to retrieve a solution. 

Once the best fit between a task and a worker has 
been determined, the worker is informed of the 
assignment and given the necessary information for 
fulfilling it via one of the available media.  

6. Towards an Implementation  

In this chapter, we discuss the technology needed 
for an implementation of the Manufacturing Exception 
Escalation system. We first point out central challenges 
in 6.1., then discuss related work and existing 
components in 6.2. 

6.1 Central Challenges 

The main challenge is the integration of very 
diverse data which are structured and unstructured, 
frequently noisy and underspecified, into the 
knowledge repository as well as into the shop floor 
model. While the integration of legacy data into the 
knowledge repository and the data mining for potential 
solutions of known historical problems can happen off-
line, the integration of data into the shop floor model 
and the exception escalation pipeline have to run in or 
near real-time. This is slightly more difficult for 
unstructured data because there is more preprocessing 
involved. NLP components have to robustly process 
text and speech data which are dissimilar to the 
standard written language usually employed to train 
statistical NLP models. Recent work on real-time 
natural language processing and question answering 
[7] makes a valuable contribution towards solving this 
problem.  

6.2 Existing Components and Related Work 

Approaches towards the realization of a smart, 
connected factory can be found e.g. in [39], an 
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implementation of an engineering service bus for data 
and service integration on the shop floor which has 
been realized in a small-scale model of a smart factory. 
The design and a proof of implementation for a 
manufacturing knowledge repository have been put 
forth by [14], which provides a detailed meta model for 
manufacturing processes and a model for structured
and unstructured insights which can be used for 
process optimization. While the focus is not on real-
time exception handling but on predictive analytics and 
while the meta model only makes mention of 
exceptions (‘failures’) but does not attempt to resolve
them, the structure of the knowledge repository still 
provides a very useful basis for the corresponding 
component in the MaXCept architecture. We are 
currently researching methods for the generation and 
maintenance of semantic links between structured and 
unstructured insights within the knowledge repository 
for a use case from the automotive industry [Author, 
2014]; these links will be of central importance for data 
mining, solution recommendation and task-expert 
matching. Both [14,39] constitute the basis for 
components in our implementation of the MaXCept 
architecture.  

[47,48,49] have developed methods to integrate 
context information – e.g. from sensors – into a real-
time workflow model of processes in a shop floor 
environment. This work may be taken as a starting 
point for the implementation of the MaXCept shop 
floor model, but must be extended to support 
unstructured data sources as input to the workflow 
model. [30] is conceptually valuable for the 
development of MaXCept because it computes 
similarities of processes, subprocesses and activities
to optimize processes at design time by suggesting 
appropriate process step sequences. These similarity 
measures are mainly based on the linguistic labels of 
activities, but comparable similarity measures can be 
computed with the features of tasks, exceptions and 
persons which we discussed in this paper. They can 
then be used at run time in the MaXCept solution 
recommendation component. 

 [29] treat automated process step decisions on
the basis of integrated process and operational data as a  
classification problem and successfully test this 
approach on structured integrated data. While they 
remark that unstructured data are also relevant, they do 
not address the question of how to integrate them, and 
the setting is not a factory context with real-time 
requirements. We will investigate in how far the real-
time solution recommendation task can also be treated 
as a classification problem and what the impact of 
including unstructured data sources will be.  

[17] integrates collaboration tools for decision 
processes with workflow systems, addressing the 

need to “identify situations where formalized solutions 
do not exist” in order to contact humans who will 
cooperate to informally solve the problem but 
providing no clear strategy to do so. It constitutes a 
relevant starting point for designing the user interface
of the MaXCept architecture, as do [11,15] which have 
developed a worker information and communication 
dashboard (in the form of a mobile app) that may be 
integrated into our implementation.  

[1] addresses exception handling in business 
process management with a focus on general 
exception types and task types which we have taken as 
a starting point to develop our notions of exception 
discoverability and exception and task features. [26]
develop a case-based reasoning architecture for 
exception handling in a workflow system which may 
serve as a basis for implementing the exception 
handling pipeline in MaXCept but needs to be adapted 
to the new context of the integrated, data-rich factory 
environment. 

For the processing and integration of unstructured 
text data, both generic and domain-specific NLP tools
and resources will be necessary. For generic NLP, 
standard pipeline components such as the Stanford 
Core NLP package [9,45] or OpenNLP [2] can be 
used; domain-specific components will be developed 
on this basis. The Apache UIMA standard [8] is 
adhered to throughout the implementation of 
MaXCept, especially within the data analytics 
components. It offers integration of most standard NLP 
components, it is modular and has high scale-out 
capabilities which make it  ideal for real-time analytics. 

Topic identification is a major focus in exception 
escalation with unstructured data. We predict that a 
simple statistical approach will handle the noisy non-
standard data we are confronted with on the shop floor 
slightly better than a sophisticated rule-based approach. 
Topics can be organized and clustered with the help of 
taxonomies or ontologies. Examples of generic world-
knowledge ontologies include WordNet for English [6] 
and GermaNet for German [19]. For the shop floor 
environment, domain-specific ontologies will need to 
be used. Examples of manufacturing-specific 
ontologies exist for design [40] and assembly [10].
While ontologies and taxonomies can be costly if they 
need to be hand-crafted, there also exist approaches to 
automating their generation [4,23,32,44]. Initial 
experimentation in research and real-life industry 
settings suggest that a shallow custom taxonomy (such 
as used in [36]) is sufficient for classification and topic 
markup tasks. Since the shop floor is a “hands-busy, 
eyes-busy, and mobility required situation[…]” [38],
speech-to-text components such as described in [43] 
and topic identification on spoken text  [27] are also of 
interest.  
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Data-driven expert identification has already been 
addressed in [22], which integrates structured and 
unstructured data from various internet resources into 
an expert search portal with sophisticated focused 
search – on the basis of taxonomy-like keyword graphs 
– and pattern recognition for person and expertise 
identification. [20] presents an interactive, self-
improving expert search mechanism with natural 
language interfaces which is integrated into a social 
network and finds experts to answer users’ questions 
on a wide range of topics based on user-created texts, 
explicitly specified interests/areas of expertise, and 
user-to-user recommendations. [25] compare a range of 
similarity measures for matching up expert profiles 
with each other; these can also be used to match expert 
profiles to task profiles. These and similar approaches 
can be applied to data sources from the manufacturing 
context such as company-internal social networks, 
handbooks and tutorials with authorship information, 
and insights from the knowledge repository associated 
with their creators as in [14].  Lacking from these 
approaches so far is the integration of real-time context 
data, which we will include in our development of 
MaXCept.

Choosing optimal modalities for information 
presentation, teamwork, innovation and 
communication has been well researched for the office 
context, e.g. [3,28,37,42]. In particular, decision 
support for the context-sensitive choice of 
communication medium such as [33] may be of 
relevance for communicating task assignments.  

Data mining is crucial in several components of
the MaXCept architecture: It will be needed for the 
recognition of exceptions from raw data, for the 
classification of exceptions according to the features 
we listed, and for the discovery of potential solutions 
and experts. We will use a freely available toolkit such 
as [18], which has been successfully employed 
throughout the scientific community. 

7. Conclusions and Outlook 

We have shown that exception handling in 
manufacturing, especially real-time exception 
escalation on the factory shop floor, can greatly benefit 
from data-driven analytics tools for decision support 
throughout the process of exception escalation, and 
that the integration of unstructured data is crucial for 
tapping into existing knowledge about solution 
processes. We have described an architecture for 
supporting exception escalation with comprehensive 
data integration, discussed each component and 
process step in detail and shown that there exists a rich 
research context for all technologies relevant for its 
implementation. After finalizing the protoype of the 

MaXCept architecture, we will proceed to evaluating it  
in a realistic smart factory context.  
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