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Abstract—Today, workflows are widely used to model business
processes. A recent trend is to use them to model applications
in heterogeneous, large-scale distributed systems. In such sys-
tems, many, possibly mobile, providers offer independent and
interchangeable services that can be used to satisfy the different
activities of a workflow. Due to varying server loads, failures,
and changing network characteristics, the response time of these
services is highly volatile. Thus, it is hard to ensure the timely
and reliable execution of workflows depending on such services.
A common approach is to invoke several services in parallel
to increase the probability of success. This, however, can easily
lead to overprovisioning and high cost when needlessly invoked
services have to be compensated. In this paper, we investigate
the search space between parallel and sequential invocation of
services. We propose to invoke independent services staggered
over time to ensure timely workflow execution at minimal cost.
Evaluations show that our approach reduces the execution cost
by up to 85% while it guarantees to fulfill activity deadlines with
99.9% probability.

I. INTRODUCTION

In many areas, such as logistics [1], healthcare [2], man-
ufacturing, and urban mobility [3], workflows have become
the standard tool to model business processes. Workflows
consist of interrelated activities that trigger services and other
applications over time. Their modular structure allows for
optimal refinement of business processes even across different
hardware and software platforms.

With the advent of cloud computing and the recent ad-
vances in mobile and pervasive computing, business pro-
cesses are migrating to massively distributed and pervasive
environments, where workflows are using different services
to fulfill their activities. In such environments, services can
be running virtually everywhere in the network. They can
range from traditional web-services running in the cloud, to
services running on computing nodes nearby users’ in the
fog [4] [5], or even on the users mobile devices [6]. Thus,
workflows have become fully distributed business applications
that need to coordinate and ensure the correct execution of their
components running on heterogeneous nodes in the network.

This ongoing trend has brought business processes close to
the users. In modern processes, users are integrated and given
the ability to interactively influence the workflow execution.
Such tight interactions have raised a strong need for low
response times as users do not want to wait long for the
system to respond. An increased delay in response time quickly
translates to loosing customers [7] and, therefore, money.

Google, for example, reports that a 400 millisecond delay
resulted in 0.59 % less searches per user [8]. This clearly
states the need to guarantee the responsiveness of a businesses
process within a certain time frame.

As low response times are hard to achieve, they have be-
come the greatest vulnerability of modern distributed, service
oriented applications. Each workflow-level operation (activity),
such as organizing a business trip, invokes a service which in
turn may need to invoke other workflows or services, (e.g. hotel
booking or airline ticket reservation). As the response time of
each activity is in the order of a few milliseconds, the tail of the
response time distribution of each service becomes important.
If only a fraction of the sequentially invoked services take
longer to respond, the delay adds up and leads to a long holdup
in the execution of the overall workflow.

Nevertheless, response time characteristics of services used
to execute business processes differ greatly, dependent on the
available resources and load of the network [9]. For instance, a
service in the cloud may be very reliable in general. However,
if invoked from a mobile device, its responsiveness may be
poor due to packet loss, network latency, and network parti-
tioning [10] [11]. Studies confirm that even the characteristics
of services available in fixed networks, i.e., traditional web-
services, differ, dependent on their location and the origin of
the request [12], [13]. Furthermore, the response time distri-
bution of such services is highly volatile [14]. Measurements
gathered by Zhang et. al. [15] also show that typical response
time distributions have a long tail. This means that in most
cases (∼ 70%) a request is answered within milliseconds.
However, up to ∼ 15% of the responses take more than 5
seconds [12], [13]. As we already experience such problems in
fixed infrastructure networks, it is anticipated that these issues
will become even more important for mobile and pervasive
environments in the future [6].

Redundancy is a common approach to decrease response
time (and cope with differed kinds of infrastructure failures
[11]). There already exist approaches that redundantly schedule
several services, to execute a single activity of a workflow.
One approach is to invoke several interchangeable services
(in terms of functionality) in parallel [11], [16] to reduce the
response time of an activity. However, this also induces high
cost in terms of communication and execution overhead. In
addition, if one activity is fulfilled by several services, but can
only be executed once (like booking a ticket), the unnecessary
service invocations have to be compensated. This might be
very expensive. Another approach is to invoke redundant
services sequentially such that an additional service is invoked978-1-4799-5804-7/15/$31.00 c© 2015 IEEE
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only when the first service has not responded after a certain
timeout [17]. This approach has lower execution cost, as less
services are invoked and compensated. The response time of
this approach, however, is high as service response times have
a long tail and thus the required timeout needs to be long.

In this paper, we explore the search space between these
two extremes, i.e., parallel and sequential service invocation.
We take the response time characteristics of available services
into account and invoke several services with a certain delay
(i.e., time-offset). Compared to the parallel approach, our
strategy reduces the cost of executing an activity because the
services invoked earlier have sufficient time to respond before
more services are invoked. Compared to the sequential ap-
proach, our strategy decreases the response time of an activity
because the time-offset used to schedule services (to execute
the activity) is much less than the typical timeout. In general,
our strategy allows the flexibility to balance between response
time requirements and execution cost. Given a workflow with
a certain response time requirement (deadline), the proposed
strategy can schedule the services for different activities such
that the overall cost of executing the workflow is minimized.

In particular, our contributions are as follows. We solve
the problem of scheduling services to guarantee probabilistic
workflow deadlines (response time requirements) at mini-
mal cost. To achieve this, we developed methods to divide
the workflow-level deadline into activity-level deadlines and
schedule services for each activity. To that end, we present two
simulated annealing based approaches. A proactive approach,
that computes service schedules in advance, and a dynamic
approach, that schedules services during runtime and takes
actual execution time of the different activities into account.
We evaluate these strategies and demonstrate the validity of our
approach for real service response time distributions measured
by Zhang et. al. [15]. In the evaluations we show that our
algorithms find 99.61% optimal solutions while saving up to
85% of the cost, compared to scheduling services in parallel.
Moreover, compared to calculating the optimal solution our
approach is about 100 000 times faster.

II. SYSTEM MODEL

We assume that a workflow consists of a set of activities
A = {a1, . . . , an} and ordering relations that specify the
causal order of the activities. The approaches presented in this
paper are not specific to any workflow specification language.

A workflow is executed by an Execution Engine (EE) that
executes the activities of a workflow sequentially, conforming
to the ordering relations specified in the workflow model.
The Enterprise Service Bus (ESB) maintains a register of
all services, available in the network. When the EE executes
an activity of the workflow, it requests the ESB to invoke a
suitable service implementing the required functionality (cf.
Fig. 1). The ESB then sends a message to the respective service
including execution instructions and computational parameters.
After successfully processing the request, the service sends its
response back to the ESB.

All services si ∈ S that implement the functionality
required by a specific activity ai ∈ A, can be used inter-
changeably but have different response time characteristics.
The response time of these services is influenced by the
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Fig. 1. The system architecture.

computing power and load of service provider [9], but mainly
by the network conditions [14], [10]. We model the response
time characteristic of a service as a probability distribution
function rsi(t) (cf. Fig. 2) that could be provided by the service
provider itself, or monitored by a dedicated component in the
ESB. Fig. 2 shows two services (s1 and s2), invoked at times
τs1 , and τs2 and their respective probability distributions rs1(t)
and rs2(t). For each service si, the cumulative distribution
function Rsi(t) =

∫
rsi(t)dt is calculated and represents the

probability that a service si responds within a certain time, as
a function of t.
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Fig. 2. Representations of service response time characteristics.

We differentiate between two fundamentally different types
of activities. Idempotent activities, that can be executed arbi-
trarily often (e.g., reading sensor data), and non-idempotent
activities that can be executed at most once (e.g., booking a
flight). If, for example, the non-idempotent activity “Book a
flight to Dublin” is fulfilled by two services, the system has
booked two tickets. In consequence one of the two services
needs to be compensated, which might be expensive. In [18]
we present a concept how this dynamic service compensation
can be implemented. We thus model the total cost of a service
si as a sum of invocation costs (cinvsi ) and service compen-
sation costs (ccompsi ). These costs can be communication and
computation overhead, energy, money, etc.

III. PROBLEM FORMULATION

Given a workflow W that consists of |A| activities, our
objective is to minimize the overall execution cost of the
workflow and ensure that its final deadline dfinal is met with
a given probability ≥ p. To this end, two interconnected
problems need to be solved:

(1) Activity-level scheduling problem: We possibly need
to invoke multiple, redundant services in order to execute
an activity a ∈ A within a certain time da at minimal
cost. The choice of service invocation times offers many
possibilities, from sequential execution, partially overlapping
execution, to fully parallel execution, as shown in Fig 3a-c



respectively. These possibilities offer different advantages and
disadvantages. While parallel scheduling has the advantage
to guarantee a short response time, it can yield high service
compensation costs when unnecessary service invocations have
to be compensated. Sequential service invocation avoids com-
pensation cost, but the services might not respond in time so
that the deadline is missed. Our approach is to balance between
this extremes and schedule a number of services with a certain
temporal offset between each other. To that end, we define a
schedule τ = {τs1 , . . . , τsn} as a set of service invocation
times τsi (start times) for each service si out of all services S
that are available to fulfill an activity a.
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Fig. 3. The two extremes and the compromise.

(2) Workflow-level scheduling problem: In addition, for
each activity a ∈ A of a workflow W, we need to find sub-
deadlines da, that allow W meeting dfinal with probability ≥
p. As shown in Fig. 4, the choice of the sub-deadlines
determines the choice of services, including their number and
therefore influences the costs for executing a certain activity.
In Fig. 4a, for example, all deadlines are equally distributed
and the services are scheduled partially overlapping for each
activity. Assume, that activity B is non-idempotent and that
each additional service requires compensation. In this case,
it might be cheaper to give more time to the execution of
the non-idempotent activity (B) and thus avoid compensation,
even if more services need to be scheduled for the idempotent
activities A and B (cf. Fig 4b).

𝐵 𝐶

𝑑𝑓𝑖𝑛𝑎𝑙𝑑𝐴 𝑑𝐵

𝐴 𝐵 𝐶

𝑑𝑓𝑖𝑛𝑎𝑙𝑑𝐴 𝑑𝐵

b) Balanced according to costsa) Equally distributed

𝑆1

𝑆2

𝑆1

𝑆2
𝑆1

𝑆2

𝑆1

𝑆2

𝑆3

𝑆1

𝑆2

t t

𝑆1

𝑆2

𝑆3

𝐴

Fig. 4. Shifting of workflow-level deadlines.

Formally, given the services S and a schedule τ , the
probability for an activity a ∈ A to finish within time t, is
defined as:

ωa(t, S, τ) = 1−
∏
si∈S

(1−
∫
rsi(t− τsi) dt) (1)

The expected execution costs is defined as:

ca(τ) =
∑
si∈S

cinvsi · p
inv
si (τ) + ccompsi · pcompsi (τ) (2)

In Eq. 2, cinvsi and pinvsi (τ) denote the invocation cost and
invocation probability of each service si dependent on the
schedule τ . Further, ccompsi and pcompsi (τ) denote the compen-
sation cost and probability dependent on the schedule τ . The
invocation probability of a service (pinvsi (τ)) is given by Eq. 3
where a service si is only invoked if no other service has
responded at time τsi

pinvsi (τ) = 1− ωa(τsi , S, τ) (3)

Likewise, the probability that a service needs to be com-
pensated (cf. Eq. 4) is defined as a product of the probability
that a service si is started at time τsi and the probability that
no service has answered before si.

pcompsi (τ) = pinvsi (τ) ·
∫ ∞
τsi

r(t) · ωa(t, S \ si, τ) dt (4)

We aim to solve the following optimization problem:

minimize
τ

∑
a∈W

ca(τ) (5)

s.t.
∏
a∈W

ωa(da, S, τ) ≥ p (6)

and
∑
a∈W

da ≤ dfinal (7)

IV. SCHEDULING

In this section, we first discuss the complexity of the
problem we are going to solve and then describe the activity-
level scheduling and workflow-level scheduling approaches in
detail.

A. Complexity

In Sec. II we explained that the cost ca(τ) of executing
an activity a ∈ A, depends on the services S and their
schedule τ . Depended on this, we defined the start probability
of each service at time t, 1 − ωa(t, S, τ), such that a service
is only started if all previous services have not responded so
far. Thus, to determine a start point τsi of a service si the
start points of all previous services have to be determined,
i.e., all possible combinations have to be evaluated. Formally,
let T = {t1, . . . , tn} represent all possible start times. To
calculate the optimal schedule, all possible schedules

(|T |
|τ |
)

(combinations of possible start times T and start points of
available services τsi ) must have to be evaluated. The com-
plexity of evaluating all these combinations is in the class of
O(|T |!). Thus the problem is NP-hard. In addition, as time
is not discrete (|T | = ∞), there exists an infinite number of
possible schedules. Further, to optimize on the workflow-level,
we need to find optimal activity-level deadlines da. Thus, the
above described evaluations need to be done for all possible
activity-level deadlines da.

To overcome this and to compute the solution in a reason-
able time, we chose a simulated annealing based approach. We
start with an initial schedule τ and activity deadlines da and
refine them using different kinds of neighborhood functions.
We will discuss this in detail in Sec. IV-B and Sec. IV-C.



B. Activity-level Scheduling

To solve the activity-level scheduling problem, we use an
iterative, simulated-annealing-based approach. We start with
schedule τ curr (current solution), where all start points τsi
are in the beginning (cf. Fig. 5a). This ensures that we already
have a worst-case solution for that the deadline is fulfilled.
However, the cost might not be minimal. In every iteration,
a neighborhood function is used to generate a new schedule
τnew (new solution) by modifying the current solution τ curr.
The new schedule is accepted (becomes the current solution)
when it satisfies the activity deadline da and has lower cost
(cnew =

∑
a∈W ca(τ

new)) than the current solution (cc =∑
a∈W ca(τ

curr)). However, to overcome local minima, we
also accept solutions with higher cost with a certain probability
δ given by Eq. 8.

δ = e−
cc−cnew

Tc (8)

In order to calculate this probability, we define a current
temperature value Tc that is initialized with a maximum
temperature Tmax. Every iteration this value is decreased, and
with it the acceptance probability of worse solutions. When
the temperature reaches a specified lower bound the algorithm
stops and the current solution (schedule) becomes the final
solution.

This process may move the start points of unneeded
services after the deadline, so that they are not invoked. In the
case of Fig. 5b, two out of all four available services have been
selected. Further, the selected services have been scheduled
in a way that the combined response probability reaches its
maximum exactly at the deadline and not earlier.
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Fig. 5. Simulated Annealing approach for one activity.

The hardest part of designing a simulated annealing algo-
rithm is to define the right neighborhood function, because it
is responsible for converting the initial solution into the final
solution. To achieve this, the function must cover the whole
search space and quickly converge to the global optimum.

In general, two factors influence the quality of the activity-
level neighborhood function: The ability to 1) select the right
amount of services and 2) to decide how to re-position the
start times of the selected services.

1) The Right Number of Services: To determine the right
amount of services to re-position we propose two different
approaches:

Temperature Dependend Selection selects a number of
services (ϑT ), out of all available services S, based on the
current temperature TC of the system. The idea is that more

services are selected and changed in the beginning, (when
the temperature is high) to cover the search space. As the
temperature decreases, the number of selected services is
decreased, so that only small refinements of the solution are
possible (cf. Eq. 9).

ϑT =
Tc
Tmax

· |S| (9)

Service Depended Selection selects a number of services
(ϑS) depended on the total number of services |S| available
for the respective activity. The intuition behind this is that
constantly a fixed fraction of the services can be changed. The
speed and stability of the convergence of the neighborhood
function is dependent on a design parameter θ. If θ is chosen
too small not enough services are selected and the search
space is not covered, for too large values the solution does not
converge because the new schedule is a completely different
schedule and not a neighbor.

ϑS =
|S|
θ

(10)

2) How to re-position: To determine the new start position
of a selected service, we developed three different strategies
that will be described below and evaluated in Sec VI.

The Random Shifting strategy sets the start point of the
selected service to a randomly selected position. This position
can either be between the starting time of the activity and the
deadline, or at a fixed position after the deadline to disable the
service. In general, choosing a random neighbor is the default
approach of simulated annealing based algorithms. On the one
hand, this has the advantage that the results cover arbitrary
search-spaces, on the other hand the solutions converge slowly.

Fixed Shifting shifts the start times of a selected service
by a fixed value. Instead of just setting a new position, the
intention behind shifting is to gradually change an already
good schedule by slightly modifying the current start points.
A selected service is shifted to the left or to the right by this
fixed shift value. This approach can however only cover the
search-space with a certain resolution. As the algorithm needs
to work with different deadlines, this fixed shifting value also
needs to be dependent on the actual deadline. It needs to be
big enough so that a service start point can be moved within
the whole search space and also small enough to make fine
adjustments to the start points.

Temperature Shifting shifts the start time of a service by
a temperature dependent value. The initial shift distance is
set to the deadline and is then deceased proportionally to the
current temperature (Tc). The intention behind this is, that in
the beginning (high Tc) greater adjustments of the schedule
are possible as the services can move further and the whole
search space can be explored. As the system cools down, (Tc
gets smaller) more fine grained adjustments of the start points
of the services are possible. This alleviates the fixed resolution
problem of the Fixed Shifting approach.

It is worth noting that for each activity a ∈ A a large
number of services might be vailable that can be used to fulfill
the activity a. We assume that we have already selected a



reasonable set of services |S| � ∞ for every activity, from
which our algorithm can choose. For this paper we assume
that there exists a metric that can be used to select the “best”
available services. This could for example be the n services
with the lowest average response time.

C. Workflow-level Scheduling

In order to minimize the overall execution costs of the
workflow, we have to minimize the total costs of all activities
and obey the final deadline dfinal of the workflow. In con-
sequence, we need to find suitable activity deadlines da such
that the combined costs of all activities are minimal.

In the following, we present an algorithm that determines
the activity-level deadlines similar to the activity-level schedul-
ing algorithm described above. We start with an initial solution,
where the time until the final deadline is equally distributed
between all activities. The start points of all services S of each
activity a ∈ A are initialized with the activity-level scheduling
algorithm presented in Sec. IV-B.

The neighborhood function randomly selects an activity
deadline da and uses a Fixed Shifting based neighborhood
function to define a new deadline. This means, the neighbor-
hood function randomly picks an activity deadline and shifts
it by a fixed value to the left or right.

When the deadline of an activity has been changed,
the schedules of the activities that precede and succeed the
changed deadline need to be recomputed. Consider Fig. 6.
If deadline da2 is delayed, activity a2 has more time to
execute and activity a3 less. Thus we have to recompute the
schedules for those activities. To do this, we use the activity-
level scheduling approach presented in Sec. IV-B.
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Fig. 6. One activity-level deadline is changed.

V. SCHEDULING IN THE PRESENCE OF DYNAMICS

The workflow-level scheduling strategy presented in Sec IV
has been designed to schedule the complete workflow in
advance, so that each activity deadline da is fulfilled with a
certain probability (e.g., 99.9%). Thus, when such a schedule
is executed, an activity will most likely be fulfilled before
da (take less time). Furthermore, especially for long running
workflows, the response time behavior and availability of
the different services S might change during execution. To
take dynamics into account, we present a dynamic scheduling
approach that updates the schedules during run time and thus
further decreases the execution costs of the workflow.

Before executing the workflow, we have to roughly identify
a deadline for each activity. Identification of deadlines is an
offline process and is performed in three steps. As a first step,
the final deadline of the workflow is divided equally between
all activities. The second step is then, to calculate the expected

execution cost of each activity by scheduling services for each
activity, using the activity-level scheduling approach presented
in Sec. IV-B. In the last step activity-level deadlines da are
adjusted according to the expected execution cost identified in
step 2, to give more time to expensive activities.

In more detail, Eq. 11 is used to calculate the activity dead-
lines da. The time to the final deadline (dfinal) of the workflow
is divided into two parts. The first part is equally divided
between all activities. The second part is divided proportionally
to each activities share of the total expected execution costs∑
a∈W ca(τ). The ratio of both parts is determined by the

value of λ. In Sec. VI-C we will explain how this λ value was
determined.

da = dfinal · λ ·
1

|A|
+ dfinal · (1− λ) ·

ca(τ)∑
a∈W ca(τ)

(11)

Once the activity deadlines are determined, the execution of
workflow starts. We define a scheduling window as a number
of n� |A| activities that are scheduled right before execution,
using the workflow-level scheduling strategy presented in
Sec. IV. Initially, the first scheduling window is computed.
When the execution approaches the end of a scheduling win-
dow, the next window is calculated, taking the actual execution
time of the previous (already executed) activities into account.
This process continues, until all activities have been executed
(cf. Fig. 7).
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Fig. 7. The dynamic approach.

VI. EVALUATIONS

In this section, we evaluate the scheduling strategies for
activity-level scheduling and workflow-level scheduling pre-
sented in Sec IV, w.r.t. deadlines, execution cost, and computa-
tion time, in comparison to the optimal solution. Furthermore,
we compare the workflow-level scheduling strategy with the
dynamic workflow-level scheduling strategy regarding real
execution cost.

Our evaluations are based on 30 287 600 response time
measurements taken by 142 users querying 4 532 real web-
services [13]. From these measurements, we generated re-
sponse time characteristics (rsi(t)) for all 4 532 Services.
For our measurements we used a cluster consing of 24
Intel R©Xeon R©, 3.00GHz CPUs, with a total of 377.8GB of
RAM.

We implemented a simulation framework in Java that was
used to develop and test our activity-level scheduling strategies,
based on the replayed behavior of real services [13]. To
evaluate the workflow-level scheduling strategies we extended
our framework to generate workflows, consisting of up to
150 activities. For each activity, up to 20 services have been
selected for scheduling.



A. Activity-level Scheduling

In this section, we evaluate the activity-level scheduling
approach presented in Sec. IV-B. To evaluate different neigh-
borhood functions and show the benefits of our approach,
we compare them with the parallel strategy that uses as few
services as needed, started in parallel, to meet the deadline.

On the activity-level, we measure the quality of a solution
in terms of the expected number of services. As defined in
Sec III, services are only invoked if all previous services have
not respondent so far. Thus, the number of services invoked is
probabilistic. The expected number of services is therefore an
estimate of needed services to successfully fulfill an activity
until a certain deadline.

We also estimate how “optimal” our solution actually is. To
that end, we compare the results of our strategy to a brute force
strategy, that calculates and evaluates ”all possible” schedules.
As the number of schedules is infinite (since time is continuous
Sec. III) this can only be done approximately. In order to do
that we use an iterative algorithm that divides the search-space
into k start positions and evaluates all possible combinations
of start positions and services

(
k
|Sa|
)
. With every iteration, k is

increased, until no significant increase in accuracy is detected.

In our system, we model response time requirements in the
form of deadlines that need to be met (cf. Sec II). Therefore
we evaluate our approaches for various deadlines and compare
the resulting expected number of services.
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Fig. 8. Comparing different neighborhood functions for different deadlines.

In Sec. IV-B we highlighted that a neighborhood function
needs to select and re-position a number of service start points
(τsi ) and presented methods to do this. We evaluated all
combinations of service selection and start point re-positioning
strategies. In Fig. 8, we present the performance of the most
promising combinations and compare them to the parallel
provisioning approach. All presented neighborhood functions
are named after the combination of strategies they use, e.g.
Temperature Depended Selection - Random Shifting uses a
temperature depended service selection and a random service
selection strategy.

For the evaluation shown in Fig. 8, we randomly selected
16 services out of all 4 532 available services. We evaluated
every neighborhood function for 26 deadlines in the range
between 0.3 and 3.0. We repeated this experiment 60 times
and plotted the median and standard deviation.

Simulations show, that Service Dependent Selection - Fixed
Shifting is outperforming all other strategies, especially for
short deadlines. We can also see that the parallel approach
shows a discrete step behavior. This is because all required
services are started in parallel at the beginning. As expected,
for tight deadlines more services are scheduled, but even for
loose deadlines, at least two services are required. The reason
for this is that response time characteristics have a long tail.
Thus, one service is not enough to guarantee that a single
service responds within the first three seconds.

Most interesting are the results for short deadlines, as here
the strengths and weaknesses of the different strategies are
exposed. Several experiments showed that neighborhood func-
tions using Service Dependent Selection outperform random
and temperature depended selections strategies, because they
ensure a certain amount of change between the current state
and the new neighbor. One example for such an approach
is the “Temperature Dependent Selection - Random Shifting”
approach depicted in Fig. 8.

In consequence, we also evaluated service dependent se-
lection with fixed shifting and temperature dependent shifting
of services. An initial expectation might be, that temperature
depended shifting would be able to cover the search space
more efficient as it starts with bigger steps. This however is
not reflected in our experiments. As we can see in Fig. 8 Tem-
perature Shifting is also outperformed by Service Dependent
Selection - Fixed Shifting especially for short deadlines. The
reason for this is that the changes made by the temperature
based approach are too large at high temperatures and too
small at low temperatures. The shifting range at medium
temperatures equals then exactly the fixed shifting range of
fixed shifting approaches.
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Fig. 9. Calculation time and expected number of services for 8 Services and
various deadlines.

Fig. 9 compares the runtime of our best approach (Service
Dependent Selection - Fixed Shifting) with the parallel provi-
sioning approach and the brute force approach that generates



the near-optimal solution. It shows that the solutions generated
by our strategy are on average 99.61% as good as the solutions
generated by brute force. Furthermore, they only take a fraction
of the time to compute. It also shows that our approach
is almost as fast as just selecting the minimum number of
services that need to be invoked in parallel, while producing
significantly better results.

B. Workflow-level Scheduling

Fig. 10 compares the workflow-level scheduling strategy
described in Sec. IV-C with the parallel provisioning approach.
For this evaluation we computed 150 workflows for each dead-
line. Each workflow consisted of 20 activities. For each activ-
ity, the algorithms had to choose from 18 different services.
To model compute intense activities, we introduced a random
length factor between 1 and 4 that scaled the response time of
the activities. In this experiment, the execution cost of a service
was set to 1 and the compensation cost for non-idempotent
activities to 100. We repeated this experiment 3 times and
used workflows where 0%, 50%, and 100% of the activities
have been idempotent. We averaged the results and printed
the median and standard deviation. As expected, execution
cost increased with an increasing number of non-idempotent
activities. We can also see that the expected execution costs
of our approach is 3− 4 times lower compared to the parallel
provisioning approach.
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C. Scheduling in the Presence of Dynamics

In this section, we compare the workflow-level scheduling
strategy presented in Sec. IV-C to the dynamic scheduling
strategy (Sec. V) and the parallel strategy. Furthermore, we
show how we determined the value for λ.

As described in Sec. V, the dynamic scheduling approach
determines the deadlines based on the expected cost of the
different activities and the total available time. The key factor
to determine the time for each activity is the balancing between
fixed share of time and cost depended share of time (λ)
each activity receives. Fig. 11 shows that the lowest costs
can be achieved, if half of the total available time is equally
distributed between all activities (λ ≈ 0.5). The other half of
the time should be assigned based on each activities share of
the total cost of the workflow. For this evaluation, we tested
500 different workflows using 50 different values for λ in the
range [0.0, 1.0].
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In Fig. 12 we compare the real execution cost of the
schedules produced by dynamic scheduling, workflow-level
scheduling and parallel scheduling. To this end, we generated
workflows consisting of 100 activities where again 0%, 50%,
and 100% of the activities have been idempotent. We set
the execution cost of a service to 1 and the compensation
cost for non-idempotent activities to 100. We performed 900
experiments for deadlines in the range of [25.0, 35.0] seconds
and plotted the mean values and standard deviation.

To simulate the execution of a workflow schedule, we
determined an actual response time for each service from
its response time distribution and evaluated it against the
produced schedules. Fig. 12 shows that schedules produced by
the dynamic scheduling strategy result in the lowest execution
cost. Even executing workflow schedules where all activities
are non-idempotent is about 4 times faster than executing
workflows with 50% non-idempotent activities scheduled by
the workflow-level scheduling or the parallel approach. As
workflow-level scheduling produces schedules that meet every
deadline with a very high probability, most of the activities
are fulfilled earlier than the deadline. The dynamic strategy
can make use of this buffer and dynamically allocate more
time for non-idempotent activities to reduce costs.
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VII. RELATED WORK

Since low latency and timely execution of workflows are
important requirements, these problems have already been
approached in different ways.



A common approach to increase the reliability of a work-
flow is to schedule several services in parallel to fulfill one
activity [11]. The problem with these approaches is that they
are likely to schedule too many services (over provisioning),
as we presented in our evaluations. This can lead to high cost,
especially if the activity is non-idempotent and unnecessary
services require expensive compensation.

A similar approach is to select a small number of services,
e.g. 4 and schedule them in parallel. If none of them responds
within a certain time, a second set of services is started [19],
[16], [17]. These approaches, however, can still lead to the
invocation of too many services and high cost. To avoid
over provisioning, different quality monitoring, forecasting,
and dynamic binding approaches [20], [14] can be used. Such
approaches can only help to select the right services and
reduce the time between service selection and invocation. They
can neither guarantee a certain responsiveness, nor provide
mechanisms to ensure that an activity is fulfilled until a certain
deadline. This is because there exist no backups that can take
over in the case of failures. Furthermore they cannot efficiently
mask problems that are due to network failures.

A different approach to ensure the availability and suc-
cessful execution of workflows in distributed environments has
been proposed in [21]. Instead of scheduling several services to
fulfill the same activity, several structurally different copies of
the same workflow are executed in parallel. The execution of
the differently ordered workflows is then coordinated so that
non-idempotent activities are not executed at the same time
by different copies of the workflows. To employ this strategy,
the workflow needs to be specified in a declarative workflow
language. One problem with this approach is that for large
workflows, the generation of the structurally different copies
of the workflow can become extremely complex.

Furthermore, we already presented [18] how the approach
described in this paper could be combined with a workflow
replication and dynamic service compensation strategy to
ensure high availability in Collective Adaptive Systems.

VIII. CONCLUSION

Applications running in distributed and pervasive environ-
ments face many different kinds of failures. When workflows
are used to model applications and business processes in such
environments timely execution is a serious issue. In this paper,
we have presented a new approach to guarantee probabilistic
deadlines for workflows executed in such environments. Our
approach takes the type of the executed activity into account
and significantly decreases the expected execution costs com-
pared to the state of the art. Additionally, even tight deadlines
can be guaranteed with high probability. In particular, we have
developed methods to divide the workflow-level deadline into
activity-level deadlines and schedule several services staggered
over time such that the expected execution cost are minimal.
Furthermore, we have extended this concepts to cope with
high dynamics. Future research in this area will be on further
optimizing the proposed method to deal with branching within
workflows.
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