
Optimized Location Update Protocols
for Secure and Efficient Position Sharing

Zohaib Riaz, Frank Dürr, Kurt Rothermel
Institute of Parallel and Distributed Systems

University of Stuttgart, Germany
Email: {zohaib.riaz, frank.duerr, kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract—Although location-based applications have seen fast
growth in the last decade due to pervasive adoption of GPS
enabled mobile devices, their use raises privacy concerns. To
mitigate these concerns, a number of approaches have been
proposed in literature, many of which rely on a trusted party to
regulate user privacy. However, trusted parties are known to be
prone to data breaches [1]. Consequently, a novel solution, called
Position Sharing, was proposed in [2] to secure location privacy in
fully non-trusted systems. In Position Sharing, obfuscated position
shares of the actual user location are distributed among several
location servers, each from a different provider, such that there
is no single point of failure if the servers get breached. While
Position Sharing can exhibit useful properties such as graceful
degradation of privacy, it incurs significant communication over-
head as position shares are sent to several location servers instead
of one.

To this end, we propose a set of location update protocols to
minimize the communication overhead of Position Sharing while
maintaining the privacy guarantees that it originally provided.
As we consider the scenario of frequent location updates, i.e.,
movement trajectories, our protocols additionally add protec-
tion against an attack based on spatio-temporal correlation in
published locations. By evaluating on a set of real-world GPS
traces, we show that our protocols can reduce the communication
overhead by 75% while significantly improving the security
guarantees of the original Position Sharing algorithm.

Keywords-location-based services; privacy; efficient communi-
cation; dead reckoning; selective update

I. INTRODUCTION

With increased location-awareness of mobile devices, such
as GPS/WiFi enabled smart phones and car navigation sys-
tems, location-based applications have found wide adoption
in the past decade giving rise to novel concepts such as geo-
social networking, live traffic updates, and pay-as-you-go car
insurance. In spite of these beneficial advancements, sharing
location data with non-trusted third parties raises privacy
concerns. These concerns range from profiling of user behavior
by advertizement agencies to personal security threats such as
stalking [3].

In order to mitigate these privacy concerns, the research
community has proposed a number of works as surveyed in [4].
Most of these works rely on a trusted location service which
stores the location updates sent by the users. This service then
allows the location-based applications to query user location
in a privacy preserving manner. However, evidence, from
incidents of data breaches at trusted entities [1] involving lost,
stolen, and hacked data etc., suggests that the assumption of a
trusted location service is at least questionable.

To this end, we introduced a novel approach called Position
Sharing (PS) in [2] for secure sharing of location data with
non-trusted parties. This scheme obfuscates the actual user
location by splitting it into a number of imprecise pieces called
position shares. For each location update, these position shares
are generated and distributed to a corresponding set of location
servers (LSs), each maintained by a different service provider.
In this way, a non-trusted LS, when compromised, can only
reveal limited information about the actual user location, thus
exhibiting graceful degradation of user privacy. A location-
based application, on the other hand, can query the LSs to
acquire the shares and “fuse” them together to reconstruct the
position of the user. The precision of the reconstructed position
is determined by the number of fused shares. Therefore, by
individually controlling the number of LSs a location-based
application is authorized to access, a user can effectively
control the precision of location data shared with them.

While PS avoids single point of failure with respect to
user privacy, it incurs significant communication overhead in
distributing position shares to multiple LSs. If user location is
distributed among n LSs, then each location update costs n
times the communication cost of updating a single LS when
PS is not used. The problem is compounded when location
updates are frequent, e.g. while sharing movement trajectories.

In this paper, we investigate the possibility of minimizing
the communication overhead of PS when it is used to protect
the location of a traveling user. We face two challenges while
meeting this goal. First, the privacy guarantees provided by
the PS algorithm need to be preserved. This is a requirement
because our location update protocols alter the way in which
the position shares are generated, thus possibly affecting the
privacy guarantees. Second, the privacy guarantees should
be maintained against attacks which exploit spatio-temporal
correlation between location updates. This is a direct result of
publishing frequent location updates as opposed to the single
uncorrelated updates considered in the design of PS scheme.

Including and extending our initial attempt to solve the
above stated challenges [5], we make, overall, three contribu-
tions. First, we integrate three location update protocols into
PS for optimizing its communication overhead, namely, Dead
Reckoning, Selective Update, and Selective Dead Reckoning.
Second, we add protection to our protocols against a powerful
correlation attack based on the knowledge of user’s maxi-
mum traveling speed. This attack could otherwise significantly
weaken the protection provided by PS. Finally, we analyze the
communication efficiency and privacy security provided by our
protocols on real-world GPS traces. Our evaluations show that
most of our protocols reduce the communication overhead, at

978-1-4799-5804-7/15/$31.00 c© 2015 IEEE

riazzb
Typewriter

riazzb
Typewriter
To appear in the Proceedings of the 2nd IEEE International Conference on International Conference on Networked Systems (NetSys 2015), Cottbus, Germany, March 2015
© IEEE 2015

riazzb
Rectangle

least, by 75% while improving the security guarantees of the
original PS algorithm.

The rest of the paper is organized as follows. In Section II,
we briefly state the related work. Section III describes our
system model and defines the problem statement. In Sec-
tions IV and V, we introduce the preliminary concepts, and
the definitions of our update protocols, respectively. We then
elaborate the addition of protection against correlation attack
to our protocols in Section VI. Our evaluations are presented
in Section VII. Finally, Section VIII concludes our paper.

II. RELATED WORK

With the gradual realization of location privacy concerns in
the use of location-based applications, the research community
has come up with a number of proposals in the last decade.
Initially, the focus was on unlinking the identity of a user
from the query they send to a location-based application. This
protection goal gave rise to the root concept of location k-
anonymity [6]. Here, user’s location is represented by a region
which contains at least k other users such that the location-
based application cannot identify the original generator of the
received anonymous query. However, k-anonymity requires a
trusted party which is knowledgeable about the location of all
users in the system to generate the k-anonymous region.

To avoid trusted parties, a parallel research direction ex-
plores the idea of location obfuscation [7], [8]. With this
method, the user’s location is represented as a spatial region
irrespective of the number of users it contains, so that the pre-
cise position of user inside the spatial region is protected from
the location-based application. While location obfuscation can
successfully avoid trusted mediating parties, it does not enable
user-control over the precision of location information shared
with varyingly trusted applications. In other words, the kind of
protection is all or nothing, without any intermediate option
for the user. PS, as proposed in [2], solves this problem
while maintaining the notion of non-trusted system. It uses
the concept of position shares which can be fused by location-
based applications to get a position of defined precision.

As mentioned earlier, the location precision control provided
by PS comes at the cost of additional communication overhead
due to its distributed system architecture. As a solution to this
problem, we seek help from the idea of dead-reckoning [9].
Dead reckoning introduces dynamic attributes, such as veloc-
ity, as part of a location update sent to the LS by the mobile
object. Hence, the LS can predict the location of the mobile
object in the absence of location updates while affording
additional computational cost and a pre-defined, bounded error
in the predicted location. When the error bound is exceeded,
the mobile object updates the LS again with a fresh value of
the dynamic attribute and its current actual location. We will
use this idea in two of our optimization protocols.

With our aim to protect the privacy of a traveling user, at-
tacks on location privacy based on spatio-temporal correlation
between subsequent location updates cannot be ignored. One
such basic but strong attack was introduced in [8] that relied on
the simple knowledge of the maximum possible speed of the
moving object. Using this knowledge, the adversary removed
those parts of the published obfuscation regions which were
unreachable, given the time and location of the last update,
thus reducing user privacy. Against this attack, we adapt one
of the solutions given in [8], called delaying, as an add-on to

Fig. 1. System Model for Optimized Position Sharing.

our proposed location update protocols.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce our system model and define
the problem statement.

A. System Model

Our system, as illustrated in Fig. 1, consists of three types
of components, namely, the mobile device, the location servers
and the location-based applications.

The mobile device can calculate its current location π using
a built-in GPS receiver. It runs the Optimized share generation
service, which represents π as a set of location shares. These
location shares are of two types: a single master share smaster,
and n refinement share vectors S = {~s1, ..., ~sn}. smaster
represents the most obfuscated form of π and, therefore, is
published to all of the n location servers. On the other hand,
the refinement shares ~si ∈ S which decrease the imprecision
of smaster, are distributed, one to each location server (LS).

The LSs manage the location shares sent by the mobile
device and implement access control mechanisms to enforce
their authorized retrieval by the location-based applications.
These applications acquire access rights to a number of LSs
directly from the user. They then retrieve the location shares
and fuse them together to reconstruct a position of higher
precision than smaster using the share fusion algorithm.

In contrast to the simple share generator in [2], our opti-
mized share generation service, as shown in Fig. 1, adds an
additional optimized share update component that implements
our protocols for efficient location updates. This component
exclusively accesses the position fixes generated by the GPS
receiver, and based on the decision from the underlying loca-
tion update protocol, invokes the share generation component
to generate new location shares when necessary.

Whenever the share generation component is invoked, it
generates {smaster, S} in such a fashion that on fusion,
they allow reconstruction of the actual location π at various
precision levels. The precision of the reconstructed position
increases with the number of fused shares. To better understand
this concept, consider the example illustrated in Fig. 2. Part (a)
of the figure represents smaster as circle c0 with center p0 and
radius r0 = φmin, where φmin is the minimum precision set
by the user. As for the refinement shares, they are vectors that
translate the center of a circle to a new position. Whenever the
center is translated, the radius is decreased by ∆φ = φmin/n,

Fig. 2. Geometric representation of the actual location π in PS. (a) smaster

with π shown inside it. (b)-(d) n = 3 shares incrementally fused to gradually
increase precision of user location until p3 = π is calculated in (d).

to increase the precision of the fused position. In parts (b)-
(d) of Fig. 2, refinement shares are gradually added, or fused,
to p0 to achieve positions of higher precision, i.e., p1 to p3.
Note that, per addition of a vector ~si, there is a constant
decrease of ∆φ in radius of the obfuscation circle. Note also
that any position pi, represented by the circle ci, results from
the addition of i refinement vectors on top of smaster and that
p3 = pn = π since we use 3 refinement shares in this example.

For the rest of the paper, we will use pn and π interchange-
ably to refer to the actual user location.

B. Problem Statement

The design of our location update protocols aims to mini-
mize the communication overhead of the original PS algorithm
while preventing any compromise on the location privacy
guarantees it provides.

More formally, a location update in the non-optimized PS
case implies sending a refinement share ~si and the master
share smaster = {p0} to each of the n LSs. With ~si and p0

being 2-dimensional variables, we quantify the cost of updating
location over a trajectory of m position fixes as the number of
variables sent to the n LSs, i.e.:

CostPSm = m · {
~si︷︸︸︷

n · 2 +

smaster︷︸︸︷
n · 2 }︸ ︷︷ ︸

single location update

(1)

With integration of our location update protocols, the opti-
mized PS minimizes CostPSm by modifying the location update
process so as to skip the location updates, either fully or
partially. Therefore, the individual counts of the sent ~si and
smaster determine the total cost for the m position fixes:

CostPSopt
m = num(si) ·2+num(smaster) ·size(smaster) (2)

Here, the size of smaster varies to include the user’s velocity
when Dead-Reckoning is used.

The modification of the location update process by our
protocols leads to two problems. First, it introduces error in the
user location present at the LSs. Against this, we require that
the introduced error ε should not exceed a user-defined bound
of εmax at any instant during the course of the trajectory:

ε < εmax (3)

Second, a privacy adversary could exploit their knowledge
of the share generation process and of our update protocols to
determine a non-uniform distribution of actual user location π

inside the obfuscation region, thus reducing privacy. The re-
quirement, therefore, is that this non-uniformity of distribution,
as quantified later in Section VII-B, for optimized PS should
be less than that for the non-optimized PS.

Finally, we also assume that the privacy adversary has
knowledge of the user’s maximum possible travel speed, i.e.,
vmax. They exploit vmax to determine and remove those parts
of the current obfuscation region which cannot be reached from
the last obfuscation region considering time between the two
updates, thus decreasing the intended privacy. To avoid this
attack, our protocols must update locations in such a manner
that any position inside the published obfuscation areas is
reachable by the user. For the rest of the paper, we will refer
to this as the maximum movement boundary (MMB) attack.

IV. PRELIMINARIES

In order to better understand the design of our location
update protocols as detailed in Section V, we will first briefly
look at the share generation process of the original PS algo-
rithm from [2] and its corresponding privacy adversary model.

A. Share Generation in PS

During the share generation process, each share is gener-
ated such that the following conditions are met. First, each
circle ci must contain the actual location pn. Second, each ci
is fully contained in ci−1. Consequentially, a third requirement
is that the length of any share vector should not exceed
∆φ. While meeting these restrictions, two algorithms, the a-
posteriori and a-priori, were proposed which fundamentally
differed in the order of generation of p0.

The a-posteriori algorithm generates the set S of refinement
share vectors first and calculates p0 at the end by subtracting
the sum

∑
∀~si∈S ~si from pn. Share vectors are generated

randomly, with lengths in the interval [0,∆φ] and no restric-
tions on direction. Therefore, all shares are uncorrelated to
each other. A notable property of this algorithm is that the
uncorrelated shares cause pn to be normally distributed around
p0 within the circle c0. As more shares are fused to p0, the
distribution of pn around the fused position, say pk inside the
circle ck converges to a uniform one.

On the other hand, the a-priori algorithm first generates a
uniformly random location for p0 in a circle of radius φmin
around pn, and then finds the set S of share vectors that,
on fusion, lead from p0 to pn. However, because the overall
direction and distance to be covered by the refinement shares
in S is already defined by the vector −−→p0pn, the resulting shares
are correlated, i.e., the definition of each share is dependent
on the definition of shares generated before it.

For the rest of the paper, we will refer to the above two
share generation algorithms as SGAs.

B. Adversary Model

The privacy adversary considered in [2] has knowledge
of the SGAs as well as access to k out of the n total
refinement shares. The adversary exploits this knowledge to
generate the (n − k) refinement shares that are unknown to
them and use these to derive a better estimate πattack of user
location inside the obfuscation region ck. Therefore, from the
adversary’s point of view, the actual user location pn has a non-
uniform distribution inside the obfuscation region ck instead

of a uniform one that was intended for maximum privacy.
The success of this attack is quantified by the distribution
Pattack(φ) which measures the probability that the estimated
position πattack lies closer to the actual location pn than a
distance of φ units. Note that it is assumed that the user can
move freely in space without any restrictions, and that, the
adversary does not have access to map knowledge.

V. UPDATE PROTOCOLS

We next explain three different location update protocols,
namely, Dead Reckoning, Selective Update, and Selective
Dead Reckoning, which reduce the communication overhead
of the original PS approach.

A. Dead Reckoning (DR)

With its existing use in efficiently updating locations of
moving objects [9], DR is a natural choice for our investiga-
tion. The basic idea behind DR is to enable the LS to predict
the location of the moving object, even in the absence of
location updates. To achieve this, the LS models the movement
of the moving object as a prediction function fpred such that
location at a future time t, say loc

′
(t), can be estimated given

the knowledge of the last known location loc(tlast) and linear
velocity ~vtlast

(see Eq. (4)). For each position fix generated at
the moving object, it also executes fpred and then determines
the deviation of location loc

′
(t) from its actual location loc(t),

e.g. the euclidean distance. If this deviation exceeds by a
certain predefined threshold thDR, the moving object sends a
fresh location update to the LS, thus resetting the incremental
error integrated in the estimated location loc

′
(t).

loc
′
(t) = fpred(loc(tlast), ~vtlast

, t) (4)

The basic idea of applying DR to position sharing is as
follows. After a smaster and the set of n refinement shares
S are generated and distributed to the LSs, we apply DR to
the position of the smaster (center of c0, i.e., p0). The set
of n refinement shares S remain unchanged. If the error ε in
p0, exceeds the threshold thDR, we calculate a new smaster
together with S and update the LSs. In order to limit the error
ε below the user-defined maximum error value of εmax, we
set thDR = εmax.

Figure. 3 shows the details of our algorithm. At the start of
the main loop, the algorithm waits until a current user location
pn(t) is fixed by the mobile device (line 3). If there was already
a last update sent to the LSs, i.e., updlast = {smaster, S}, then
the algorithm uses it to calculate the LS’s prediction, i.e., p

′

0
at the current time t (lines 5-6). Note that in the case of DR,
smaster(t) = {p0(t), ~vt}. Then, last update’s shares updlast.S
are fused with the calculated p

′

0 to get estimated p
′

n in line
line 7. In lines 8-9, new shares are set to be generated if the
error ε in estimated p

′

n is greater than the threshold thDR.
If shares are to be generated anew, either because they do
not exist (for the first location update), or thDR was violated,
the algorithm generates and distributes them in lines 12-17.
Fresh calculation of the velocity ~vt is done in line 13. Finally,
the generated shares along with the freshly calculated ~vt are
distributed to the n LSs in line 15.

1: procedure DEAD RECKONING
2: loop over the whole trajectory
3: pn(t) = wait for next position fix
4: new shares = FALSE
5: if exists(updlast) then
6: p

′

0(t) = fpred(updlast.smaster, t)
7: p

′

n(t) = fuse shares(p
′

0(t), updlast.S)
8: if ε = dist(pn(t), p

′

n(t)) > thDR then
9: new shares = TRUE

10: end if
11: end if
12: if !exists(updlast) OR new shares then
13: ~vt = calc attributes()
14: {p0(t), S(t)} = gen shares(pn(t), n, φmin)
15: Distribute{smaster(t), S(t)} → n LSs
16: updlast = {smaster(t), S(t)}
17: end if
18: end loop
19: end procedure

Fig. 3. Algorithm for Dead Reckoning with PS

Fig. 4. Importance of share ordering in SU. (a) New position fix pn(t) falls
in c2 requiring update of s1 and s2. (b) Re-ordered shares bring pn(t) inside
c3 requiring update of s1 only.

B. Selective Update

Selective Update (SU) is based on the idea of partial re-
usage of refinement shares. On generation of a new position
fix, only a minimum number of refinement shares are re-
generated and updated at their respective LSs, such that the
user location at the LSs is consistent with the actual one.
Therefore, SU requires 1 to n update messages per location
update instead of the fixed n messages for non-optimized PS,
thus reducing communication overhead.

Formally, SU is only successful if the new position fix at
time t, i.e., pn(t), lies within the circle c0 around the last
generated p0, i.e., p0(tlast). In other words, the distance of
pn(t) from p0(tlast) is less than the threshold thSU , which
can at most be equal to the minimum precision φmin (see
Eq. (5)). Note that, in contrast to DR, the user location with
the LSs in the case of SU has no error.

dist(p0(tlast), pn(t)) < thSU , 0 < thSU ≤ φmin (5)

For SU, it is important to determine an ordering for shares
that decides which shares should be re-generated in order to
have minimal updates. As an example, Fig. 4(a) shows a set of
already existing shares for a given last position fix pn(tlast).
As the new position fix pn(t) (the triangle) arrives, at least
two shares (s1 and s2) must be updated to represent it. This is
because pn(t) does not lie inside the circle c3 but rather in c2.
If however, we change the fusion order of shares (switch the
black and white headed arrows as shown in Fig. 4(b)), pn(t)
can be brought inside c3, requiring only one share update (s1).

Fig. 5. Selective Update. (a) Optimized version SUcom with one new share
for fixes 2 and 3. (b) Non-optimized version SUsec with many possible share
sets.

Intuitively speaking, as movement is the cause of incon-
sistency of shares, an optimal share ordering should change
those refinement shares which have the smallest components
along the direction of movement, i.e., û =

−−−−−−−−−−→
pn(tlast)pn(t)

|
−−−−−−−−−−→
pn(tlast)pn(t)|

.
This optimization is easily realized by sorting the shares in
ascending order of their components along û, i.e., ~si.û, and
updating the shares with the least components first. However,
this optimization can adversely effect the privacy security of
the PS algorithm.

For an explanation, consider a second example shown in
Fig. 5(a) which implements this optimization. Here shares
are generated anew for position fix 1 whereas SU is applied
to represent position fixes 2 and 3. Note that SU first sorts
the shares as discussed. As a result, it requires only one
share update per new position fix. However, as the single
share update must account for the displacement between the
consecutive position fixes, the overall set of shares get more
and more aligned along the vector −−→p0pn over the course of
a few position fixes. This alignment increases the correlation
between the shares which can lead to weakening of privacy
security of the PS algorithm as will be demonstrated by
our evaluations in Section VII. We call this optimized but
vulnerable version of SU as SUcom.

In contrast, Fig. 5(b) represents a non-optimized version of
SU where an update of three shares is required to represent
position fix 2. However, more share updates also imply more
flexibility in their definition. Referring again to Fig. 5(b), we
see that the three shares translate the position p2 to the actual
position fix p5. As the length |−−→p2p5| in this case is small
(compared to the maximum aggregated possible length of the 3
shares, i.e., 3.∆φ), many sets of 3 shares are possible between
p2 and p5 (dotted lines in the figure). Our algorithm generates
many such sets and finally chooses that set for selective update
which maximizes the deviation of its constituent vectors from
the average share vector, i.e.,

−−→p0p5
n . Hence, the updated shares

have less chances of alignment along −−→p0pn, and consequently,
less correlation among them. We will refer to this more secure,
non-optimized, version of SU as SUsec.

Figure 6 gives the pseudo-code of the function that performs
SU for both SUcom and SUsec. Given the last sent location
update updlast = {smaster, S}, current position fix pn, unit
vector û representing movement direction, and the threshold
thSU , the function first tackles, in lines 2-3, the case where
SU is not applicable with reference to Eq. (5). Then, in case
of the optimized version of selective update, i.e, SUcom, all
shares si ∈ updlast.S are sorted in line 6. Next, the function
determines, in line 8 the number k of shares to be re-generated,
by selecting the smallest obfuscation circle cn−k inside which

1: function SELECTIVE UPDATE(updlast, pn, û, thSU)
2: if dist(updlast.smaster.p0, pn(t)) ≥ thSU) then
3: return null
4: else
5: if comm optimization enabled then
6: updlast.S = sort shares(updlast.S, û)
7: end if
8: k = num of shares to update(updlast, pn)
9: new shares = gen k shares(updlast.S, pn, k)

10: return updated shares
11: end if
12: end function

Fig. 6. The Selective Update function

pn resides. Finally, the k new shares are generated in line 9.
If k > 1, our algorithm selects the best, out of a number of
possible sets of k shares as illustrated in Fig. 5(b), so as to
avoid the introduction of correlation between shares.

C. Selective Dead Reckoning

We observed from our initial experiments that DR and SU
had interesting individual properties. While DR results in very
less location updates on straight, predictable parts of the user
trajectory, it performed poorly at jerky patches such as sharp
turns. On the other hand, SU, while not as efficient as DR,
was relatively stable against sharp turns. Therefore, we define
Selective Dead Reckoning (SDR) which uses SU on top of DR
in order to achieve a more stable overall performance.

In SDR, whenever thDR = εmax is violated, we need to
choose between generating a complete set of new shares, as
in the original DR algorithm (see Fig. 3), or performing a
selective update as in the SU function (see Fig. 6). To make
this decision, we define a heuristic based on the minimal cost
of one location update in DR and SU. As the LS additionally
needs the velocity ~vt in SDR to perform DR, thus smaster =
{p0, ~vt}, and the cost of a share generation is CostSDR1 =
CostDR1 = (CostPS1 + 2 · n). Lets assume that DR in SDR
fails at the qth position fix after the last share generation. Note
here that the cost of DR over the q−1 position fixes was zero
but it would rise to CostDR1 if DR is continued on the qth

position fix. Instead, if SU was performed over the q fixes, it
would cost at least a size of (q · 2), with a minimal one share
update per position fix. Comparing the two costs, we define
our heuristic condition for activating SU as CostDR1 > (q · 2),
which, considering Eq. (1), is reduced to:

3n > q (6)

The pseudo-code for SDR is almost the same as that of
DR, apart from an additional call to the SU function (between
the lines 8-10 of the DR algorithm in Fig. 3), based on the
satisfaction of above inequality.

VI. PROTECTION AGAINST THE MMB ATTACK

Even with the optimized location updates, our protocols do
not ensure that the user can reach all parts of the published
obfuscation regions from their last location, considering their
maximum speed. Therefore, the adversary could cut out the
unreachable areas from the published regions, thus realizing
the MMB attack. This threat occurs at the time of new share

Fig. 7. Determination of dmax in order to counter the MMB attack.

generations when there is a major shift of position of pn inside
c0, due to regeneration of p0. Note that, for PS, we must
consider MMB attacks at all levels of precision, i.e., p0 to pn.
Therefore, whenever a complete set of new shares is generated
i.e. updnew = {p0, S}, we determine the maximum distance
dmax, which must be reachable since the last update updlast
so that all obfuscation regions of updnew are valid i.e. the
user could be located anywhere inside them. This maximum
distance is measured between the centers of corresponding
obfuscation regions, c0 to cn, of updnew and updlast.

For example, consider the two updates shown in Fig. 7.
Here the maximum distance dmax turns out to be between
c2 of both updates. Note that a different share fusion order
may result in another pair of ci as having a different dmax.
To get the maximum possible value of dmax, we calculate the
unit vector x̂ for the vector

−−−−−−−−−−−−−−→
updlast.p0updnew.p0. Then we

sort the shares of updnew and updlast in descending order of
their components along and opposite to x̂ respectively. Finally,
we fuse the shares in this order and determine dmax, which
represents the distance that must be traversable within the time
between the two updates, i.e., ∆t = (tnew − tlast), when
the user travels at their maximum speed vmax. This forms
the condition, as defined below, which when satisfied, enables
MMB safe publishing of the new location update.

dmax
vmax

< ∆t (7)

If, however, the user requires more time than ∆t to traverse
dmax at vmax, then we skip the publishing of the calculated
shares updnew.S until an upcoming position fix satisfies
Eq. (7) for the same set of shares. Note that updnew.p0 is
re-calculated as per the upcoming position fix by subtracting
from it the sum of the shares updnew.S. As the MMB attack
comes into play only at new share generations, and as we do
not discard any set of generated shares for protecting against it,
our protection algorithm is not expected to change the privacy
guarantees of the original a-posteriori and a-priori SGAs.

VII. EVALUATIONS

Finally, we evaluate the efficiency, in terms of communi-
cation overhead of our optimized location update protocols as
well as their privacy properties.

A. Performance Metrics

For a given trajectory of m position fixes, we measure the
reduction in the size of overall communication achieved by
our protocols compared to the original PS algorithm. To this
end, we define the Reduction Ratio (RR) metric as:

RR = (1− CostPSopt
m

CostPSm
) ∗ 100 (8)

Fig. 8. Distributions of pn around πattack . (a) High density. (b) Low Density.
(c) The seemingly low density case of PSA

where CostPSopt
m and CostPSm are defined in Section III-B.

We define a second performance metric with regards to the
MMB attack. While our protection against it does not affect
the share generation process, it does involve inhibiting location
updates for position fixes where Eq. (7) is not satisfied. We
quantify this effect by measuring the proportion of position
fixes for which location updates can be safely published. We
call this metric the publishing ratio (PR). PR is defined for a
trajectory with m position fixes as:

PR =
num(MMB safe updates)

m
(9)

B. Privacy Metrics

As seen in Section V, the partial updates in SU and
SDR protocols effect the share generation process in a non-
deterministic fashion, due to the non-deterministic user move-
ment. Therefore, the adversary cannot generate unknown
shares by the sole knowledge of our algorithm, which disables
the basic attacker model which allows the determination of
Pattack(φ), as discussed in Section IV-B. However, we identify
two fundamental features that the adversary can still exploit
to determine a distribution similar to Pattack. With k shares
already known, these features are the distribution of calculated
position pk inside the obfuscation region ck, and the correlation
among the k shares. We now define corresponding to these
features, two probabilistic metrics of attack to quantify the
privacy guarantees of our optimized PS approaches.

For the first feature, i.e., distribution of pk inside ck,
we define the Distribution attack probability Pdist(φ). This
probability simply treats pk as the adversary’s estimate of user
location πattack and determines its proportion that falls within
a distance of φ units from pn. Pdist(φ) is intended to capture
the convergence of pn to a normal distribution around p0 in
the case of a-posteriori SGA.

For the correlation feature, we introduce the Share Aver-
age (SA) attack probability PSA(φ). This probability, unlike
Pdist(φ), is estimated by generating the unknown shares as
the average of the k known shares. πattack is then determined
by fusing the known and generated shares. By averaging the
known shares, PSA(φ) captures the pre-existing correlation
among them, as in the a-priori SGA, as well as the correlation
introduced by re-usage of shares in SU, and SDR.

With Pdist(φ) and PSA(φ) being independent measures of
Pattack(φ), the adversary is interested in the more non-uniform
out of these two probability distributions in order to better
determine the actual location of user inside the obfuscation
region. To this end, they estimate Pdist and PSA when φ
represents the radius of 10% area of the obfuscation region
ck. If P ∈ {Pdist(φ), PSA(φ)} deviates from the ideal case of
P = 0.1, i.e. a uniform distribution, this leads to two cases of
high and low density as shown in Fig. 8(a) and (b) respectively.

In the case of PSA, however, low density values, i.e. less than
0.1, do not confirm high density of pn in the rest of the 90%
area of ck. This is because, for PSA, pn could lie outside the
boundaries of ck as shown in Fig. 8(c). Therefore, PSA < 0.1,
is not considered useful by the adversary.

For P ∈ {Pdist(φ), PSA(φ) > 0.1}, the adversary deter-
mines its non-uniformity as follows. If, for instance, P = 0.7,
then it represents a dense distribution and, compared with the
highest density case of P = 1, has a non-uniformity value of
w(P) = (0.7−0.1)/(1−0.1) ∼ 0.67. In contrast, if P = 0.03,
it represents low density distribution and, compared with the
lowest density case of P = 0, has a non-uniformity value of
w(P) = (0.1 − 0.03)/(0.1) = 0.7. Therefore, with a higher
value of w(P), P (φ) = 0.03 is more non-uniform compared
to P (φ) = 0.7 in this case.

The above discussion is summarized by a third privacy
metric Pbest(φ), which selects the more non-uniform, out of
Pdist(φ) and PSA(φ), as the adversary’s best estimate:

Pbest =

{
PSA if w(PSA(φ) > 0.1) > w(Pdist(φ)),

Pdist otherwise
(10)

C. Evaluation Setup

To evaluate our protocols, we downloaded real-world GPS
traces from [10] and categorized them as long-route, urban
travel, unstructured-walk and structured-walk. This categoriza-
tion is important to judge the viability of the protocols in real
life usage. The categories offer different average distance ∆dist

and angle changes ∆angle per position fix, as well as a range
of average speeds (see Table I).

We developed and tested our protocols in Octave [11]. For
our evaluations with the four trace categories, we have defined
values of the various parameters as given in Table II. We
average our results of each protocol by running it 10 times on
all trace categories. Furthermore, while the SU protocol has
the two types SUcom and SUsec as discussed in Section V-B,
the same branching also applies to SDR.

D. Results for Communication-overhead

As mentioned earlier, we measure the reduction ratio (RR)
of the size of total communication over a trajectory. Table III
gives the RRs for each protocol, per trace category. We present
the average results for both, the a-posteriori and a-priori
SGAs, as they did not differ significantly. DR with a min-
imum RR of 44.2% shows the most variation in performance,

TABLE I. THE DATASET OF GPS TRACES AND ITS CHARACTERISTICS.

Category Num.
of

Traces

Avg.
Speed
(km/h)

Avg.
∆dist

(m)

Avg.
∆ang

(deg)

Std.
∆ang

(deg)
i. long-route (car) 4 78.3 31.4 1.7 6.6
ii. urban travel (car) 4 24.8 55.8 12.4 21.5
iii. unstructured-walk 3 5.1 30.7 14.6 17.8
iv. structured-walk 7 6.4 24.7 22.5 29.8

TABLE II. PARAMETERS FOR EVALUATIONS

Cat. n φmin

(m)
thDR=
εmax

(m)

thSU

(m)
vmax

(km/h)

i. 5 3000 40 2500 150
ii. 5 1000 30 800 80
iii. 5 500 15 400 10
iv. 5 500 15 400 10

TABLE III. AVERAGE RR FOR a-posteriori AND a-priori SGAS (%)

Cat. DR SUcom SUsec SDRcom SDRsec

i. 91.0 88.1 84.6 95.1 94.8
ii. 44.2 82.3 76.0 80.8 78.8
iii. 52.8 81.7 75.3 85.8 84.3
iv. 57.6 83.6 79.2 86.8 85.5
min. 44.2 81.7 75.3 80.8 78.8

TABLE IV. PRS WITH MMB PROTECTION (%)

a-posteriori SGA
Cat. DR SUsec SDRsec

i. 48.9 91.6 86.3
ii. 67.2 98.7 99.6
iii. 38.7 98.1 99.7
iv. 40.0 91.5 89.4
min. 38.7 91.5 86.3

a-priori SGA
i. 35.5 58.5 64.2
ii. 56.0 81.8 90.9
iii. 28.5 63.9 77.8
iv. 30.2 65.9 69.7
min. 28.5 58.5 64.2

attributable to the varying predictability of trajectories in each
trace category as captured by the standard deviation of ∆ang

in Table I. Both flavors of SU , i.e., SUcom and SUsec, have
relatively invariant performance with minimum RRs of 81.7%
and 75.3% respectively, whereas SDRcom and SDRsec have
close or higher RRs than DR, and the corresponding SU
protocols. It is noticeable that the secure versions of SU and
SDR have at most ∼6% and ∼2% lower RRs, respectively,
as compared to their optimized versions for the four trace
categories. However, this reduction provides improved security
guarantees as will be seen later. In general, all protocols, except
for DR, have minimum RRs of above 75%.

E. Effects of MMB protection

Next, we analyze the effects of adding protection against
MMB attack to DR, SUsec, and SDRsec. Our test revealed
that there is no notable change in the values of RRs by
this addition. As for the publishing ratio (PR), Table IV
summarizes results for both SGAs. In general, we observe
that minimum PR of our protocols is significantly lower for a-
priori SGA than in a-posteriori. This is explained by the fact
that in a-posteriori SGA, p0 is normally distributed around
pn in contrast to its uniform distribution in a-priori SGA.
With reference to Eq. (7), this leads to comparatively smaller
values of dmax for a-posteriori SGA which takes less time
to traverse at vmax. Consequentially, Eq. (7) is satisfied for
more location updates, making them safely publishable. From
among our protocols, DR performs poorly with low minimum
PRs of 38.7% and 28.5% for the a-posteriori and a-priori
SGAs respectively. However, SUsec and SDRsec perform
significantly better with similar minimum PRs of close to 90%
and 60% for the two SGAs. The low performance of DR
compared to the other two protocols is due to the overall poor
predictability of the trajectories. This leads to more and more
new share generations which in turn proportionally increase
the number of occasions where updates must be inhibited due
to the MMB attack.

F. Results for Privacy Security

Finally, we evaluate our optimized protocols for PS and
the original PS algorithm against the probabilistic metrics

(a) Pattack vs. k (a-posteriori). (b) Pbest(φ) vs. k (a-posteriori). (c) Pattack vs. k (a-priori). (d) Pbest(φ) vs. k (a-priori).

Fig. 9. Privacy Security against k compromised shares. (a) and (c): results for non-optimized PS. (b) and (d): corresponding results for optimized PS.

of attack: Pdist(φ), PSA(φ), and Pbest(φ). Recall that given
k ∈ {1..(n − 1)} shares are compromised by the adversary,
Pdist considers pk as πattack whereas PSA generates the
(n − k) unknown shares, by averaging the k shares, and
determines πattack by fusing them on top of pk.

Figure 9(a) and (c) show the results of Monte Carlo
simulation (1000 runs) for the original a-posteriori and a-
priori SGAs when φ is set equal to the radius of 10% area
of the obfuscation region ck. While ideally, i.e., for uniform
distribution of pn inside ck, the probabilities Pdist(φ), and
PSA(φ) should be 0.1 for all values of k, this is not the case.
As for a-posteriori SGA, see Fig. 9(a), it is weaker against
Pdist than PSA with a high probability, i.e, 62%, of finding pn
in 10% region around p0 due to its normal distribution. On the
other hand, for a-priori SGA, PSA evaluates to higher values
with increasing k due to the correlation between the generated
shares (see Fig. 9(c)). Note that in both of the figures, Pbest,
represented by solid line, captures the more non-uniform of
Pdist and PSA (see Eq.(10)).

We now look at the average results of our protocols, as
shown in Fig. 9(b) and (d), when applied to all trace categories
using the a-posteriori and a-priori SGAs respectively. For ease
of inspection, we only plot Pbest. As DR does not modify
shares, it gives the expected result of maintaining the shape
of the original Pbest curve for both SGAs. SUcom, on the
other hand, results in more correlation between shares which
is evident by the rise of its curve to reach 50% in case of both
SGAs resulting in poor security guarantees. One noticeable
improvement from SUcom, however, is the reduction of Pbest
from 62% for original posteriori SGA to 30% when k = 0.
This is due to the gradual movement of p0 away from pn
as shares get stretched due to their re-use, thus causing the
transformation of the normal distribution of pn to a more
uniform one around p0. SUsec with its relatively more share
updates and flexibility in share definition, however, performs
best for both SGAs by being closest to the probability of 0.1
for all values of k. Finally, SDRcom and SDRsec provide
similarly improved security for the original a-priori SGA. For
a-posteriori SGA, however, the improvement in security for
SDRsec is considerably more as it is the second nearest, after
SUsec, to the probability of 0.1 for all values of k.

In short, all our protocols, apart from SUcom improve the
security guarantees of the original SGAs. Our tests confirmed
that these guarantees do not change by the addition of protec-
tion against the MMB attack.

Considering both, the communication efficiency and the
privacy guarantees, we can conclude that the secure versions
of SU and SDR provide our best solutions with consistent
performance over all trace categories. Not only do they provide
high values of above 75% for the minimum RR, they also

improve the privacy guarantees of the original PS algorithm.

VIII. CONCLUSION AND FUTURE WORK

In order to make the solution of Position Sharing feasible
for preserving location privacy, we have presented a suite
of location update protocols, based on the concepts of dead-
reckoning and selective update, which significantly reduce its
communication cost while improving its privacy security guar-
antees. We have discussed the detailed design and integration
of these protocols into Position Sharing approach, followed by
evaluations on real world traces as proof of their performance.

As future work, we will add further attack capabilities in our
privacy adversary model. These will primarily include map-
based knowledge such as the road-network topology.

IX. ACKNOWLEDGMENT

This work is part of the PriLoc project (Privacy-aware
Location Management) of the University of Stuttgart funded by
the German Research Foundation (DFG) grant RO 1086/15-1.

REFERENCES

[1] (2014) World’s biggest data breaches & hacks — information is
beautiful. http://tinyurl.com/lgyx9lc.

[2] F. Dürr, P. Skvortsov, and K. Rothermel, “Position sharing for location
privacy in non-trusted systems,” in Proc. of the IEEE Int. Conf. on
Pervasive Computing and Communications (PerCom), 2011, pp. 189–
196.

[3] B. Lucas. (2014, 09) Stalkers turn to mobile technology and social
media to harass victims — herald sun. http://tinyurl.com/mdmsyg4.

[4] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification
of location privacy attacks and approaches,” Personal and Ubiquitous
Computing, vol. 18, no. 1, pp. 163–175, 2014.

[5] Z. Riaz, “Optimized position update protocols for secure and efficient
position sharing,” Master’s thesis, 2013.

[6] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proc. of the 1st Int.
Conf. on Mobile systems, applications and services (MobiSys). NY,
USA: ACM, 2003, pp. 31–42.

[7] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,” in Pervasive Computing, ser. LNCS.
Springer Berlin Heidelberg, 2005, vol. 3468, pp. 152–170.

[8] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar, “Preserving user
location privacy in mobile data management infrastructures,” in Privacy
Enhancing Technologies, ser. LNCS. Springer Berlin Heidelberg, 2006,
vol. 4258, pp. 393–412.

[9] P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Modeling and
querying moving objects,” in Proc. of the 13th Int. Conf. on Data
Engineering, 1997, pp. 422–432.

[10] Gpslib - gps tracks hosting service. [Online]. Available: http://gpslib.net/
[11] Gnu octave. [Online]. Available: http://www.gnu.org/software/octave/

